
Deok-Kun Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5691601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Galacto-oligosaccharide production using microbial \hat{l}^2 -galactosidase: current state and perspectives. Applied Microbiology and Biotechnology, 2010, 85, 1279-1286.	3.6	207
2	Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Applied Microbiology and Biotechnology, 2010, 87, 9-19.	3.6	202
3	Tagatose: properties, applications, and biotechnological processes. Applied Microbiology and Biotechnology, 2007, 76, 1-8.	3.6	194
4	Multistep Enzymatic Synthesis of Longâ€Chain α,ï‰â€Dicarboxylic and ï‰â€Hydroxycarboxylic Acids from Renewable Fatty Acids and Plant Oils. Angewandte Chemie - International Edition, 2013, 52, 2534-2537.	13.8	186
5	Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnology Advances, 2013, 31, 1473-1485.	11.7	151
6	RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. Journal of Controlled Release, 2014, 196, 234-242.	9.9	123
7	Ginsenoside Compound K Production from Ginseng Root Extract by a Thermostable β-Glycosidase from <i>Sulfolobus solfataricus</i> . Bioscience, Biotechnology and Biochemistry, 2009, 73, 316-321.	1.3	112
8	Lactulose production from lactose and fructose by a thermostable Î ² -galactosidase from Sulfolobus solfataricus. Enzyme and Microbial Technology, 2006, 39, 903-908.	3.2	107
9	Lipoxygenases: Potential starting biocatalysts for the synthesis of signaling compounds. Biotechnology Advances, 2012, 30, 1524-1532.	11.7	105
10	Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Applied Microbiology and Biotechnology, 2011, 92, 1187-1196.	3.6	85
11	Lactulose production from lactose as a single substrate by a thermostable cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresource Technology, 2012, 104, 668-672.	9.6	85
12	Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia. Journal of Biotechnology, 2012, 158, 17-23.	3.8	80
13	Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Progress in Lipid Research, 2017, 66, 50-68.	11.6	73
14	Production of the Rare Ginsenosides Compound K, Compound Y, and Compound Mc by a Thermostable .BETAGlycosidase from Sulfolobus acidocaldarius. Biological and Pharmaceutical Bulletin, 2009, 32, 1830-1835.	1.4	72
15	Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2011, 90, 489-497.	3.6	68
16	Galactooligosaccharide production by a thermostable β-galactosidase from Sulfolobus solfataricus. World Journal of Microbiology and Biotechnology, 2008, 24, 1553-1558.	3.6	66
17	Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Critical Reviews in Biotechnology, 2016, 36, 1036-1049.	9.0	66
18	Hydrolysis of Isoflavone Glycosides by a Thermostable β-Glucosidase from Pyrococcus furiosus. Journal of Agricultural and Food Chemistry, 2012, 60, 1535-1541.	5.2	63

#	Article	IF	CITATIONS
19	Effects of galactose and glucose on the hydrolysis reaction of a thermostable β-galactosidase from Caldicellulosiruptor saccharolyticus. Applied Microbiology and Biotechnology, 2010, 85, 1427-1435.	3.6	62
20	Whole ell Photoenzymatic Cascades to Synthesize Long hain Aliphatic Amines and Esters from Renewable Fatty Acids. Angewandte Chemie - International Edition, 2020, 59, 7024-7028.	13.8	60
21	Biotransformation of Linoleic Acid into Hydroxy Fatty Acids and Carboxylic Acids Using a Linoleate Double Bond Hydratase as Key Enzyme. Advanced Synthesis and Catalysis, 2015, 357, 408-416.	4.3	58
22	Characterization of a recombinant β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. Journal of Bioscience and Bioengineering, 2009, 108, 36-40.	2.2	57
23	Ginsenoside Rd production from the major ginsenoside Rb1 by β-glucosidase from Thermus caldophilus. Biotechnology Letters, 2008, 30, 713-716.	2.2	54
24	Improvement in the Thermostability of <scp>d</scp> -Psicose 3-Epimerase from Agrobacterium tumefaciens by Random and Site-Directed Mutagenesis. Applied and Environmental Microbiology, 2011, 77, 7316-7320.	3.1	53
25	Simultaneous Enzyme/Whole-Cell Biotransformation of Plant Oils into C9 Carboxylic Acids. ACS Catalysis, 2016, 6, 7547-7553.	11.2	53
26	Production of aglycon protopanaxadiol via compound K by a thermostable β-glycosidase from Pyrococcus furiosus. Applied Microbiology and Biotechnology, 2011, 89, 1019-1028.	3.6	52
27	Microbial metabolism and biotechnological production of d-allose. Applied Microbiology and Biotechnology, 2011, 91, 229-235.	3.6	50
28	Biochemical characterization and FAD-binding analysis of oleate hydratase from Macrococcus caseolyticus. Biochimie, 2012, 94, 907-915.	2.6	50
29	Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Applied Microbiology and Biotechnology, 2012, 95, 929-937.	3.6	50
30	Bioprocess engineering to produce 10-hydroxystearic acid from oleic acid by recombinant Escherichia coli expressing the oleate hydratase gene of Stenotrophomonas maltophilia. Process Biochemistry, 2012, 47, 941-947.	3.7	50
