Brian E Burke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5692102/publications.pdf

Version: 2024-02-01

79 13,363 44 72
papers citations h-index g-index

82 82 82 12582 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A human infertility-associated KASH5 variant promotes mitochondrial localization. Scientific Reports, 2021, 11, 10133.	1.6	6
2	AKTIP interacts with ESCRT I and is needed for the recruitment of ESCRT III subunits to the midbody. PLoS Genetics, 2021, 17, e1009757.	1.5	13
3	Disrupting the LINC complex by AAV mediated gene transduction prevents progression of Lamin induced cardiomyopathy. Nature Communications, 2021, 12, 4722.	5. 8	45
4	Proteinâ€Protein Interaction Mapping by 2Câ€BioID. Current Protocols in Cell Biology, 2019, 84, e96.	2.3	0
5	A user-interactive algorithm quantifying nuclear pore complex distribution within the nuclear lamina network in single molecular localization microscopic image. Methods, 2019, 157, 42-46.	1.9	3
6	Chain reaction: LINC complexes and nuclear positioning. F1000Research, 2019, 8, 136.	0.8	22
7	LINC complexes as regulators of meiosis. Current Opinion in Cell Biology, 2018, 52, 22-29.	2.6	57
8	BioID: A Screen for Proteinâ€Protein Interactions. Current Protocols in Protein Science, 2018, 91, 19.23.1-19.23.15.	2.8	200
9	C/EBP \hat{l}^2 mediates RNA polymerase III-driven transcription of oncomiR-138 in malignant gliomas. Nucleic Acids Research, 2018, 46, 336-349.	6.5	18
10	LINC complexes and nuclear positioning. Seminars in Cell and Developmental Biology, 2018, 82, 67-76.	2.3	80
11	2C-BioID: An Advanced Two Component BioID System for Precision Mapping of Protein Interactomes. IScience, 2018, 10, 40-52.	1.9	35
12	Interactions of Nesprin-4-Containing LINC Complexes in Outer Hair Cells Explored by BioID. Methods in Molecular Biology, 2018, 1840, 45-56.	0.4	0
13	Nuclear networking. Nucleus, 2017, 8, 323-330.	0.6	10
14	Nesprin-1α-Dependent Microtubule Nucleation from the Nuclear Envelope via Akap450 Is Necessary for Nuclear Positioning in Muscle Cells. Current Biology, 2017, 27, 2999-3009.e9.	1.8	125
15	EGF hijacks miR-198/FSTL1 wound-healing switch and steers a two-pronged pathway toward metastasis. Journal of Experimental Medicine, 2017, 214, 2889-2900.	4.2	54
16	When cells push the envelope. Science, 2016, 352, 295-296.	6.0	7
17	Lamins. Current Biology, 2016, 26, R348-R350.	1.8	14
18	A-type Lamins Form Distinct Filamentous Networks with Differential Nuclear Pore Complex Associations. Current Biology, 2016, 26, 2651-2658.	1.8	127

