Jaehoon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/568898/publications.pdf

Version: 2024-02-01

214 papers 8,664 citations

53 h-index 79 g-index

216 all docs

216 docs citations

216 times ranked

9105 citing authors

#	Article	IF	CITATIONS
1	Understanding lithium, sodium, and potassium storage mechanisms in silicon oxycarbide. Chemical Engineering Journal, 2022, 428, 131072.	12.7	20
2	Toad egg-like bismuth nanoparticles encapsulated in an N-doped carbon microrod via supercritical acetone as anodes in lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2022, 106, 128-141.	5.8	7
3	High-yield synthesis of BTEX over Na–FeAlOx/Zn–HZSM-5@SiO2 by direct CO2 conversion and identification of surface intermediates. Applied Catalysis B: Environmental, 2022, 301, 120813.	20.2	17
4	Strategy for high-yield astaxanthin recovery directly from wet Haematococcus pluvialis without pretreatment. Bioresource Technology, 2022, 346, 126616.	9.6	5
5	High-energy–density carbon-coated bismuth nanodots on hierarchically porous molybdenum carbide for superior lithium storage. Chemical Engineering Journal, 2022, 432, 134276.	12.7	7
6	Unraveling the role of cobalt in the direct conversion of CO2 to high-yield liquid fuels and lube base oil. Applied Catalysis B: Environmental, 2022, 305, 121041.	20.2	19
7	High-yield recovery of highly bioactive compounds from red ginseng marc using subcritical water extraction. Journal of Industrial and Engineering Chemistry, 2022, 109, 547-558.	5.8	4
8	One-pot conversion of lignocellulosic biomass to ketones and aromatics over a multifunctional Cu–Ru/ZSM-5 catalyst. Applied Catalysis B: Environmental, 2022, 312, 121368.	20.2	18
9	Strategy to enhance the electrochemical performance of silicon oxycarbide as anodes in sodium-ion batteries. Chemical Engineering Journal, 2022, 438, 135411.	12.7	4
10	Total chemocatalytic cascade conversion of lignocellulosic biomass into biochemicals. Applied Catalysis B: Environmental, 2022, 310, 121280.	20.2	16
11	One-pot, cascade conversion of cellulose to γ-valerolactone over a multifunctional Ru–Cu/zeolite-Y catalyst in supercritical methanol. Applied Catalysis B: Environmental, 2022, 314, 121466.	20.2	10
12	New strategy for increasing sodium-ion uptake in silicon oxycarbides. Chemical Engineering Journal, 2021, 404, 126520.	12.7	14
13	Enhanced heat transfer in a refrigerated container using an airflow optimized refrigeration unit. International Journal of Refrigeration, 2021, 131, 723-736.	3.4	6
14	High-Yield Production of Deoxygenated Monomers from Kraft Lignin over ZnO-Co/N-CNTs in Water. ACS Sustainable Chemistry and Engineering, 2021, 9, 3232-3245.	6.7	12
15	Trimetallic Cu–Ni–Zn/H-ZSM-5 Catalyst for the One-Pot Conversion of Levulinic Acid to High-Yield 1,4-Pentanediol under Mild Conditions in an Aqueous Medium. ACS Catalysis, 2021, 11, 2846-2864.	11.2	61
16	Material stability assessment of R-1234ze(E) as a working fluid for supercritical organic Rankine cycle. Journal of Industrial and Engineering Chemistry, 2021, 96, 169-182.	5.8	3
17	Complete drying and micronization of ecamsule using supercritical CO2 as the antisolvent. Journal of Supercritical Fluids, 2021, 170, 105157.	3.2	8
18	Density Functional Theory Investigation of the Conversion of 5-(Hydroxymethyl)furfural into 2,5-Dimethylfuran over the Pd(111), Cu(111), and Cu $<$ sub $>$ 3 $<$ /sub $>$ Pd(111) Surfaces. Journal of Physical Chemistry C, 2021, 125, 10295-10317.	3.1	18