31	Characterization of a recombinant cellobiose 2-epimerase from Dictyoglomus turgidum that epimerizes and isomerizes β-1,4- and α-1,4-gluco-oligosaccharides. Biotechnology Letters, 2012, 34, 2061-2068.	2.2	47
32	New Biotransformation Process for Production of the Fragrant Compound Î ³ -Dodecalactone from 10-Hydroxystearate by Permeabilized Waltomyces lipofer Cells. Applied and Environmental Microbiology, 2013, 79, 2636-2641.	3.1	44
33	Borate enhances the production of lactulose from lactose by cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresource Technology, 2013, 128, 809-812.	9.6	42
34	Hydrolysis of Flavanone Glycosides by β-Glucosidase from <i>Pyrococcus furiosus</i> and Its Application to the Production of Flavanone Aglycones from Citrus Extracts. Journal of Agricultural and Food Chemistry, 2013, 61, 11532-11540.	5.2	42
35	Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Biotechnology Letters, 2012, 34, 125-129.	2.2	41
36	D-Allulose Production from D-Fructose by Permeabilized Recombinant Cells of Corynebacterium glutamicum Cells Expressing D-Allulose 3-Epimerase Flavonifractor plautii. PLoS ONE, 2016, 11, e0160044.	2.5	40

#	Article	IF	CITATIONS
37	Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catalysis Science and Technology, 2020, 10, 46-64.	4.1	38
38	Characterization of a GH3 Family β-Glucosidase from Dictyoglomus turgidum and Its Application to the Hydrolysis of Isoflavone Glycosides in Spent Coffee Grounds. Journal of Agricultural and Food Chemistry, 2011, 59, 11812-11818.	5.2	37
39	Characterization of a novel recombinant β-glucosidase from Sphingopyxis alaskensis that specifically hydrolyzes the outer glucose at the C-3 position in protopanaxadiol-type ginsenosides. Journal of Biotechnology, 2014, 172, 30-37.	3.8	37
40	Increased Production of Food-Grade <scp>d</scp> -Tagatose from <scp>d</scp> -Galactose by Permeabilized and Immobilized Cells of <i>Corynebacterium glutamicum</i> , a GRAS Host, Expressing <scp>d</scp> -Galactose Isomerase from <i>Geobacillus thermodenitrificans</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 8146-8153.	5.2	37
41	Substrate specificity of a recombinant chicken β-carotene 15,15′-monooxygenase that converts β-carotene into retinal. Biotechnology Letters, 2009, 31, 403-408.	2.2	36
42	Biotransformation of Food-Derived Saponins, Platycosides, into Deglucosylated Saponins Including Deglucosylated Platycodin D and Their Anti-Inflammatory Activities. Journal of Agricultural and Food Chemistry, 2019, 67, 1470-1477.	5.2	36
43	Characterization of ribose-5-phosphate isomerase of Clostridium thermocellum producing d-allose from d-psicose. Biotechnology Letters, 2007, 29, 1387-1391.	2.2	35
44	In Vitro Characterization of a Recombinant Blh Protein from an Uncultured Marine Bacterium as a β-Carotene 15,15′-Dioxygenase. Journal of Biological Chemistry, 2009, 284, 15781-15793.	3.4	35
45	Multilayer Engineering of Enzyme Cascade Catalysis for One-Pot Preparation of Nylon Monomers from Renewable Fatty Acids. ACS Catalysis, 2020, 10, 4871-4878.	11.2	35
46	Complete Biotransformation of Protopanaxadiol-Type Ginsenosides to 20- <i>O</i> -β-Glucopyranosyl-20(<i>S</i>)-protopanaxadiol Using a Novel and Thermostable β-Glucosidase. Journal of Agricultural and Food Chemistry, 2018, 66, 2822-2829.	5.2	33
47	Characterization of a recombinant thermostable l-rhamnose isomerase from Thermotoga maritima ATCC 43589 and its application in the production of l-lyxose and l-mannose. Biotechnology Letters, 2010, 32, 1947-1953.	2.2	32
48	Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 823-833.	2.4	31
49	Compound K Production from Red Ginseng Extract by β-Glycosidase from Sulfolobus solfataricus Supplemented with α-L-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus. PLoS ONE, 2015, 10, e0145876.	2.5	31
50	Characterization of a thermostable endo-1,5-α-l-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnology Letters, 2009, 31, 1439-1443.	2.2	30
51	Conversion of oleic acid to 10-hydroxystearic acid by whole cells of Stenotrophomonas nitritireducens. Biotechnology Letters, 2011, 33, 993-997.	2.2	30
52	Unveiling of novel regioâ€selective fatty acid double bond hydratases from <i>Lactobacillus acidophilus</i> involved in the selective oxyfunctionalization of mono―and diâ€hydroxy fatty acids. Biotechnology and Bioengineering, 2015, 112, 2206-2213.	3.3	30
53	Characterization of an omega-6 linoleate lipoxygenase from Burkholderia thailandensis and its application in the production of 13-hydroxyoctadecadienoic acid. Applied Microbiology and Biotechnology, 2015, 99, 5487-5497.	3.6	30
54	Increase in the production of β-carotene in recombinant Escherichia coli cultured in a chemically defined medium supplemented with amino acids. Biotechnology Letters, 2013, 35, 265-271.	2.2	29

