Svetlana Neretina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5692950/publications.pdf

Version: 2024-02-01

42 papers 1,332 citations

304743 22 h-index 345221 36 g-index

42 all docs

42 docs citations

42 times ranked 2058 citing authors

#	Article	IF	Citations
1	Epitaxially aligned single-crystal gold nanoplates formed in large-area arrays at high yield. Nano Research, 2022, 15, 296-303.	10.4	11
2	Plasmonic Gold Trimers and Dimers with Air-Filled Nanogaps. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28186-28198.	8.0	11
3	Sequential Symmetry-Breaking Events as a Synthetic Pathway for Chiral Gold Nanostructures with Spiral Geometries. Nano Letters, 2021, 21, 2919-2925.	9.1	21
4	Stabilization of Plasmonic Silver Nanostructures with Ultrathin Oxide Coatings Formed Using Atomic Layer Deposition. Journal of Physical Chemistry C, 2021, 125, 17212-17220.	3.1	10
5	Substrate-immobilized noble metal nanoplates: a review of their synthesis, assembly, and application. Journal of Materials Chemistry C, 2021, 9, 12974-13012.	5.5	13
6	Synergistic roles of vapor- and liquid-phase epitaxy in the seed-mediated synthesis of substrate-based noble metal nanostructures. Nanoscale, 2021, 13, 20225-20233.	5.6	5
7	Plasmonics under Attack: Protecting Copper Nanostructures from Harsh Environments. Chemistry of Materials, 2020, 32, 6788-6799.	6.7	16
8	Effect of Nanoparticle Ligands on 4-Nitrophenol Reduction: Reaction Rate, Induction Time, and Ligand Desorption. ACS Catalysis, 2020, 10, 10040-10050.	11.2	78
9	Highly efficient visible light phenyl modified carbon nitride/TiO2 photocatalyst for environmental applications. Applied Surface Science, 2020, 531, 147394.	6.1	19
10	Large-area periodic arrays of gold nanostars derived from HEPES-, DMF-, and ascorbic-acid-driven syntheses. Nanoscale, 2020, 12, 16489-16500.	5.6	23
11	Surface Bubble Growth in Plasmonic Nanoparticle Suspension. ACS Applied Materials & Amp; Interfaces, 2020, 12, 26680-26687.	8.0	18
12	Durable Copper Nanostructures for on-Chip Plasmonic Devices. ECS Meeting Abstracts, 2020, MA2020-01, 2384-2384.	0.0	0
13	(Invited) 4-NP Reduction As a Reaction-Based Indicator for Quantitatively Assessing the Detrimental Influences of Leaching on Catalysts. ECS Meeting Abstracts, 2020, MA2020-01, 1714-1714.	0.0	O
14	Periodic Arrays of Dewetted Silver Nanostructures on Sapphire and Quartz: Effect of Substrate Truncation on the Localized Surface Plasmon Resonance and Near-Field Enhancement. Journal of Physical Chemistry C, 2019, 123, 19879-19886.	3.1	11
15	Plasmon-Mediated Synthesis of Periodic Arrays of Gold Nanoplates Using Substrate-Immobilized Seeds Lined with Planar Defects. Nano Letters, 2019, 19, 5653-5660.	9.1	50
16	Catalytic Reduction of 4-Nitrophenol by Gold Catalysts: The Influence of Borohydride Concentration on the Induction Time. Journal of Physical Chemistry C, 2019, 123, 12894-12901.	3.1	70
17	Synthesis and Properties of Au Hydride. ChemistrySelect, 2019, 4, 4287-4292.	1.5	4
18	Dewetted nanostructures of gold, silver, copper, and palladium with enhanced faceting. Acta Materialia, 2019, 165, 15-25.	7.9	23