#	Article	IF	Citations
19	Controlling intercalation sites of hard carbon for enhancing Na and K storage performance. Chemical Engineering Journal, 2021, 411, 128490.	12.7	57
20	Synthesis of Monocarboxylic Acids via Direct CO ₂ Conversion over Ni–Zn Intermetallic Catalysts. ACS Catalysis, 2021, 11, 8382-8398.	11.2	35
21	Cerium chloride-assisted subcritical water carbonization for fabrication of high-performance cathodes for lithium-ion capacitors. Journal of Applied Electrochemistry, 2021, 51, 1449-1462.	2.9	2
22	RuO2–Ru/Hβ zeolite catalyst for high-yield direct conversion of xylose to tetrahydrofurfuryl alcohol. Applied Catalysis B: Environmental, 2021, 291, 120120.	20.2	30
23	Magnetic core–shell nanocatalysts: promising versatile catalysts for organic and photocatalytic reactions. Catalysis Reviews - Science and Engineering, 2020, 62, 163-311.	12.9	28
24	Techno-economic analysis of bio heavy-oil production from sewage sludge using supercritical and subcritical water. Renewable Energy, 2020, 151, 30-42.	8.9	36
25	Facile synthesis of high-performance LiFePO4-reduced graphene oxide composites using ball milling. lonics, 2020, 26, 2803-2812.	2.4	4
26	One-pot direct conversion of levulinic acid into high-yield valeric acid over a highly stable bimetallic Nb-Cu/Zr-doped porous silica catalyst. Green Chemistry, 2020, 22, 766-787.	9.0	39
27	Comprehensive study on the formation mechanism of highly bioactive compounds from Allium hookeri root using subcritical water and their antioxidant and anticancer effects. Journal of Supercritical Fluids, 2020, 157, 104709.	3.2	13
28	Revealing the Sodium Storage Mechanism in High-Temperature-Synthesized Silicon Oxycarbides. Chemistry of Materials, 2020, 32, 410-423.	6.7	21
29	Extended plateau capacity of phosphorus-doped hard carbon used as an anode in Na- and K-ion batteries. Chemical Engineering Journal, 2020, 391, 123576.	12.7	88
30	A centrifugation-first approach for recovering high-yield bio-oil with high calorific values in biomass liquefaction: A case study of sewage sludge. Fuel, 2020, 262, 116628.	6.4	29
31	Aging stability of bio-oil produced from dewatered sewage sludge in subcritical water. Journal of Supercritical Fluids, 2020, 166, 105011.	3.2	1
32	Highly Efficient Reductive Catalytic Fractionation of Lignocellulosic Biomass over Extremely Low-Loaded Pd Catalysts. ACS Catalysis, 2020, 10, 12487-12506.	11.2	36
33	Selective Conversion of Carbon Dioxide into Liquid Hydrocarbons and Long-Chain α-Olefins over Fe-Amorphous AlO <i></i> < Bifunctional Catalysts. ACS Catalysis, 2020, 10, 10325-10338.	11.2	81
34	Thermal stability study of HFO-1234ze(E) for supercritical organic Rankine cycle: Chemical kinetic model approach through decomposition experiments. Journal of Industrial and Engineering Chemistry, 2020, 90, 244-250.	5.8	12
35	Toward high-performance hard carbon as an anode for sodium-ion batteries: Demineralization of biomass as a critical step. Journal of Industrial and Engineering Chemistry, 2020, 91, 317-329.	5.8	36
36	Intercalation Mechanisms: Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon (Adv. Energy Mater. 20/2020). Advanced Energy Materials, 2020, 10, 2070093.	19.5	2

#	Article	IF	CITATIONS
37	Ultrafast and complete drying of ecamsule solution using supercritical carbon dioxide with fluctuating pressure technique. Journal of Supercritical Fluids, 2020, 160, 104795.	3.2	3
38	One-pot synthesis of Bi-reduced graphene oxide composite using supercritical acetone as anode for Na-ion batteries. Chemical Engineering Journal, 2020, 387, 124111.	12.7	27
39	Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon. Advanced Energy Materials, 2020, 10, 2000283.	19.5	175
40	Efficient oil recovery from highly stable toxic oily sludge using supercritical water. Fuel, 2019, 235, 460-472.	6.4	44
41	Carbon-coated, hierarchically mesoporous TiO2 microparticles as an anode material for lithium and sodium ion batteries. Electrochimica Acta, 2019, 321, 134639.	5.2	31
42	One-Pot, Simultaneous Cell Wall Disruption and Complete Extraction of Astaxanthin from <i>Haematococcus pluvialis</i> at Room Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 13898-13910.	6.7	30
43	Thermal stability and decomposition behavior of HFO-1234ze(E) as a working fluid in the supercritical organic Rankine cycle. Journal of Supercritical Fluids, 2019, 154, 104602.	3.2	20
44	Safe and Complete Extraction of Astaxanthin from <i>Haematococcus pluvialis</i> by Efficient Mechanical Disruption of Cyst Cell Wall. International Journal of Food Engineering, 2019, 15, .	1.5	10
45	Highly-efficient and magnetically-separable ZnO/Co@N-CNTs catalyst for hydrodeoxygenation of lignin and its derived species under mild conditions. Green Chemistry, 2019, 21, 1021-1042.	9.0	72
46	Fractionation of Lignocellulosic Biomass over Core–Shell Ni@Al ₂ O ₃ Catalysts with Formic Acid as a Cocatalyst and Hydrogen Source. ChemSusChem, 2019, 12, 1743-1762.	6.8	33
47	Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. Journal of Power Sources, 2019, 430, 157-168.	7.8	59
48	Process modeling and economic analysis for bio-heavy-oil production from sewage sludge using supercritical ethanol and methanol. Journal of Supercritical Fluids, 2019, 150, 137-146.	3.2	18
49	Uniform and ultrathin carbon-layer coated layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid with enhanced electrochemical performance for anodes in sodium ion batteries. Journal of Supercritical Fluids, 2019, 148, 116-129.	3.2	27
50	Revealing sodium ion storage mechanism in hard carbon. Carbon, 2019, 145, 67-81.	10.3	185
51	One-pot di- and polysaccharides conversion to highly selective 2,5-dimethylfuran over Cu-Pd/Amino-functionalized Zr-based metal-organic framework (UiO-66(NH2))@SGO tandem catalyst. Applied Catalysis B: Environmental, 2019, 243, 337-354.	20.2	58
52	Solvent effect on the enzymatic production of biodiesel from waste animal fat. Journal of Cleaner Production, 2018, 185, 382-388.	9.3	58
53	Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2018, 10, 16449-16457.	8.0	121
54	Silicon oxycarbide produced from silicone oil for high-performance anode material in sodium ion batteries. Chemical Engineering Journal, 2018, 338, 126-136.	12.7	71