ДЕОК-КИМ ОН

#	Article	IF	CITATIONS
55	Characterization of a recombinant mannobiose 2-epimerase from Spirochaeta thermophila that is suggested to be a cellobiose 2-epimerase. Biotechnology Letters, 2013, 35, 1873-1880.	2.2	29
56	Microbial Synthesis of Plant Oxylipins from γ-Linolenic Acid through Designed Biotransformation Pathways. Journal of Agricultural and Food Chemistry, 2015, 63, 2773-2781.	5.2	29
57	Production of 13S-hydroxy-9(Z)-octadecenoic acid from linoleic acid by whole recombinant cells expressing linoleate 13-hydratase from Lactobacillus acidophilus. Journal of Biotechnology, 2015, 208, 1-10.	3.8	29
58	Production of d-psicose from d-fructose by whole recombinant cells with high-level expression of d-psicose 3-epimerase from Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 2016, 121, 186-190.	2.2	29
59	Biotransformation of polyunsaturated fatty acids to bioactive hepoxilins and trioxilins by microbial enzymes. Nature Communications, 2018, 9, 128.	12.8	29
60	Enantioselective production of 2,2-dimethylcyclopropane carboxylic acid from 2,2-dimethylcyclopropane carbonitrile using the nitrile hydratase and amidase of Rhodococcus erythropolis ATCC 25544. Enzyme and Microbial Technology, 2007, 41, 842-848.	3.2	28
61	Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides. Applied Microbiology and Biotechnology, 2009, 83, 295-303.	3.6	28
62	Production of 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid by whole recombinant Escherichia coli cells expressing diol synthase from Aspergillus nidulans. Applied Microbiology and Biotechnology, 2014, 98, 7447-7456.	3.6	28
63	20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginsenoside Rb1, enhances the production of hyaluronic acid through the activation of ERK and Akt mediated by Src tyrosin kinase in human keratinocytes. International Journal of Molecular Medicine, 2015, 35, 1388-1394.	4.0	28
64	Characterization of a F280N variant of l-arabinose isomerase from Geobacillus thermodenitrificans identified as a d-galactose isomerase. Applied Microbiology and Biotechnology, 2014, 98, 9271-9281.	3.6	27
65	Tagatose Production with pH Control in a Stirred Tank Reactor Containing Immobilized l-Arabinose Isomerase from Thermotoga neapolitana. Applied Biochemistry and Biotechnology, 2008, 149, 245-253.	2.9	26
66	l-Ribulose production from l-arabinose by an l-arabinose isomerase mutant from Geobacillus thermodenitrificans. Biotechnology Letters, 2008, 30, 1789-1793.	2.2	26
67	Alternative Biotransformation of Retinal to Retinoic Acid or Retinol by an Aldehyde Dehydrogenase from Bacillus cereus. Applied and Environmental Microbiology, 2016, 82, 3940-3946.	3.1	26
68	d-Psicose production from d-fructose using an isolated strain, Sinorhizobium sp World Journal of Microbiology and Biotechnology, 2007, 23, 559-563.	3.6	25
69	Quercetin production from rutin by a thermostable β-rutinosidase from Pyrococcus furiosus. Biotechnology Letters, 2012, 34, 483-489.	2.2	25
70	Molecular insights into lipoxygenases for biocatalytic synthesis of diverse lipid mediators. Progress in Lipid Research, 2021, 83, 101110.	11.6	25
71	Substrate specificity of a recombinant d-lyxose isomerase from Providencia stuartii for monosaccharides. Journal of Bioscience and Bioengineering, 2010, 110, 26-31.	2.2	24
72	Increased d-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum. Applied Microbiology and Biotechnology, 2011, 89, 1859-1866.	3.6	24

#	Article	IF	CITATIONS
73	Comparison of Biochemical Properties of the Original and Newly Identified Oleate Hydratases from Stenotrophomonas maltophilia. Applied and Environmental Microbiology, 2017, 83, .	3.1	24
74	Hydrolysis and Transglycosylation Activity of a Thermostable Recombinant β-Glycosidase from Sulfolobus acidocaldarius. Applied Biochemistry and Biotechnology, 2010, 160, 2236-2247.	2.9	23
75	Characterization of a recombinant l-rhamnose isomerase from Dictyoglomus turgidum and its application for l-rhamnulose production. Biotechnology Letters, 2013, 35, 259-264.	2.2	23
76	Characterization of a mannose-6-phosphate isomerase from Geobacillus thermodenitrificans that converts monosaccharides. Biotechnology Letters, 2009, 31, 1273-1278.	2.2	21
77	Mannose production from fructose by free and immobilized d-lyxose isomerases from Providencia stuartii. Biotechnology Letters, 2010, 32, 1305-1309.	2.2	21
78	Complete conversion of major protopanaxadiol ginsenosides to compound K by the combined use of α-l-arabinofuranosidase and β-galactosidase from Caldicellulosiruptor saccharolyticus and β-glucosidase from Sulfolobus acidocaldarius. Journal of Biotechnology, 2013, 167, 33-40.	3.8	21
79	Production of a novel compound, 10,12-dihydroxystearic acid from ricinoleic acid by an oleate hydratase from Lysinibacillus fusiformis. Applied Microbiology and Biotechnology, 2013, 97, 8987-8995.	3.6	21
