
Fujun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5691961/publications.pdf Version: 2024-02-01

FILLIN XII

#	Article	IF	CITATIONS
1	Interfacial modified unidirectional wheat straw/polylactic acid composites. Journal of Industrial Textiles, 2022, 51, 272S-284S.	2.4	9
2	Electromagnetic performance of three-dimensional woven spacer microstrip antenna with various conductive fibers in extreme temperatures. Textile Reseach Journal, 2022, 92, 2625-2634.	2.2	2
3	Biomimetic architectured Kevlar/polyimide composites with ultra-light, superior anti-compressive and flame-retardant properties. Composites Part B: Engineering, 2022, 230, 109485.	12.0	21
4	Ultra-light-weight kevlar/polyimide 3D woven spacer multifunctional composites for high-gain microstrip antenna. Advanced Composites and Hybrid Materials, 2022, 5, 872-883.	21.1	32
5	Bio-Inspired Hierarchical Carbon Nanotube Yarn with Ester Bond Cross-Linkages towards High Conductivity for Multifunctional Applications. Nanomaterials, 2022, 12, 208.	4.1	7
6	Dyeable electroconductive cotton wrapped CNT yarn for multifunctional textiles. Journal of Materials Science, 2022, 57, 731-738.	3.7	4
7	Three-dimensional woven structural glass fiber/polytetrafluoroethylene (PTFE) composite antenna with superb integrity and electromagnetic performance. Composite Structures, 2022, 281, 115096.	5.8	12
8	Light-weight, high-gain antenna with broad temperature adaptability based on multifunctional 3D woven spacer Kevlar/polyimide composites. Composites Communications, 2022, 30, 101061.	6.3	13
9	Numerical analyses of axial tension mechanisms of 3D orthogonal woven E-glass/epoxy composites with drilled holes. Textile Reseach Journal, 2022, 92, 3478-3487.	2.2	2
10	Experimental and numerical study of the behavior of epoxy foamâ€filled <scp>3D</scp> woven spacer composites under bending load. Polymer Composites, 2022, 43, 3057-3067.	4.6	9
11	Ultra-high compressive strength of 3D woven spacer composites with bulked glass fiber and saturated resin absorption. Composite Structures, 2022, 290, 115542.	5.8	8
12	Super-strong CNT composite yarn with tight CNT packing <i>via</i> a compress-stretch process. Nanoscale, 2022, 14, 9078-9085.	5.6	9
13	Low-Voltage Activating, Fast Responding Electro-thermal Actuator Based on Carbon Nanotube Film/PDMS Composites. Advanced Fiber Materials, 2021, 3, 38-46.	16.1	31
14	Ultra-light 3D fabric Reinforced Composite with Distinct Thermal Insulation and Superior Sound-absorbing Properties. Journal of Physics: Conference Series, 2021, 1790, 012065.	0.4	2
15	Structural modification of carbon nanotube film toward multifunctional composites via a wet-compression method. Applied Nanoscience (Switzerland), 2021, 11, 1817-1826.	3.1	3
16	Light-weight strain sensor based on carbon nanotube/epoxy composite yarn. Journal of Materials Science, 2021, 56, 13156-13164.	3.7	7
17	Highly stretchable, fast thermal response carbon nanotube composite heater. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106471.	7.6	30
18	Characterization and comparison of properties of cryogenic conditioned CNT reinforced thermoset (epoxy) and thermoplastic (poly vinyl alcohol) composite yarns. Journal of Composite Materials, 2021, 55, 4503-4511.	2.4	5