#	Article	IF	CITATIONS
55	Conversion of petroleum emulsion into light fraction-rich upgraded oil in supercritical methanol. Fuel, 2018, 218, 78-88.	6.4	10
56	Understanding the relationship between the structure and depolymerization behavior of lignin. Fuel, 2018, 217, 202-210.	6.4	59
57	Enhanced Lithium Storage Capacity of a Tetralithium 1,2,4,5-Benzenetetracarboxylate (Li ₄ C ₁₀ H ₂ O ₈) Salt Through Crystal Structure Transformation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17183-17194.	8.0	10
58	Synthesis of MoO2/Mo2C/RGO composite in supercritical fluid and its enhanced cycling stability in Li-ion batteries. Chemical Engineering Journal, 2018, 345, 1-12.	12.7	44
59	Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge. Applied Energy, 2018, 218, 402-416.	10.1	35
60	Supercritical methanol as an effective medium for producing asphaltenes-free light fraction oil from vacuum residue. Journal of Supercritical Fluids, 2018, 133, 184-194.	3.2	12
61	A supercritical ethanol route for one-pot synthesis of tin sulfide–reduced graphene oxides and their anode performance for lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2018, 59, 160-168.	5.8	28
62	Carbon with Expanded and Well-Developed Graphene Planes Derived Directly from Condensed Lignin as a High-Performance Anode for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 569-581.	8.0	64
63	Solvothermal liquefaction of alkali lignin to obtain a high yield of aromatic monomers while suppressing solvent consumption. Green Chemistry, 2018, 20, 4957-4974.	9.0	47
64	Water-soluble, lignin-derived carbon dots with high fluorescent emissions and their applications in bioimaging. Journal of Industrial and Engineering Chemistry, 2018, 66, 387-395.	5.8	50
65	Excellent aging stability of upgraded fast pyrolysis bio-oil in supercritical ethanol. Fuel, 2018, 232, 610-619.	6.4	28
66	A two-step approach for producing oxygen-free aromatics from lignin using formic acid as a hydrogen source. Chemical Engineering Journal, 2018, 348, 799-810.	12.7	35
67	Ga-doped Cu/H-nanozeolite-Y catalyst for selective hydrogenation and hydrodeoxygenation of lignin-derived chemicals. Green Chemistry, 2018, 20, 3253-3270.	9.0	60
68	Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries. Scientific Reports, 2017, 7, 40910.	3.3	49
69	Uniform one-pot anchoring of Fe 3 O 4 to defective reduced graphene oxide for enhanced lithium storage. Chemical Engineering Journal, 2017, 317, 890-900.	12.7	34
70	Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids. Chemical Engineering Journal, 2017, 317, 9-19.	12.7	69
71	One-pot route for uniform anchoring of TiO 2 nanoparticles on reduced graphene oxides and their anode performance for lithium-ion batteries. Journal of Supercritical Fluids, 2017, 125, 66-78.	3.2	27
72	Conformal carbon layer coating on well-dispersed Si nanoparticles on graphene oxide and the enhanced electrochemical performance. Journal of Industrial and Engineering Chemistry, 2017, 52, 260-269.	5.8	13