80	Promotion of adipogenesis by 15-(S)-hydroxyeicosatetraenoic acid. Prostaglandins and Other Lipid Mediators, 2016, 123, 1-8.	1.9	21
81	Characterization of a recombinant l-fucose isomerase from Caldicellulosiruptor saccharolyticus that isomerizes l-fucose, d-arabinose, d-altrose, and l-galactose. Biotechnology Letters, 2010, 32, 299-304.	2.2	20
82	Retinal production from β-carotene by β-carotene 15,15′-dioxygenase from an unculturable marine bacterium. Biotechnology Letters, 2010, 32, 957-961.	2.2	20
83	β-Glucosidase from Penicillium aculeatum hydrolyzes exo-, 3-O-, and 6-O-β-glucosides but not 20-O-β-glucoside and other glycosides of ginsenosides. Applied Microbiology and Biotechnology, 2013, 97, 6315-6324.	3.6	20
84	Substrate specificity of β-glucosidase from Gordonia terrae for ginsenosides and its application in the production of ginsenosides Rg3, Rg2, and Rh1 from ginseng root extract. Journal of Bioscience and Bioengineering, 2015, 119, 497-504.	2.2	20
85	Biotransformation of Protopanaxadiol-Type Ginsenosides in Korean Ginseng Extract into Food-Available Compound K by an Extracellular Enzyme from <i>Aspergillus niger</i> . Journal of Microbiology and Biotechnology, 2020, 30, 1560-1567.	2.1	20
86	Substrate specificity of Stenotrophomonas nitritireducens in the hydroxylation of unsaturated fatty acid. Applied Microbiology and Biotechnology, 2008, 78, 157-163.	3.6	19
87	Conversion of Linoleic Acid into 10-Hydroxy-12(Z)-octadecenoic Acid by Whole Cells of Stenotrophomonas nitritireducens. Biotechnology Progress, 2008, 24, 182-186.	2.6	19
88	Increased production of γ-lactones from hydroxy fatty acids by whole Waltomyces lipofer cells induced with oleic acid. Applied Microbiology and Biotechnology, 2013, 97, 8265-8272.	3.6	19
89	Characterization of β-xylosidase from Thermoanaerobacterium thermosaccharolyticum and its application to the production of ginsenosides Rg1 and Rh1 from notoginsenosides R1 and R2. Biotechnology Letters, 2014, 36, 2275-2281.	2.2	19
90	Optimized Formation of Detergent Micelles of β-Carotene and Retinal Production Using Recombinant Human β,β-Carotene 15,15'-Monooxygenase. Biotechnology Progress, 2008, 24, 227-231.	2.6	18

#	Article	IF	CITATIONS
91	Biotransformation of carotenoids to retinal by carotenoid 15,15′-oxygenase. Applied Microbiology and Biotechnology, 2010, 88, 807-816.	3.6	18
92	Enzymatic Biotransformation of Balloon Flower Root Saponins into Bioactive Platycodin D by Deglucosylation with Caldicellulosiruptor bescii β-Glucosidase. International Journal of Molecular Sciences, 2019, 20, 3854.	4.1	18
93	Discovery and Engineering of a Microbial Double-Oxygenating Lipoxygenase for Synthesis of Dihydroxy Fatty Acids as Specialized Proresolving Mediators. ACS Sustainable Chemistry and Engineering, 2020, 8, 16172-16183.	6.7	18
94	Substrate specificity of ribose-5-phosphate isomerases from Clostridium difficile and Thermotoga maritima. Biotechnology Letters, 2010, 32, 829-835.	2.2	17
95	Characterization of a recombinant thermostable d-lyxose isomerase from Dictyoglomus turgidum that produces d-lyxose from d-xylulose. Biotechnology Letters, 2012, 34, 1079-1085.	2.2	17
96	l-Ribose Production from l-Arabinose by Immobilized Recombinant Escherichia coli Co-expressing the l-Arabinose Isomerase and Mannose-6-Phosphate Isomerase Genes from Geobacillus thermodenitrificans. Applied Biochemistry and Biotechnology, 2014, 172, 275-288.	2.9	17
97	Biochemical properties of retinoid-converting enzymes and biotechnological production of retinoids. Applied Microbiology and Biotechnology, 2015, 99, 7813-7826.	3.6	17
98	Characterization of l-rhamnose isomerase from Clostridium stercorarium and its application to the production of d-allose from d-allulose (d-psicose). Biotechnology Letters, 2018, 40, 325-334.	2.2	17
99	Complete Bioconversion of Protopanaxadiol-Type Ginsenosides to Compound K by Extracellular Enzymes from the Isolated Strain <i>Aspergillus tubingensis</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 315-324.	5.2	17
100	Effective production of retinal from β-carotene using recombinant mouse β-carotene 15,15′-monooxygenase. Applied Microbiology and Biotechnology, 2007, 76, 1339-1345.	3.6	16
101	Differential Selectivity of the <i>Escherichia coli</i> Cell Membrane Shifts the Equilibrium for the Enzyme-Catalyzed Isomerization of Galactose to Tagatose. Applied and Environmental Microbiology, 2008, 74, 2307-2313.	3.1	16
102	Production of rare ginsenosides (compound Mc, compound Y and aglycon protopanaxadiol) by β-glucosidase from Dictyoglomus turgidum that hydrolyzes β-linked, but not α-linked, sugars in ginsenosides. Biotechnology Letters, 2012, 34, 1679-1686.	2.2	16
103	High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction. Biotechnology Letters, 2017, 39, 1141-1148.	2.2	16