Ғијим Хи

#	Article	IF	CITATIONS
19	Wet cryogenic modification of the carbon nanotube assembly inspired by frozen Chinese Doufu recipe. Materials Letters, 2021, 303, 130421.	2.6	3
20	Fabrication and mechanical properties of flaxseed fiber bundle-reinforced polybutylene succinate composites. Journal of Industrial Textiles, 2020, 50, 98-113.	2.4	21
21	Densely packed, highly strain sensitive carbon nanotube composites with sufficient polymer penetration. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105728.	7.6	16
22	Bioinspired microstructure-reorganized behavior of carbon nanotube yarn induced by cyclic stretching training. Journal of Materials Chemistry C, 2020, 8, 117-123.	5.5	16
23	Compressive strength and thermal insulation properties of the 3D woven spacer composites with connected spacer yarn structure. Journal of Materials Science, 2020, 55, 2380-2388.	3.7	27
24	Rapid Nanowelding of Carbon Coatings onto Glass Fibers by Electrothermal Shock. ACS Applied Materials & Interfaces, 2020, 12, 37722-37731.	8.0	13
25	Highly stretchable electro-conductive yarn via wrapping carbon nanotube yarn on multifilament polyester yarn. Journal of Industrial Textiles, 2020, , 152808372095740.	2.4	3
26	Surface Functionalization of Cotton and PC Fabrics Using SiO2 and ZnO Nanoparticles for Durable Flame Retardant Properties. Coatings, 2020, 10, 124.	2.6	37
27	Three-Dimensional Textile Structural Conical Conformal Microstrip Antennas for Multifunctional Flexible Electronics. ACS Applied Electronic Materials, 2020, 2, 1440-1448.	4.3	6
28	Light-weight, high-gain three-dimensional textile structural composite antenna. Composites Part B: Engineering, 2020, 185, 107781.	12.0	23
29	Bioinspired Superelastic Electroconductive Fiber for Wearable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 44735-44741.	8.0	31
30	Highly effective E-heating performance of nickel coated carbon fiber and its composites for de-icing application. Composite Structures, 2019, 229, 111397.	5.8	18
31	Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Composites Science and Technology, 2019, 183, 107824.	7.8	40
32	Bending properties and failure mechanisms of three-dimensional hybrid woven spacer composites with glass and carbon fibers. Textile Reseach Journal, 2019, 89, 4502-4511.	2.2	8
33	Highly tough and strain sensitive plasma functionalized carbon nanotube/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2019, 121, 123-129.	7.6	30
34	Strain sensing fabric integrated with carbon nanotube yarn for wearable applications. Textile Reseach Journal, 2019, 89, 3048-3055.	2.2	10
35	Quasi-static and dynamic interfacial evaluations of plasma functionalized carbon nanotube fiber. Applied Surface Science, 2019, 465, 795-801.	6.1	22
36	Synergistic effect of CNT films impregnated with CNT modified epoxy solution towards boosted interfacial bonding and functional properties of the composites. Composites Part A: Applied Science and Manufacturing, 2018, 110, 1-10.	7.6	37