#	Article	IF	CITATIONS
73	Simultaneous breaking and conversion of petroleum emulsions into synthetic crude oil with low impurities. Fuel, 2017, 199, 135-144.	6.4	14
74	New liquid carbon dioxide based strategy for high energy/power density LiFePO4. Nano Energy, 2017, 36, 398-410.	16.0	49
75	High-yield bio-oil production from macroalgae (Saccharina japonica) in supercritical ethanol and its combustion behavior. Chemical Engineering Journal, 2017, 327, 79-90.	12.7	26
76	Upgrading low-boiling-fraction fast pyrolysis bio-oil using supercritical alcohol: Understanding alcohol participation, chemical composition, and energy efficiency. Energy Conversion and Management, 2017, 148, 197-209.	9.2	46
77	Removal of naphthenic acids from high acid crude via esterification with methanol. Fuel Processing Technology, 2017, 165, 123-130.	7.2	24
78	Surface-termination dependence of propanoic acid deoxygenation on Mo2C. Catalysis Communications, 2017, 99, 61-65.	3.3	10
79	Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal–organic framework@sulfonated graphene oxide catalyst. Green Chemistry, 2017, 19, 2482-2490.	9.0	97
80	Direct conversion of cellulose to high-yield methyl lactate over Ga-doped Zn/H-nanozeolite Y catalysts in supercritical methanol. Green Chemistry, 2017, 19, 1969-1982.	9.0	62
81	One-pot synthesis of molybdenum disulfide–reduced graphene oxide (MoS 2 -RGO) composites and their high electrochemical performance as an anode in lithium ion batteries. Journal of Supercritical Fluids, 2017, 127, 81-89.	3.2	29
82	Efficient renewable fuel production from sewage sludge using a supercritical fluid route. Fuel, 2017, 200, 146-152.	6.4	25
83	Effect of compressed liquid CO2 antisolvent treatment on the synthesis of hierarchically porous nanocarbon from kraft lignin. Journal of Supercritical Fluids, 2017, 123, 1-10.	3.2	3
84	Electro-hydrodynamic behavior and interface instability of double emulsion droplets under high electric field. Journal of Electrostatics, 2017, 85, 11-22.	1.9	24
85	A new role of supercritical ethanol in macroalgae liquefaction (Saccharina japonica): Understanding ethanol participation, yield, and energy efficiency. Energy, 2017, 118, 116-126.	8.8	54
86	Upgrading Heavy Crude Oils and Extra Heavy Fractions in Supercritical Methanol. Energy & Samp; Fuels, 2017, 31, 12054-12063.	5.1	15
87	Effective conversion of the carbohydrate-rich macroalgae (Saccharina japonica) into bio-oil using low-temperature supercritical methanol. Energy Conversion and Management, 2017, 151, 357-367.	9.2	12
88	Effective vacuum residue upgrading using sacrificial nickel(II) dimethylglyoxime complex in supercritical methanol. Applied Catalysis A: General, 2017, 545, 148-158.	4.3	25
89	A supercritical methanol route for the synthesis of sodium iron oxide submicron plates for use as a cathode material for sodium-ion batteries. Materials Letters, 2017, 206, 100-104.	2.6	4
90	A non-catalytic, supercritical methanol route for producing high-yield saturated and aromatic compounds from de-oiled asphaltenes. Journal of Supercritical Fluids, 2017, 120, 140-150.	3.2	16