104	Improved conversion of ginsenoside Rb1 to compound K by semi-rational design of Sulfolobus solfataricus β-glycosidase. AMB Express, 2017, 7, 186.	3.0	16
105	Biotransformation of Fructose to Allose by a One-Pot Reaction Using Flavonifractor plautii D-Allulose 3-Epimerase and Clostridium thermocellum Ribose 5-Phosphate Isomerase. Journal of Microbiology and Biotechnology, 2018, 28, 418-424.	2.1	16
106	Ginsenoside F1 production from ginsenoside Rg1 by a purified β-glucosidase from Fusarium moniliforme var. subglutinans. Biotechnology Letters, 2011, 33, 2457-2461.	2.2	15
107	Crystal structure of Clostridium thermocellum ribose-5-phosphate isomerase B reveals properties critical for fast enzyme kinetics. Applied Microbiology and Biotechnology, 2011, 90, 517-527.	3.6	15
108	Production of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid from α-linolenic acid by permeabilized cells of recombinant Escherichia coli expressing the oleate hydratase gene of Stenotrophomonas maltophilia. Biotechnology Letters, 2013, 35, 1487-1493.	2.2	15

#	Article	IF	CITATIONS
109	Characterization of a novel 8R,11S-linoleate diol synthase from Penicillium chrysogenum by identification of its enzymatic products. Journal of Lipid Research, 2016, 57, 207-218.	4.2	15
110	Gene cloning of an efficiency oleate hydratase from <i>Stenotrophomonas nitritireducens</i> for polyunsaturated fatty acids and its application in the conversion of plant oils to 10â€hydroxy fatty acids. Biotechnology and Bioengineering, 2017, 114, 74-82.	3.3	15
111	Complete Biotransformation of Protopanaxadiol-Type Ginsenosides into 20- <i>O</i> - <i>β-</i> Glucopyranosyl-20(<i>S</i>)-protopanaxadiol by Permeabilized Recombinant <i>Escherichia coli</i> Cells Coexpressing β-Glucosidase and Chaperone Genes. Journal of Agricultural and Food Chemistry. 2019. 67. 8393-8401.	5.2	15
112	Characterization of a recombinant endo-1,5-α-l-arabinanase from the isolated bacterium Bacillus licheniformis. Biotechnology and Bioprocess Engineering, 2010, 15, 590-594.	2.6	14
113	Production of ginsenosides Rg1 and Rh1 by hydrolyzing the outer glycoside at the C-6 position in protopanaxatriol-type ginsenosides using Ĩ²-glucosidase from Pyrococcus furiosus. Biotechnology Letters, 2014, 36, 113-119.	2.2	14
114	Production of aglycone protopanaxatriol from ginseng root extract using Dictyoglomus turgidum β-glycosidase that specifically hydrolyzes the xylose at the C-6 position and the glucose in protopanaxatriol-type ginsenosides. Applied Microbiology and Biotechnology, 2014, 98, 3659-3667.	3.6	14
115	Microbial Synthesis of Linoleate 9 <i>S</i> -Lipoxygenase Derived Plant C18 Oxylipins from C18 Polyunsaturated Fatty Acids. Journal of Agricultural and Food Chemistry, 2019, 67, 3209-3219.	5.2	14
116	Conversion of Glycosylated Platycoside E to Deapiose-Xylosylated Platycodin D by Cytolase PCL5. International Journal of Molecular Sciences, 2020, 21, 1207.	4.1	14
117	An L213A variant of β-glycosidase from Sulfolobus solfataricus with increased α-L-arabinofuranosidase activity converts ginsenoside Rc to compound K. PLoS ONE, 2018, 13, e0191018.	2.5	14
118	Production of β-apo-10′-carotenal from β-carotene by human β-carotene-9′,10′-oxygenase expressed in Biotechnology Letters, 2011, 33, 1195-1200.	E. coli. 2.2	13
119	Enhancement of retinal production by supplementing the surfactant Span 80 using metabolically engineered Escherichia coli. Journal of Bioscience and Bioengineering, 2012, 113, 461-466.	2.2	13
120	Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by Î ² -glucosidase from Thermus thermophilus and its application to the production of ginsenoside F2 from gypenoside XVII. Biotechnology Letters, 2014, 36, 1287-1293.	2.2	13
121	13â€Hydroxyâ€9 <i>Z</i> ,11 <i>E</i> â€Octadecadienoic Acid Production by Recombinant Cells Expressing <i>Burkholderia thailandensis</i> 13â€Lipoxygenase. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1259-1266.	1.9	13
122	Production of δ-decalactone from linoleic acid via 13-hydroxy-9(Z)-octadecenoic acid intermediate by one-pot reaction using linoleate 13-hydratase and whole Yarrowia lipolytica cells. Biotechnology Letters, 2016, 38, 817-823.	2.2	13
123	The Ginsenoside Derivative 20(S)â€Protopanaxadiol Inhibits Solar Ultraviolet Lightâ€Induced Matrix Metalloproteinaseâ€I Expression. Journal of Cellular Biochemistry, 2017, 118, 3756-3764.	2.6	13
124	Stabilization and improved activity of arachidonate 11S-lipoxygenase from proteobacterium Myxococcus xanthus. Journal of Lipid Research, 2018, 59, 2153-2163.	4.2	13
125	Enzymatic synthesis of new hepoxilins and trioxilins from polyunsaturated fatty acids. Green Chemistry, 2019, 21, 3172-3181.	9.0	13
126	Selective Production of 9R-Hydroxy-10E,12Z,15Z-Octadecatrienoic Acid from α-Linolenic Acid in Perilla Seed Oil Hydrolyzate by a Lipoxygenase from Nostoc Sp. SAG 25.82. PLoS ONE, 2015, 10, e0137785.	2.5	12

