Bhavna J Antony

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5689461/publications.pdf

Version: 2024-02-01

36 papers	1,131 citations	13 h-index	26 g-index
37	37	37	1575
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Case for the Use of Artificial Intelligence in Glaucoma Assessment. Ophthalmology Glaucoma, 2022, 5, e3-e13.	1.9	10
2	Estimating Global Visual Field Indices in Glaucoma by Combining Macula and Optic Disc OCT Scans Using 3-Dimensional Convolutional Neural Networks. Ophthalmology Glaucoma, 2021, 4, 102-112.	1.9	23
3	Directional Reflectivity of the Ellipsoid Zone in Dry Age-Related Macular Degeneration. Ophthalmic Surgery Lasers and Imaging Retina, 2021, 52, 145-152.	0.7	4
4	Dueling Deep Q-Network For Unsupervised Inter-Frame Eye Movement Correction In Optical Coherence Tomography Volumes., 2021,,.		1
5	Attention-Guided 3D-CNN Framework for Glaucoma Detection and Structural-Functional Association Using Volumetric Images. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3421-3430.	6.3	30
6	Forecasting Retinal Nerve Fiber Layer Thickness from Multimodal Temporal Data Incorporating OCT Volumes. Ophthalmology Glaucoma, 2020, 3, 14-24.	1.9	7
7	Artificial Intelligence for Clinical Trial Design. Trends in Pharmacological Sciences, 2019, 40, 577-591.	8.7	288
8	A feature agnostic approach for glaucoma detection in OCT volumes. PLoS ONE, 2019, 14, e0219126.	2.5	132
9	Automated summarisation of SDOCT volumes using deep learning: Transfer learning vs de novo trained networks. PLoS ONE, 2019, 14, e0203726.	2.5	5
10	Uncertainty Guided Semi-supervised Segmentation of Retinal Layers in OCT Images. Lecture Notes in Computer Science, 2019, , 282-290.	1.3	43
11	A new promising way for tackling the â€~Pharma Dilemma': artificial intelligence for clinical trials. Biochemist, 2019, 41, 10-14.	0.5	2
12	Layer boundary evolution method for macular OCT layer segmentation. Biomedical Optics Express, 2019, 10, 1064.	2.9	24
13	3D-CNN for Glaucoma Detection Using Optical Coherence Tomography. Lecture Notes in Computer Science, 2019, , 52-59.	1.3	3
14	Analysis of Agreement of Retinal-Layer Thickness Measures Derived from the Segmentation of Horizontal and Vertical Spectralis OCT Macular Scans. Current Eye Research, 2018, 43, 415-423.	1.5	12
15	The Henle Fiber Layer in Albinism: Comparison to Normal and Relationship to Outer Nuclear Layer Thickness and Foveal Cone Density. , 2018, 59, 5336.		26
16	Joint Segmentation and Uncertainty Visualization of Retinal Layers in Optical Coherence Tomography Images Using Bayesian Deep Learning. Lecture Notes in Computer Science, 2018, , 219-227.	1.3	19
17	Deformable medical image registration using generative adversarial networks. , 2018, , .		84
18	Retinal optical coherence tomography image enhancement via deep learning. Biomedical Optics Express, 2018, 9, 6205.	2.9	73

#	Article	IF	CITATIONS
19	Collaborative SDOCT segmentation and analysis software. , 2017, 10138, .		2
20	Longitudinal analysis of mouse SDOCT volumes. , 2017, 10137, .		0
21	Novel method using 3-dimensional segmentation in spectral domain-optical coherence tomography imaging in the chick reveals defocus-induced regional and time-sensitive asymmetries in the choroidal thickness—ADDENDUM. Visual Neuroscience, 2017, 34, .	1.0	O
22	Automated segmentation of mouse OCT volumes (ASiMOV): Validation & Dinical study of a light damage model. PLoS ONE, 2017, 12, e0181059.	2.5	8
23	Simultaneous segmentation of retinal surfaces and microcystic macular edema in SDOCT volumes. Proceedings of SPIE, 2016, 9784, .	0.8	11
24	Voxel based morphometry in optical coherence tomography: validation and core findings. , 2016, 9788, .		8
25	Novel method using 3-dimensional segmentation in spectral domain-optical coherence tomography imaging in the chick reveals defocus-induced regional and time-sensitive asymmetries in the choroidal thickness. Visual Neuroscience, 2016, 33, E010.	1.0	12
26	DIRECTIONAL OPTICAL COHERENCE TOMOGRAPHY PROVIDES ACCURATE OUTER NUCLEAR LAYER AND HENLE FIBER LAYER MEASUREMENTS. Retina, 2015, 35, 1511-1520.	1.7	118
27	Characterizing the Impact of Off-Axis Scan Acquisition on the Reproducibility of Total Retinal Thickness Measurements in SDOCT Volumes. Translational Vision Science and Technology, 2015, 4, 3.	2.2	9
28	Automated 3D Segmentation of Intraretinal Surfaces in SD-OCT Volumes in Normal and Diabetic Mice. Translational Vision Science and Technology, 2014, 3, 8.	2.2	15
29	Incorporation of learned shape priors into a graph-theoretic approach with application to the 3D segmentation of intraretinal surfaces in SD-OCT volumes of mice. Proceedings of SPIE, 2014, , .	0.8	0
30	3D graph-based automated segmentation of corneal layers in anterior-segment optical coherence tomography images of mice. Proceedings of SPIE, 2014, , .	0.8	5
31	Automated 3D Segmentation of Multiple Surfaces with a Shared Hole: Segmentation of the Neural Canal Opening in SD-OCT Volumes. Lecture Notes in Computer Science, 2014, 17, 739-746.	1.3	16
32	A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes. Biomedical Optics Express, 2013, 4, 2712.	2.9	46
33	Incorporation of texture-based features in optimal graph-theoretic approach with application to the 3D segmentation of intraretinal surfaces in SD-OCT volumes. , 2012, , .		7
34	Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images. Biomedical Optics Express, 2011, 2, 2403.	2.9	67
35	Automated 3D segmentation of intraretinal layers from optic nerve head optical coherence tomography images. Proceedings of SPIE, 2010, , .	0.8	20
36	Binarization and Localization of Text Images Captured on a Mobile Phone Camera., 2006,,.		1