#	Article	IF	CITATIONS
91	Understanding the effect of biomass-to-solvent ratio on macroalgae (Saccharina japonica) liquefaction in supercritical ethanol. Journal of Supercritical Fluids, 2017, 120, 65-74.	3.2	44
92	Liquid CO 2 -based coating for dense Culn x Ga $1\hat{a}^2x$ S 2 film fabrication. Journal of Supercritical Fluids, 2017, 120, 453-459.	3.2	2
93	Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant. BMC Biotechnology, 2017, 17, 70.	3.3	23
94	Solidâ€state polymerization and characterization of a copolyamide based on adipic acid, 1,4â€butanediamine, and 2,5â€furandicarboxylic acid. Journal of Applied Polymer Science, 2016, 133, .	2.6	33
95	Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil. Applied Energy, 2016, 172, 12-22.	10.1	91
96	Influence of External Pressure on the Performance of Quantum Dot Solar Cells. ACS Applied Materials & Solar Cells. ACS App	8.0	3
97	A non-catalytic, supercritical methanol route for effective deacidification of naphthenic acids. Fuel, 2016, 182, 650-659.	6.4	20
98	A simple, one-pot synthesis of molybdenum oxide-reduced graphene oxide composites in supercritical methanol and their electrochemical performance. RSC Advances, 2016, 6, 108298-108309.	3.6	21
99	Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode. Scientific Reports, 2016, 6, 32011.	3.3	26
100	Ultrathin and uniform carbon-layer-coated hierarchically porous LiFePO4 microspheres and their electrochemical performance. Journal of Supercritical Fluids, 2016, 116, 164-171.	3.2	32
101	High-yield and high-calorific bio-oil production from concentrated sulfuric acid hydrolysis lignin in supercritical ethanol. Fuel, 2016, 172, 238-247.	6.4	93
102	Liquid carbon dioxide-based coating of a uniform carbon layer on hierarchical porous MoO 2 microspheres and assessment of their electrochemical performance. Chemical Engineering Journal, 2016, 290, 335-345.	12.7	27
103	A route to synthesis molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites using supercritical methanol and their enhanced electrochemical performance for Li-ion batteries. Journal of Power Sources, 2016, 309, 202-211.	7.8	89
104	Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries. ACS Applied Materials & Linkerfaces, 2016, 8, 2658-2665.	8.0	195
105	Hydrogen-enriched porous carbon nanosheets with high sodium storage capacity. Carbon, 2016, 98, 213-220.	10.3	74
106	Synthesis and lithium storage properties of MoS 2 nanoparticles prepared using supercritical ethanol. Chemical Engineering Journal, 2016, 285, 517-527.	12.7	33
107	A One-Pot Route for Uniform Deposition of Metal Oxide and Metal Sulfide Nanoparticles on Reduced Graphene Oxide Using Supercritical Alcohols. ECS Meeting Abstracts, 2016, , .	0.0	1
108	Continuous synthesis of hierarchical porous ZnO microspheres in supercritical methanol and their enhanced electrochemical performance in lithium ion batteries. Chemical Engineering Journal, 2015, 266, 179-188.	12.7	60

#	Article	IF	CITATIONS
109	Liquefaction of major lignocellulosic biomass constituents in supercritical ethanol. Energy, 2015, 80, 64-74.	8.8	101
110	Production of aromatic compounds from oil palm empty fruit bunches by hydro- and solvothermolysis. Industrial Crops and Products, 2015, 76, 104-111.	5.2	10
111	One-pot route to synthesize SnO2-Reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries. Journal of Power Sources, 2015, 293, 1024-1031.	7.8	86
112	Hydroiodic acid treated PEDOT:PSS thin film as transparent electrode: an approach towards ITO free organic photovoltaics. RSC Advances, 2015, 5, 52019-52025.	3.6	33
113	Synthesis of Li4Ti5O12/carbon nanocomposites in supercritical methanol for anode in Li-ion batteries: Effect of surface modifiers. Journal of Supercritical Fluids, 2015, 101, 72-80.	3.2	25
114	Mo ₂ C/Graphene Nanocomposite As a Hydrodeoxygenation Catalyst for the Production of Diesel Range Hydrocarbons. ACS Catalysis, 2015, 5, 3292-3303.	11.2	71
115	Hydrogen-Enriched Reduced Graphene Oxide with Enhanced Electrochemical Performance in Lithium Ion Batteries. Chemistry of Materials, 2015, 27, 266-275.	6.7	53
116	Supercritical Water Gasification for Hydrogen Production. , 2014, , 111-137.		9
117	High-yield hydrogen production by supercritical water gasification of various feedstocks: Alcohols, glucose, glycerol and long-chain alkanes. Chemical Engineering Research and Design, 2014, 92, 1834-1844.	5.6	56
118	Effect of KOH on the continuous synthesis of cobalt oxide and manganese oxide nanoparticles in supercritical water. Journal of Industrial and Engineering Chemistry, 2014, 20, 4443-4446.	5.8	23
119	Production of renewable diesel via catalytic deoxygenation of natural triglycerides: Comprehensive understanding of reaction intermediates and hydrocarbons. Applied Energy, 2014, 116, 199-205.	10.1	110
120	Continuous synthesis of Li4Ti5O12 nanoparticles in supercritical fluids and their electrochemical performance for anode in Li-ion batteries. Chemical Engineering Journal, 2014, 258, 357-366.	12.7	23
121	A Facile Supercritical Alcohol Route for Synthesizing Carbon Coated Hierarchically Mesoporous Li ₄ Ti ₅ O ₁₂ Microspheres. Journal of Physical Chemistry C, 2014, 118, 183-193.	3.1	57
122	Toward uniform and ultrathin carbon layer coating on lithium iron phosphate using liquid carbon dioxide for enhanced electrochemical performance. Journal of Power Sources, 2014, 262, 219-223.	7.8	17
123	Uniform deposition of ternary chalcogenide nanoparticles onto mesoporous TiO2 film using liquid carbon dioxide-based coating. Thin Solid Films, 2014, 565, 122-127.	1.8	4
124	Lowâ€temperature, Selective Catalytic Deoxygenation of Vegetable Oil in Supercritical Fluid Media. ChemSusChem, 2014, 7, 492-500.	6.8	20
125	SYNTHESIS OF HYDROUS RUTHENIUM OXIDE NANOPARTICLES IN SUB- AND SUPERCRITICAL WATER AND THEIR CAPACITIVE PROPERTIES. Chemical Engineering Communications, 2014, 201, 1259-1269.	2.6	2
126	Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol. Energy, 2014, 68, 420-427.	8.8	166