#	Article	IF	CITATIONS
127	Biocatalytic synthesis of dihydroxy fatty acids as lipid mediators from polyunsaturated fatty acids by double dioxygenation of the microbial 12 <i>Sâ€≺/i>lipoxygenase. Biotechnology and Bioengineering, 2021, 118, 3094-3104.</i>	3.3	12
128	Chemoenzymatic Cascade Conversion of Linoleic Acid into a Secondary Fatty Alcohol Using a Combination of 13 <i>S</i> -Lipoxygenase, Chemical Reduction, and a Photo-Activated Decarboxylase. ACS Sustainable Chemistry and Engineering, 2021, 9, 10837-10845.	6.7	12
129	15-Hydroxyeicosatetraenoic Acid Inhibits Phorbol-12-Myristate-13-Acetate-Induced MUC5AC Expression in NCI-H292 Respiratory Epithelial Cells. Journal of Microbiology and Biotechnology, 2015, 25, 589-597.	2.1	12
130	Roles of Ile66 and Ala107 of d-psicose 3-epimerase from Agrobacterium tumefaciens in binding O6 of its substrate, d-fructose. Biotechnology Letters, 2010, 32, 113-118.	2.2	11
131	Mutational analysis of the active site residues of a d-psicose 3-epimerase from Agrobacterium tumefaciens. Biotechnology Letters, 2010, 32, 261-268.	2.2	11
132	Production of Ginsenoside Rd from Ginsenoside Rc by α-L-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus. Journal of Microbiology and Biotechnology, 2013, 23, 483-488.	2.1	11
133	Enzymatic Production of 15-Hydroxyeicosatetraenoic Acid from Arachidonic Acid by Using Soybean Lipoxygenase. Journal of Microbiology and Biotechnology, 2014, 24, 359-362.	2.1	11
134	Enzyme Access Tunnel Engineering in Baeyerâ€Villiger Monooxygenases to Improve Oxidative Stability and Biocatalyst Performance. Advanced Synthesis and Catalysis, 2022, 364, 555-564.	4.3	11
135	Hydrophobicity of residue 108 specifically affects the affinity of human β-carotene 15,15′-monooxygenase for substrates with two ionone rings. Biotechnology Letters, 2010, 32, 847-853.	2.2	10
136	Substrate specificity of a recombinant ribose-5-phosphate isomerase from Streptococcus pneumoniae and its application in the production of l-lyxose and l-tagatose. World Journal of Microbiology and Biotechnology, 2011, 27, 743-750.	3.6	10
137	Production of 8-hydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid by recombinant cells expressing H1004A-C1006S variant of Aspergillus nidulans diol synthase. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 35-42.	1.8	10
138	Increased Production of ω-Hydroxynonanoic Acid and α,ω-Nonanedioic Acid from Olive Oil by a Constructed Biocatalytic System. Journal of Agricultural and Food Chemistry, 2020, 68, 9488-9495.	5.2	10
139	Molecular characterization of a novel thermostable mannose-6-phosphate isomerase from Thermus thermophilus. Biochimie, 2011, 93, 1659-1667.	2.6	9
140	Reduction of galactose inhibition via the mutation of β-galactosidase from Caldicellulosiruptor saccharolyticus for lactose hydrolysis. Biotechnology Letters, 2011, 33, 353-358.	2.2	9
141	Characterization of a glycoside hydrolase family 42 β-galactosidase from Deinococcus geothermalis. Biotechnology Letters, 2011, 33, 577-583.	2.2	9
142	Enhanced Production of β-D-glycosidase and α-L-arabinofuranosidase in Recombinant Escherichia coli in Fed-batch Culture for the Biotransformation of Ginseng Leaf Extract to Ginsenoside Compound K. Biotechnology and Bioprocess Engineering, 2018, 23, 183-193.	2.6	9
143	Development of Tagaturonate 3-Epimerase into Tagatose 4-Epimerase with a Biocatalytic Route from Fructose to Tagatose. ACS Catalysis, 2020, 10, 12212-12222.	11.2	9
144	Development of aldolase-based catalysts for the synthesis of organic chemicals. Trends in Biotechnology, 2022, 40, 306-319.	9.3	9

#	Article	IF	CITATIONS
145	Characterization of an acid-labile, thermostable β-glycosidase from Thermoplasma acidophilum. Biotechnology Letters, 2009, 31, 1457-1462.	2.2	8
146	Characterization of a recombinant 7,8-linoleate diol synthase from Glomerella cingulate. Applied Microbiology and Biotechnology, 2016, 100, 3087-3099.	3.6	8
147	Resolvin D5, a Lipid Mediator, Inhibits Production of Interleukin-6 and CCL5 Via the ERK-NF- ¥ éSignaling Pathway in Lipopolysaccharide-Stimulated THP-1 Cells. Journal of Microbiology and Biotechnology, 2020, 30, 85-92.	2.1	8
148	The DPA-derivative 11S, 17S-dihydroxy 7,9,13,15,19 (Z,E,Z,E,Z)-docosapentaenoic acid inhibits IL-6 production by inhibiting ROS production and ERK/NF-I®B pathway in keratinocytes HaCaT stimulated with a fine dust PM10. Ecotoxicology and Environmental Safety, 2022, 232, 113252.	6.0	8
149	l-Arabinose production from sugar beet arabinan by immobilized endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus in a packed-bed reactor. Journal of Bioscience and Bioengineering, 2012, 113, 239-241.	2.2	7