#	Article	IF	CITATIONS
19	Proximity biotinylation provides insight into the molecular composition of focal adhesions at the nanometer scale. Science Signaling, 2016, 9, rs4.	1.6	78
20	Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. ELife, 2015, 4, .	2.8	96
21	SUN4 is essential for nuclear remodeling during mammalian spermiogenesis. Developmental Biology, 2015, 407, 321-330.	0.9	55
22	Mechanism and Regulation of Rapid Telomere Prophase Movements in Mouse Meiotic Chromosomes. Cell Reports, 2015, 11, 551-563.	2.9	88
23	The missing LINC. Nucleus, 2014, 5, 3-10.	0.6	21
24	Functional Architecture of the Cell's Nucleus in Development, Aging, and Disease. Current Topics in Developmental Biology, 2014, 109, 1-52.	1.0	117
25	A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. Journal of Cell Biology, 2013, 202, 1023-1039.	2.3	193
26	BioID: A Screen for Proteinâ€Protein Interactions. Current Protocols in Protein Science, 2013, 74, 19.23.1-19.23.14.	2.8	332
27	The nuclear lamins: flexibility in function. Nature Reviews Molecular Cell Biology, 2013, 14, 13-24.	16.1	455
28	PREEParing for Mitosis. Developmental Cell, 2013, 26, 221-222.	3.1	3
28	PREEParing for Mitosis. Developmental Cell, 2013, 26, 221-222. The LINC complex is essential for hearing. Journal of Clinical Investigation, 2013, 123, 740-50.	3.1	3
29	The LINC complex is essential for hearing. Journal of Clinical Investigation, 2013, 123, 740-50. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian	3.9	130
30	The LINC complex is essential for hearing. Journal of Clinical Investigation, 2013, 123, 740-50. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. Journal of Cell Biology, 2012, 196, 801-810.	3.9 2.3	1,834
29 30 31	The LINC complex is essential for hearing. Journal of Clinical Investigation, 2013, 123, 740-50. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. Journal of Cell Biology, 2012, 196, 801-810. The nuclear periphery. Molecular Biology of the Cell, 2012, 23, 968-968.	3.9 2.3 0.9	1,834 0
29 30 31 32	The LINC complex is essential for hearing. Journal of Clinical Investigation, 2013, 123, 740-50. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. Journal of Cell Biology, 2012, 196, 801-810. The nuclear periphery. Molecular Biology of the Cell, 2012, 23, 968-968. It Takes KASH to Hitch to the SUN. Cell, 2012, 149, 961-963. The Interaction between Nesprins and Sun Proteins at the Nuclear Envelope Is Critical for Force Transmission between the Nucleus and Cytoskeleton. Journal of Biological Chemistry, 2011, 286,	3.9 2.3 0.9	1,834 0
29 30 31 32	The LINC complex is essential for hearing. Journal of Clinical Investigation, 2013, 123, 740-50. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. Journal of Cell Biology, 2012, 196, 801-810. The nuclear periphery. Molecular Biology of the Cell, 2012, 23, 968-968. It Takes KASH to Hitch to the SUN. Cell, 2012, 149, 961-963. The Interaction between Nesprins and Sun Proteins at the Nuclear Envelope Is Critical for Force Transmission between the Nucleus and Cytoskeleton. Journal of Biological Chemistry, 2011, 286, 26743-26753. Nuclear transport and the mitotic apparatus: an evolving relationship. Cellular and Molecular Life	3.9 2.3 0.9 13.5	1,834 0 16 433

#	Article	IF	CITATIONS
37	Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2194-2199.	3.3	313
38	Nuclei Take a Position: Managing Nuclear Location. Developmental Cell, 2009, 17, 587-597.	3.1	140
39	Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy. Science, 2008, 320, 1332-1336.	6.0	1,016
40	The nuclear envelope as an integrator of nuclear and cytoplasmic architecture. FEBS Letters, 2008, 582, 2023-2032.	1.3	54
41	Aspects of Nuclear Envelope Dynamics in Mitotic Cells. Novartis Foundation Symposium, 2008, , 22-34.	1.2	3
42	Functional association of Sun1 with nuclear pore complexes. Journal of Cell Biology, 2007, 178, 785-798.	2.3	202
43	Nuclear envelope defects in muscular dystrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 118-127.	1.8	27
44	Blurring the Boundary: The Nuclear Envelope Extends Its Reach. Science, 2007, 318, 1408-1412.	6.0	239
45	Network news: complete nuclear coverage. Nature Cell Biology, 2007, 9, 1123-1124.	4.6	1
46	The Laminopathies: The Functional Architecture of the Nucleus and Its Contribution to Disease. Annual Review of Genomics and Human Genetics, 2006, 7, 369-405.	2.5	143
47	Coupling of the nucleus and cytoplasm: Role of the LINC complex. Journal of Cell Biology, 2006, 172, 41-53.	2.3	1,153
48	CELL BIOLOGY: Nuclear Pore Complex Models Gel. Science, 2006, 314, 766a-767a.	6.0	12
49	A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes and Development, 2006, 20, 307-320.	2.7	190
50	Aspects of nuclear envelope dynamics in mitotic cells. Novartis Foundation Symposium, 2005, 264, 22-30; discussion 30-4, 227-30.	1.2	2
51	Nuclear envelope dynamics during mitosis. Symposia of the Society for Experimental Biology, 2004, , 205-16.	0.0	0
52	The laminopathies: nuclear structure meets disease. Current Opinion in Genetics and Development, 2003, 13, 223-230.	1.5	177
53	Nup358 integrates nuclear envelope breakdown with kinetochore assembly. Journal of Cell Biology, 2003, 162, 991-1001.	2.3	182
54	Cytoplasmic Dynein as a Facilitator of Nuclear Envelope Breakdown. Cell, 2002, 108, 97-107.	13.5	347