#	Article	IF	CITATIONS
127	Template-free synthesis of hierarchical porous anatase TiO2 microspheres with carbon coating and their electrochemical properties. Chemical Engineering Journal, 2014, 241, 216-227.	12.7	48
128	Hydrothermal gasification of pure and crude glycerol in supercritical water: A comparative study. International Journal of Hydrogen Energy, 2014, 39, 1262-1273.	7.1	29
129	Continuous synthesis of lithium iron phosphate nanoparticles in supercritical water: Effect of process parameters. Chemical Engineering Journal, 2013, 229, 313-323.	12.7	24
130	Supercritical alcohols as solvents and reducing agents for the synthesis of reduced graphene oxide. Carbon, 2013, 64, 207-218.	10.3	86
131	Supercritical CO2-purification of waste cooking oil for high-yield diesel-like hydrocarbons via catalytic hydrodeoxygenation. Fuel, 2013, 111, 510-518.	6.4	21
132	Facile synthesis of hierarchical mesoporous Li4Ti5O12 microspheres in supercritical methanol. Journal of Power Sources, 2013, 244, 164-169.	7.8	42
133	Theoretical Investigation of the Adsorption and C–C Bond Scission of CCH ₃ on the (111) and (100) Surfaces of Pd: Comparison with Pt. Journal of Physical Chemistry C, 2013, 117, 18131-18138.	3.1	8
134	Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters. Energy, 2013, 59, 173-182.	8.8	167
135	Continuous synthesis of lithium iron phosphate (LiFePO4) nanoparticles in supercritical water: Effect of mixing tee. Journal of Supercritical Fluids, 2013, 73, 70-79.	3.2	43
136	A new strategy for ultralow biofouling membranes: Uniform and ultrathin hydrophilic coatings using liquid carbon dioxide. Journal of Membrane Science, 2013, 440, 88-97.	8.2	28
137	Water splitting for hydrogen production using a high surface area RuO2 electrocatalyst synthesized in supercritical water. International Journal of Hydrogen Energy, 2013, 38, 6092-6096.	7.1	12
138	Production of renewable diesel by hydrotreatment of soybean oil: Effect of reaction parameters. Chemical Engineering Journal, 2013, 228, 114-123.	12.7	87
139	Effect of Solvents on De-Cross-Linking of Cross-Linked Polyethylene under Subcritical and Supercritical Conditions. Industrial & Engineering Chemistry Research, 2013, 52, 6633-6638.	3.7	19
140	Effects of Surface Area of Titanium Dioxide Precursors on the Hydrothermal Synthesis of Barium Titanate by Dissolution–Precipitation. Industrial & Engineering Chemistry Research, 2013, 52, 13370-13376.	3.7	20
141	Supercritical-phase-assisted highly selective and active catalytic hydrodechlorination of the ozone-depleting refrigerant CHClF2. Chemical Engineering Journal, 2012, 213, 346-355.	12.7	11
142	Solid-State Polymerization of Semiaromatic Copolyamides of Nylon-4,T and Nylon-4,6: Composition Ratio Effect and Thermal Properties. Industrial & Engineering Chemistry Research, 2012, 51, 15801-15810.	3.7	19
143	Bulk Heterojunction Formation between Indium Tin Oxide Nanorods and CulnS ₂ Nanoparticles for Inorganic Thin Film Solar Cell Applications. ACS Applied Materials & Thin Film Solar Cell Applied Materi	8.0	39
144	Liquid carbon dioxide coating of CdS quantum-dots on mesoporous TiO2 film for sensitized solar cell applications. Journal of Supercritical Fluids, 2012, 70, 40-47.	3.2	20