150	Stereospecific production of 9R-hydroxy-10E,12Z-octadecadienoic acid from linoleic acid by recombinant Escherichia coli cells expressing 9R-lipoxygenase from Nostoc sp. SAG 25.82. Journal of Molecular Catalysis B: Enzymatic, 2014, 104, 56-63.	1.8	7
151	Production of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid from α-linolenic acid by permeabilized Stenotrophomonas nitritireducens cells. Biotechnology Letters, 2015, 37, 2271-2277.	2.2	7
152	<scp>PKC</scp> ι is a target of 7,8,4′â€ŧrihydroxyisoflavone for the suppression of <scp>UVB</scp> â€induced <scp>MMP</scp> ″ expression. Experimental Dermatology, 2018, 27, 449-452.	2.9	7
153	Production of 8S- and 10S-hydroxy polyunsaturated fatty acids by recombinant Escherichia coli cells expressing mouse arachidonate 8S-lipoxygenase. Biotechnology Letters, 2019, 41, 575-582.	2.2	7
154	Construction of an engineered biocatalyst system for the production of mediumâ€chain α,ï‰â€dicarboxylic acids from mediumâ€chain ï‰â€hydroxycarboxylic acids. Biotechnology and Bioengineering, 2020, 117, 2648-2657.	3.3	7
155	Biotransformation of Glycosylated Saponins in Balloon Flower Root Extract into 3- <i>O</i> -β-D-Glucopyranosyl Platycosides by Deglycosylation of Pectinase from <i>Aspergillus aculeatus</i> . Journal of Microbiology and Biotechnology, 2020, 30, 946-954.	2.1	7
156	Crystallographic snapshots of active site metal shift in E. coli fructose 1,6-bisphosphate aldolase. BMB Reports, 2016, 49, 681-686.	2.4	7
157	Optimization of octanoic acid and sulfur donor concentrations for lipoic acid production by Pseudomonas reptilivora. Biotechnology Letters, 2008, 30, 1825-1828.	2.2	6
158	Molecular characterization of an aldo-keto reductase from Marivirga tractuosa that converts retinal to retinol. Journal of Biotechnology, 2014, 169, 23-33.	3.8	6
159	Characterization of alcohol dehydrogenase from Kangiella koreensis and its application to production of all-trans-retinol. Biotechnology Letters, 2015, 37, 849-856.	2.2	6
160	Structure-based prediction and identification of 4-epimerization activity of phosphate sugars in class Il aldolases. Scientific Reports, 2017, 7, 1934.	3.3	6
161	Cloning and characterization of \hat{l}_{\pm} -l-rhamnosidase from Chloroflexus aurantiacus and its application in the production of isoquercitrin from rutin. Biotechnology Letters, 2019, 41, 419-426.	2.2	6
162	Regioselectivity of an arachidonate 9S-lipoxygenase from Sphingopyxis macrogoltabida that biosynthesizes 9S,15S- and 11S,17S-dihydroxy fatty acids from C20 and C22 polyunsaturated fatty acids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159091.	2.4	6

#	Article	IF	CITATIONS
163	Production of Epigallocatechin Gallate 7-O-α-D-Glucopyranoside (EGCG-G1) Using the Glucosyltransferase from Leuconostoc mesenteroides. Biotechnology Progress, 2007, 23, 0-0.	2.6	5
164	Characterization of an apo-carotenoid 13,14-dioxygenase from Novosphingobium aromaticivorans that converts β-apo-8′-carotenal to β-apo-13-carotenone. Biotechnology Letters, 2012, 34, 1851-1856.	2.2	5
165	Production of 7,8-Dihydroxy Unsaturated Fatty Acids from Plant Oils by Whole Recombinant Cells Expressing 7,8-Linoleate Diol Synthase from <i>Glomerella cingulata</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 8555-8562.	5.2	5
166	13â€Hydroxyâ€9 <i>Z</i> ,15 <i>Z</i> â€Octadecadienoic Acid Production by Recombinant Cells Expressing <i>Lactobacillus acidophilus</i> 13â€Hydratase. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 649-655.	1.9	5
167	Production of 8,11â€dihydroxy and 8â€hydroxy unsaturated fatty acids from unsaturated fatty acids by recombinant <i>Escherichia coli</i> expressing 8,11â€linoleate diol synthase from <i>Penicillium chrysogenum</i> . Biotechnology Progress, 2017, 33, 390-396.	2.6	5
168	Crystal structures of an atypical aldehyde dehydrogenase having bidirectional oxidizing and reducing activities. International Journal of Biological Macromolecules, 2017, 105, 816-824.	7.5	5
169	Production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing 10S-dioxygenase from Nostoc punctiforme PCC 73102 with the aid of a chaperone. Biotechnology Letters, 2017, 39, 133-139.	2.2	5
170	Complete conversion of all typical glycosylated protopanaxatriol ginsenosides to aglycon protopanaxatriol by combined bacterial Î ² -glycosidases. AMB Express, 2018, 8, 8.	3.0	5
171	Production of Bioactive Deapiosylated Platycosides from Glycosylated Platycosides in Balloon Flower Root Using the Crude Enzyme from the Food-Available Fungus <i>Rhizopus oryzae</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 4766-4777.	5.2	5
172	5,8â€Dihydroxyâ€9,12,15(<i>Z</i> , <i>Z</i>)â€Octadecatrienoic Acid Production by Recombinant Cells Expressing <i>Aspergillus nidulans</i> Diol Synthase. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 193-202.	1.9	4
173	Biotransformation of fatty acid-rich tree oil hydrolysates to hydroxy fatty acid-rich hydrolysates by hydroxylases and their feasibility as biosurfactants. Biotechnology and Bioprocess Engineering, 2017, 22, 709-716.	2.6	4
