Zhenhua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/568998/publications.pdf Version: 2024-02-01

ΖΗΕΝΗΠΑΤΙ

#	Article	IF	CITATIONS
1	Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons. Advanced Materials, 2018, 30, 1704663.	21.0	309
2	From Solar Energy to Fuels: Recent Advances in Lightâ€Driven C ₁ Chemistry. Angewandte Chemie - International Edition, 2019, 58, 17528-17551.	13.8	285
3	Coâ€Based Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for the Photothermal Production of Light Olefins. Advanced Materials, 2018, 30, e1800527.	21.0	139
4	Hierarchical Liouville-Space Approach for Accurate and Universal Characterization of Quantum Impurity Systems. Physical Review Letters, 2012, 109, 266403.	7.8	136
5	Reductive Transformation of Layeredâ€Doubleâ€Hydroxide Nanosheets to Feâ€Based Heterostructures for Efficient Visibleâ€Light Photocatalytic Hydrogenation of CO. Advanced Materials, 2018, 30, e1803127.	21.0	100
6	Feâ€Based Catalysts for the Direct Photohydrogenation of CO ₂ to Valueâ€Added Hydrocarbons. Advanced Energy Materials, 2021, 11, 2002783.	19.5	90
7	Manganese Oxide Modified Nickel Catalysts for Photothermal CO Hydrogenation to Light Olefins. Advanced Energy Materials, 2020, 10, 1902860.	19.5	56
8	Titania‣upported Ni ₂ P/Ni Catalysts for Selective Solarâ€Driven CO Hydrogenation. Advanced Materials, 2021, 33, e2103248.	21.0	41
9	Photothermalâ€Assisted Photocatalytic Nitrogen Oxidation to Nitric Acid on Palladiumâ€Decorated Titanium Oxide. Advanced Energy Materials, 2022, 12, .	19.5	34
10	Triphase Photocatalytic CO ₂ Reduction over Silverâ€Đecorated Titanium Oxide at a Gas–Water Boundary. Angewandte Chemie, 2022, 134, .	2.0	33
11	Time-dependent transport through quantum-impurity systems with Kondo resonance. New Journal of Physics, 2015, 17, 033009.	2.9	31
12	Von Sonnenlicht zu Brennstoffen: aktuelle Fortschritte der C ₁ olarchemie. Angewandte Chemie, 2019, 131, 17690-17715.	2.0	31
13	Key Factors Controlling the Large Second Harmonic Generation in Nonlinear Optical Materials. ACS Applied Materials & Interfaces, 2020, 12, 9434-9439.	8.0	19
14	Electronically Activated Fe ₅ C ₂ via N-Doped Carbon to Enhance Photothermal Syngas Conversion to Light Olefins. ACS Catalysis, 2022, 12, 5316-5326.	11.2	19
15	Kondo-peak splitting and resonance enhancement caused by interdot tunneling in coupled double quantum dots. Physical Review B, 2018, 98, .	3.2	18
16	Photodriven CO ₂ Hydrogenation into Diverse Products: Recent Progress and Perspective. Journal of Physical Chemistry Letters, 2022, 13, 5291-5303.	4.6	18
17	Layered Double Hydroxide Engineering for the Photocatalytic Conversion of Inactive Carbon and Nitrogen Molecules. ACS ES&T Engineering, 2022, 2, 1088-1102.	7.6	12
18	Corrected Kondo temperature beyond the conventional Kondo scaling limit. Journal of Physics Condensed Matter, 2017, 29, 175601.	1.8	8

Zhenhua Li

#	Article	IF	CITATIONS
19	Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes. Journal of Chemical Physics, 2018, 148, 134111.	3.0	7
20	Photothermal Catalysis: Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins (Adv. Mater. 31/2018). Advanced Materials, 2018, 30, 1870230.	21.0	6
21	Performance of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>T</mml:mi> -matrix based master equation for Coulomb drag in double quantum dots. Physical Review B, 2020, 101, .</mml:math 	3.2	4
22	High partial thermal conductivity of luminescence sites: a crucial factor for reducing the heat-induced lowering of the luminescence efficiency. Journal of Materials Chemistry C, 2021, 9, 14439-14443.	5.5	4
23	Photothermal CO ₂ Hydrogenation: Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons (Adv. Mater. 3/2018). Advanced Materials, 2018, 30, 1870015.	21.0	3
24	Kondo resonance assisted thermoelectric transport through strongly correlated quantum dots. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	3
25	Orbital projection technique to explore the materials genomes of optical susceptibilities. AIP Advances, 2022, 12, .	1.3	3
26	Kondo effect in double quantum dots with ferromagnetic RKKY interaction. Journal of Physics Condensed Matter, 2017, 29, 025601.	1.8	2
27	Zero-energy modes in serially coupled double quantum dots*. Chinese Physics B, 2020, 29, 067302.	1.4	2
28	Thermoelectric transport through strongly correlated double quantum dots with Kondo resonance. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 415, 127657.	2.1	2
29	Study the mixed valence problem in asymmetric Anderson model: Fano–Kondo resonance around Fermi level. Journal of Physics Condensed Matter, 2022, 34, 255601.	1.8	1
30	Magnetic Field Dependent Kondo Transport through Double Quantum Dots System. Annalen Der Physik, 0, , 2100439.	2.4	0