#	Article	IF	CITATIONS
145	Carbon coating on lithium iron phosphate (LiFePO4): Comparison between continuous supercritical hydrothermal method and solid-state method. Chemical Engineering Journal, 2012, 198-199, 318-326.	12.7	46
146	Synthesis of Li4Ti5O12 in supercritical water for Li-ion batteries: Reaction mechanism and high-rate performance. Electrochimica Acta, 2012, 78, 623-632.	5.2	40
147	Solid-State Polymerization of Poly(trimethylene terephthalate): Reaction Kinetics and Prepolymer Molecular Weight Effects. Industrial & Engineering Chemistry Research, 2012, 51, 2904-2912.	3.7	13
148	High-yield hydrogen production from glucose by supercritical water gasification without added catalyst. International Journal of Hydrogen Energy, 2012, 37, 11677-11690.	7.1	129
149	Simultaneous carbon capture and nitrogen removal during supercritical water oxidation. Journal of Supercritical Fluids, 2012, 72, 120-124.	3.2	17
150	Superior high rate performance of coreâ€"shell Li4Ti5O12/carbon nanocomposite synthesized by a supercritical alcohol approach. RSC Advances, 2012, 2, 10805.	3.6	46
151	Vegetable oil aided hydrothermal synthesis of cerium oxide nanocrystals. Korean Journal of Chemical Engineering, 2012, 29, 1289-1291.	2.7	4
152	DESIGN OF AN ELECTROLYTIC CELL FOR A MONOLITHIC PHOTOVOLTAIC-ELECTROLYTIC HYDROGEN GENERATION SYSTEM: THE ELECTRODE ASPECTS. Chemical Engineering Communications, 2012, 199, 1063-1071.	2.6	2
153	Continuous synthesis of surface-modified nanoparticles in supercritical methanol: A facile approach to control dispersibility. Chemical Engineering Journal, 2012, 193-194, 146-153.	12.7	10
154	Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts. Fuel, 2012, 94, 578-585.	6.4	255
155	The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports. Journal of Membrane Science, 2012, 409-410, 318-328.	8.2	35
156	High-temperature hydrodechlorination of ozone-depleting chlorodifluoromethane (HCFC-22) on supported Pd and Ni catalysts. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 989-996.	1.7	5
157	Facile synthesis of reduced graphene oxide in supercritical alcohols and its lithium storage capacity. Green Chemistry, 2011, 13, 2714.	9.0	75
158	Dissolution rate improvement of valsartan by low temperature recrystallization in compressed CO2: Prevention of excessive agglomeration. Journal of Supercritical Fluids, 2011, 59, 117-123.	3.2	25
159	Continuous synthesis of high-surface-area aluminum hydroxide methoxide nano- and microparticles in supercritical methanol and their conversion into \hat{I}^3 -Al2O3. Materials Letters, 2011, 65, 772-774.	2.6	9
160	Size-dependent electrocatalytic activities of printed Co3O4 films for a monolithic photovoltaic-electrolytic hydrogen generation system. International Journal of Hydrogen Energy, 2011, 36, 10587-10592.	7.1	7
161	Continuous supercritical hydrothermal synthesis: lithium secondary ion battery applications. Research on Chemical Intermediates, 2011, 37, 429-440.	2.7	16
162	Surface-modified cerium oxide nanoparticles synthesized continuously in supercritical methanol: Study of dispersion stability in ethylene glycol medium. Chemical Engineering Journal, 2011, 168, 1346-1351.	12.7	15