#	Article	IF	CITATIONS
19	Copper Template Design for the Synthesis of Bimetallic Copper–Rhodium Nanoshells through Galvanic Replacement. Particle and Particle Systems Characterization, 2018, 35, 1700420.	2.3	9
20	Beyond the Gold Standard: Bimetallic Nanomaterials Bring New Properties and Functions. Particle and Particle Systems Characterization, 2018, 35, 1800111.	2.3	3
21	Light-Assisted Growth of Hexagonal Au Nanostructures on Sapphire Substrates. Microscopy and Microanalysis, 2018, 24, 1678-1679.	0.4	0
22	Arrays of highly complex noble metal nanostructures using nanoimprint lithography in combination with liquid-phase epitaxy. Nanoscale, 2018, 10, 18186-18194.	5.6	30
23	Wulff in a cage gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Nanoscale, 2018, 10, 18749-18757.	5.6	34
24	Light-Mediated Growth of Noble Metal Nanostructures (Au, Ag, Cu, Pt, Pd, Ru, Ir, Rh) From Micro- and Nanoscale ZnO Tetrapodal Backbones. Frontiers in Chemistry, 2018, 6, 411.	3.6	26
25	Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34690-34698.	8.0	23
26	Identifying the True Catalyst in the Reduction of 4-Nitrophenol: A Case Study Showing the Effect of Leaching and Oxidative Etching Using Ag Catalysts. ACS Catalysis, 2018, 8, 8879-8888.	11,2	43
27	When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces. Nanotechnology, 2017, 28, 282002.	2.6	98
28	One-step catalytic reduction of 4-nitrophenol through the direct injection of metal salts into oxygen-depleted reactants. Catalysis Science and Technology, 2017, 7, 1460-1464.	4.1	32
29	Catalytic Reduction of 4-Nitrophenol: A Quantitative Assessment of the Role of Dissolved Oxygen in Determining the Induction Time. Nano Letters, 2016, 16, 7791-7797.	9.1	150
30	A Wulff in a Cage: The Confinement of Substrate-Based Structures in Plasmonic Nanoshells, Nanocages, and Nanoframes Using Galvanic Replacement. ACS Nano, 2016, 10, 6354-6362.	14.6	50
31	Plastically deformed Cu-based alloys as high-performance catalysts for the reduction of 4-nitrophenol. Catalysis Science and Technology, 2016, 6, 5737-5745.	4.1	15
32	Noble Metal Nanostructure Synthesis at the Liquid–Substrate Interface: New Structures, New Insights, and New Possibilities. Accounts of Chemical Research, 2016, 49, 2243-2250.	15.6	46
33	Citrateâ€Induced Nanocubes: A Reâ€Examination of the Role of Citrate as a Shapeâ€Directing Capping Agent for Agâ€Based Nanostructures. Small, 2016, 12, 3444-3452.	10.0	27
34	Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation. ACS Sensors, 2016, 1, 73-80.	7.8	26
35	Photocatalytic Enhancements to the Reduction of 4-Nitrophenol by Resonantly Excited Triangular Gold–Copper Nanostructures. Journal of Physical Chemistry C, 2015, 119, 17308-17315.	3.1	71
36	Mechanistic study of substrate-based galvanic replacement reactions. Nano Research, 2014, 7, 365-379.	10.4	32

3

#	Article	IF	CITATION
37	Kinetically Controlled Nucleation of Silver on Surfactant-Free Gold Seeds. Journal of the American Chemical Society, 2014, 136, 15337-15345.	13.7	62
38	Sacrificial Templates for Galvanic Replacement Reactions: Design Criteria for the Synthesis of Pure Pt Nanoshells with a Smooth Surface Morphology. Chemistry of Materials, 2014, 26, 3340-3347.	6.7	72
39	Behavior of gold nanoparticles in an experimental algal–zooplankton food chain. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	18
40	Substrate-based galvanic replacement reactions carried out on heteroepitaxially formed silver templates. Nano Research, 2013, 6, 418-428.	10.4	26
41	Organized Surfaces of Highly Faceted Single-Crystal Palladium Structures Seeded by Sacrificial Templates. Crystal Growth and Design, 2013, 13, 3847-3851.	3.0	11
42	Dynamic templating: a large area processing route for the assembly of periodic arrays of sub-micrometer and nanoscale structures. Nanoscale, 2013, 5, 1929.	5.6	45