174	Bioconversion of arachidonic acid into human 14,15-hepoxilin B3 and 13,14,15-trioxilin B3 by recombinant cells expressing microbial 15-lipoxygenase without and with epoxide hydrolase. Biotechnology Letters, 2020, 42, 2001-2009.	2.2	4
175	Bakkenolides and Caffeoylquinic Acids from the Aerial Portion of Petasites japonicus and Their Bacterial Neuraminidase Inhibition Ability. Biomolecules, 2020, 10, 888.	4.0	4
176	Bioconversion of C20- and C22-polyunsaturated fatty acids into 9S,15S- and 11S,17S-dihydroxy fatty acids by Escherichia coli expressing double-oxygenating 9S-lipoxygenase from Sphingopyxis macrogoltabida. Journal of Bioscience and Bioengineering, 2022, 134, 14-20.	2.2	4
177	High Concentration Cultivation of Bifidobacterium bifidum in a Submerged Membrane Bioreactor. Biotechnology Progress, 2006, 22, 1591-1597.	2.6	3
178	Production of 5,8-dihydroxy-9(Z)-octadecenoic acid from oleic acid by whole recombinant cells of Aspergillus nidulans expressing diol synthase. Biotechnology Letters, 2015, 37, 131-137.	2.2	3
179	An amino acid at position 512 in β-glucosidase from Clavibacter michiganensis determines the regioselectivity for hydrolyzing gypenoside XVII. Applied Microbiology and Biotechnology, 2015, 99, 7987-7996.	3.6	3
180	Production of 10R-hydroxy unsaturated fatty acids from hempseed oil hydrolyzate by recombinant Escherichia coli cells expressing PpoC from Aspergillus nidulans. Applied Microbiology and Biotechnology, 2016, 100, 7933-7944.	3.6	3

#	Article	IF	CITATIONS
181	Synergistic production of 20(S)-protopanaxadiol from protopanaxadiol-type ginsenosides by β-glycosidases from Dictyoglomus turgidum and Caldicellulosiruptor bescii. AMB Express, 2017, 7, 219.	3.0	3
182	Molecular characterization of Penicillium oxalicum 6R,8R-linoleate diol synthase with new regiospecificity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 577-586.	2.4	3
183	Improved Bioactivity of 3-O-β-D-Glucopyranosyl Platycosides in Biotransformed Platycodon grandiflorum Root Extract by Pectinase from Aspergillus aculeatus. Journal of Microbiology and Biotechnology, 2021, 31, 847-854.	2.1	3
184	Highly efficient oxidation of plant oils to C18 trihydroxy fatty acids by <i>Escherichia coli</i> co-expressing lipoxygenase and epoxide hydrolase. Green Chemistry, 2022, 24, 2062-2072.	9.0	3
185	Increased Production of Ginsenoside Compound K by Optimizing the Feeding of American Ginseng Extract during Fermentation by <i>Aspergillus tubingensis</i> . Journal of Microbiology and Biotechnology, 2022, 32, 902-910.	2.1	3
186	Production of 6,8â€Dihydroxy Fatty Acids by Recombinant Escherichia coli Expressing T879A Variant 6,8â€Linoleate Diol Synthase from Penicillium oxalicum. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 663-669.	1.9	2
187	Complete Biotransformation of Protopanaxatriol-Type Ginsenosides in Panax ginseng Leaf Extract to Aglycon Protopanaxatriol by ��-Glycosidases from Dictyoglomus turgidum and Pyrococcus furiosus. Journal of Microbiology and Biotechnology, 2018, 28, 255-261.	2.1	2
188	Production of <scp> 11 <i>R</i> â€hydroxyeicosatetraenoic </scp> acid from arachidonic acid by <i>Escherichia coli</i> cells expressing arachidonate <scp> 11 <i>R</i> â€lipoxygenase </scp> from <i>Nostoc</i> sp JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 289-297.	1.9	2
189	Complete genome sequence of Stenotrophomonas sp. KACC 91585, an efficient bacterium for unsaturated fatty acid hydration. Journal of Biotechnology, 2017, 241, 108-111.	3.8	1
190	Fructuronate-tagaturonate epimerase UxaE from Cohnella laeviribosi has a versatile TIM-barrel scaffold suitable for a sugar metabolizing biocatalyst. International Journal of Biological Macromolecules, 2020, 163, 1369-1374.	7.5	1
191	An integrative approach to improving the biocatalytic reactions of whole cells expressing recombinant enzymes. World Journal of Microbiology and Biotechnology, 2021, 37, 105.	3.6	1
192	Production of Deglucose-Apiose-Xylosylated Platycosides from Glycosylated Platycosides by Crude Enzyme from <i>Aspergillus tubingensis</i> . Journal of Microbiology and Biotechnology, 2022, 32, 1-8.	2.1	1
193	Production of Daidzein and Genistein from Seed and Root Extracts of Korean Wild Soybean (Glycine) Tj ETQq1 2022, 12, 3481.	1 0.784314 2.5	rgBT /Over 1
194	Production of 8,11â€dihydroxy fatty acids from oleic and palmitoleic acids by <i>Escherichia coli</i> cells expressing variant 6,8â€linoleate diol synthases from <i>Penicillium oxalicum</i> . Biotechnology Progress, 2022, , e3267.	2.6	1
195	Biotransformation of C20- and C22-polyunsaturated fatty acids to 11S- and 13S-hydroxy fatty acids by Escherichia coli expressing 11S-lipoxygenase from Enhygromyxa salina. Biotechnology Letters, 0, , .	2.2	0