Ғијим Хи

#	Article	IF	CITATIONS
37	Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure. Composites Part A: Applied Science and Manufacturing, 2018, 108, 107-113.	7.6	55
38	Enhancing Electrochemical Performance of Graphene Fiber-Based Supercapacitors by Plasma Treatment. ACS Applied Materials & Interfaces, 2018, 10, 13652-13659.	8.0	79
39	Electromagnetic performance and impact damage of the microstrip antennas integrated in cylindrical three dimensional woven composite structures. Polymer Composites, 2018, 39, 3259-3267.	4.6	10
40	X-ray 3D microscopy analysis of fracture mechanisms for 3D orthogonal woven E-glass/epoxy composites with drilled and moulded-in holes. Composites Part B: Engineering, 2018, 133, 193-202.	12.0	31
41	Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors. ACS Nano, 2018, 12, 5266-5273.	14.6	51
42	From Wood to Textiles: Topâ€Down Assembly of Aligned Cellulose Nanofibers. Advanced Materials, 2018, 30, e1801347.	21.0	121
43	Electromagnetic performance of a three-dimensional woven fabric antenna conformal with cylindrical surfaces. Textile Reseach Journal, 2017, 87, 147-154.	2.2	21
44	Characterization of enhanced interfacial bonding between epoxy and plasma functionalized carbon nanotube films. Composites Science and Technology, 2017, 145, 114-121.	7.8	56
45	Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber/bisphenol-F epoxy composite. Composites Part B: Engineering, 2017, 125, 195-202.	12.0	52
46	Monitoring of seawater immersion degradation in glass fibre reinforced polymer composites using quantum dots. Composites Part B: Engineering, 2017, 112, 93-102.	12.0	60
47	Investigation on the mechanical and electrical properties of carbon nanotube/epoxy composites produced by resin transfer molding. Journal of Composite Materials, 2017, 51, 2035-2043.	2.4	19
48	Simulation and experimental study of double-element antennas based on a three-dimensional woven structure with various curvature radii. Textile Reseach Journal, 2017, 87, 216-223.	2.2	3
49	Mechanical and Electrical Properties of Carbon Nanotube / Polydimethylsiloxane Composites Yarn. Journal of Engineered Fibers and Fabrics, 2016, 11, 155892501601100.	1.0	3
50	Effect of thermal treatments on structures and mechanical properties of aerogel-spun carbon nanotube fibers. Materials Letters, 2016, 183, 117-121.	2.6	21
51	Interfacial strength and debonding mechanism between aerogel-spun carbon nanotube yarn and polyphenylene sulfide. Composites Part A: Applied Science and Manufacturing, 2016, 88, 98-105.	7.6	25
52	Tensile and interfacial properties of polyacrylonitrile-based carbon fiber after different cryogenic treated condition. Composites Part B: Engineering, 2016, 99, 358-365.	12.0	61
53	Dye aggregation in layer-by-layer dyeing of cotton fabrics. RSC Advances, 2016, 6, 20286-20293.	3.6	11
54	A novel flexible humidity switch material based on multi-walled carbon nanotube/polyvinyl alcohol composite yarn. Sensors and Actuators B: Chemical, 2016, 230, 528-535.	7.8	58

Ғијим Хи

#	Article	IF	CITATIONS
55	Simulation and electromagnetic performance of cylindrical two-element microstrip antenna array integrated in 3D woven glass fiber/epoxy composites. Materials and Design, 2016, 89, 1048-1056.	7.0	18
56	Fabrication and property of discarded denim fabric/polypropylene composites. Journal of Industrial Textiles, 2015, 44, 798-812.	2.4	14
57	Fabrication and characterization of three dimensional woven carbon fiber/silica ceramic matrix composites. Composites Part B: Engineering, 2015, 77, 122-128.	12.0	27
58	Cylindrical conformal single-patch microstrip antennas based on three dimensional woven glass fiber/epoxy resin composites. Composites Part B: Engineering, 2015, 78, 331-337.	12.0	29
59	In-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decomposition. Journal of Materials Science, 2015, 50, 8166-8174.	3.7	25
60	Miniature horizontal axis wind turbine system for multipurpose application. Energy, 2014, 75, 216-224.	8.8	18
61	Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna. Applied Composite Materials, 2013, 20, 827-838.	2.5	17
62	Improving mechanical and electrical properties of oriented polymer-free multi-walled carbon nanotube paper by spraying while winding. Composites Part B: Engineering, 2013, 53, 342-346.	12.0	9
63	Effect of conductive yarn crimp in radiation patch on electromagnetic performance of 3D integrated microstrip antenna. Composites Part B: Engineering, 2012, 43, 465-470.	12.0	16
64	Effect of Wire Space and Weaving Pattern on Performance of Microstrip Antennas Integrated in the Three Dimensional Orthogonal Woven Composites. Applied Composite Materials, 2012, 19, 21-30.	2.5	13
65	Performance and impact damage of a three dimensionally integrated microstrip feeding antenna structure. Composite Structures, 2010, 93, 193-197.	5.8	26
66	Fabrication and impact performance of three-dimensionally integrated microstrip antennas with microstrip and coaxial feeding. Smart Materials and Structures, 2009, 18, 095034.	3.5	22
67	Superior stable, highly efficient and anisotropic electrothermal composite heater in various directions with fast response based on aligned carbon nanotube sheets. Advanced Engineering Materials, 0, , .	3.5	1