#	Article	IF	CITATIONS
55	Remodelling the walls of the nucleus. Nature Reviews Molecular Cell Biology, 2002, 3, 487-497.	16.1	204
56	Life at the edge: the nuclear envelope and human disease. Nature Reviews Molecular Cell Biology, 2002, 3, 575-585.	16.1	387
57	Mitotic Control of Nuclear Pore Complex Assembly. , 2002, , 73-86.		O
58	The Nuclear Envelope in Muscular Dystrophy and Cardiovascular Diseases. Traffic, 2001, 2, 675-683.	1.3	39
59	The nuclear envelope: filling in gaps. Nature Cell Biology, 2001, 3, E273-E274.	4.6	28
60	The A-Type Lamins Nuclear Structural Proteins as a Focus for Muscular Dystrophy and Cardiovascular Diseases. Trends in Cardiovascular Medicine, 2001, 11, 280-285.	2.3	50
61	Lamins and Apoptosis. Journal of Cell Biology, 2001, 153, F5-F7.	2.3	28
62	Nuclear envelope dynamics. Biochemistry and Cell Biology, 2001, 79, 533-542.	0.9	21
63	Nuclear envelope defects associated with <i>LMNA </i> mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. Journal of Cell Science, 2001, 114, 4447-4457.	1.2	203
64	Recombinant Nup153 Incorporates in Vivo into Xenopus Oocyte Nuclear Pore Complexes. Journal of Structural Biology, 2000, 129, 306-312.	1.3	21
65	Loss of a-Type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular Dystrophy. Journal of Cell Biology, 1999, 147, 913-920.	2.3	1,097
66	Function and assembly of nuclear pore complex proteins. Biochemistry and Cell Biology, 1999, 77, 321-329.	0.9	23
67	Amino-terminal sequences that direct nucleoporin Nup153 to the inner surface of the nuclear envelope. Chromosoma, 1998, 107, 228-236.	1.0	48
68	Functional Analysis of Tpr: Identification of Nuclear Pore Complex Association and Nuclear Localization Domains and a Role in mRNA Export. Journal of Cell Biology, 1998, 143, 1801-1812.	2.3	97
69	Nup84, A Novel Nucleoporin That Is Associated With CAN/Nup214 on the Cytoplasmic Face of the Nuclear Pore Complex. Journal of Cell Biology, 1997, 137, 989-1000.	2.3	97
70	Chapter 16 Cell-Free Nuclear Reassembly in Mammalian Mitotic Homogenates. Methods in Cell Biology, 1997, 53, 357-366.	0.5	3
71	Cytoskeletonâ€"membrane interactions. Current Opinion in Cell Biology, 1996, 8, 56-65.	2.6	221
72	Elementary Immunology. , 1993, , 204-236.		0

#	Article	IF	CITATIONS
73	Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo. Developmental Biology, 1991, 144, 392-404.	0.9	114
74	On the cell-free association of lamins A and C with metaphase chromosomes. Experimental Cell Research, 1990, 186, 169-176.	1.2	105
75	Functional Organization of the Nuclear Envelope. Annual Review of Cell Biology, 1988, 4, 335-374.	26.0	631
76	Nuclear Envelope Dynamics During Mitosis. Proceedings Annual Meeting Electron Microscopy Society of America, 1988, 46, 224-225.	0.0	0
77	Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell, 1987, 51, 383-392.	13.5	354
78	A cell free system to study reassembly of the nuclear envelope at the end of mitosis. Cell, 1986, 44, 639-652.	13.5	407
79	Microinjection of mRNA coding for an anti-golgi antibody inhibits intracellular transport of a viral membrane protein. Cell, 1984, 36, 847-856.	13.5	43