#	Article	IF	CITATIONS
163	Optical properties and lasing of ZnO nanoparticles synthesized continuously in supercritical fluids. Chemical Physics Letters, 2011, 505, 51-56.	2.6	15
164	Facile synthesis of nanosized Li4Ti5O12 in supercritical water. Electrochemistry Communications, 2011, 13, 650-653.	4.7	73
165	Printed Co3O4 film as an electrocatalyst for hydrogen production by a monolithic photovoltaic-electrolysis system. International Journal of Hydrogen Energy, 2011, 36, 1924-1929.	7.1	7
166	Noncatalytic gasification of isooctane in supercritical water: A Strategy for high-yield hydrogen production. International Journal of Hydrogen Energy, 2011, 36, 3895-3906.	7.1	35
167	Small capacity decay of lithium iron phosphate (LiFePO4) synthesized continuously in supercritical water: Comparison with solid-state method. Journal of Supercritical Fluids, 2011, 55, 1027-1037.	3.2	44
168	Synthesis of cobalt nanoparticles in supercritical methanol. Materials Chemistry and Physics, 2010, 124, 140-144.	4.0	31
169	Continuous synthesis of magnetite nanoparticles in supercritical methanol. Materials Letters, 2010, 64, 2197-2200.	2.6	40
170	Ring-opening metathesis polymerization of tetracyclododecene using various catalyst systems. Journal of Applied Polymer Science, 2010, 116, 479-485.	2.6	12
171	The effect of dissolved oxygen on the 1,4-dioxane degradation with TiO2 and Au–TiO2 photocatalysts. Journal of Hazardous Materials, 2010, 177, 216-221.	12.4	29
172	Extraction of mangiferin from Mahkota Dewa (Phaleria macrocarpa) using subcritical water. Journal of Industrial and Engineering Chemistry, 2010, 16, 425-430.	5.8	59
173	Phase equilibria of palm oil, palm kernel oil, and oleic acid+supercritical carbon dioxide and modeling using Peng–Robinson EOS. Journal of Industrial and Engineering Chemistry, 2010, 16, 859-865.	5.8	15
174	The effect of prepolymer crystallinity on solid-state polymerization of poly(bisphenol A carbonate). Polymer, 2010, 51, 2520-2526.	3.8	7
175	Continuous supercritical water gasification of isooctane: A promising reactor design. International Journal of Hydrogen Energy, 2010, 35, 1957-1970.	7.1	60
176	Continuous synthesis of surface-modified zinc oxide nanoparticles in supercritical methanol. Journal of Supercritical Fluids, 2010, 52, 76-83.	3.2	69
177	Continuous synthesis of metal nanoparticles in supercritical methanol. Journal of Supercritical Fluids, 2010, 52, 285-291.	3.2	59
178	Preparation of bitter taste masked cetirizine dihydrochloride \hat{l}^2 -cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. Journal of Supercritical Fluids, 2010, 55, 348-357.	3.2	60
179	Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts. Bioresource Technology, 2010, 101, 8686-8689.	9.6	168
180	Ultrathin Cross-Linked Perfluoropolyether Film Coatings from Liquid CO2 and Subsequent UV Curing. Chemistry of Materials, 2010, 22, 2411-2413.	6.7	16

#	Article	IF	Citations
181	Uniform Decoration of Linker-Free Quantum Dots onto Mesoporous TiO ₂ Using Liquid Carbon Dioxide. Chemistry of Materials, 2010, 22, 4350-4352.	6.7	14
182	Purification of Waste Cooking Oils via Supercritical Carbon Dioxide Extraction. Separation Science and Technology, 2010, 45, 1139-1146.	2.5	9
183	Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure. Journal of Alloys and Compounds, 2010, 506, 969-972.	5.5	22
184	Deposition of palladium catalyzed copper films by the displacement of two immiscible supercritical phases and subsequent reaction. Journal of Materials Chemistry, 2010, 20, 3973.	6.7	1
185	Metal nanoparticle synthesis using supercritical alcohol. Materials Letters, 2009, 63, 1880-1882.	2.6	58
186	Effects of promoter and moisture on the deactivation of FSO3H catalyst in the synthesis of HFC-152a by hydrofluorination of acetylene. Korean Journal of Chemical Engineering, 2009, 26, 702-704.	2.7	1
187	Extraction of bioactive components from Centella asiatica using subcritical water. Journal of Supercritical Fluids, 2009, 48, 211-216.	3.2	72
188	Characterization of surface-modified ceria oxide nanoparticles synthesized continuously in supercritical methanol. Journal of Supercritical Fluids, 2009, 50, 283-291.	3.2	48
189	Continuous hydrothermal synthesis of HT-LiCoO2 in supercritical water. Journal of Supercritical Fluids, 2009, 50, 250-256.	3.2	29
190	Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant. Journal of Hazardous Materials, 2009, 163, 1142-1147.	12.4	63
191	Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation. Journal of Hazardous Materials, 2009, 167, 824-829.	12.4	33
192	Continuous catalytic hydrodechlorination of polychlorinated biphenyls (PCBs) in transformer oil. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 1538-1544.	1.7	5
193	Complex Effects of the Sweep Fluid on Solid-State Polymerization: Poly(bisphenol A carbonate) in Supercritical Carbon Dioxide. Macromolecules, 2009, 42, 2472-2479.	4.8	18
194	Deposition of Copper Particles and Films by the Displacement of Two Immiscible Supercritical Phases and Subsequent Reaction. Chemistry of Materials, 2009, 21, 913-924.	6.7	6
195	Recycling of transformer oil contaminated by polychlorinated biphenyls (PCBs) using catalytic hydrodechlorination. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 494-501.	1.7	10
196	Selective caffeine removal from green tea using supercritical carbon dioxide extraction. Journal of Food Engineering, 2008, 89, 303-309.	5.2	111
197	A new correlation to predict the stability of liquid jet in dense carbon dioxide. Journal of Industrial and Engineering Chemistry, 2008, 14, 824-829.	5.8	2
198	Characterization of Pd∫γ-Al2O3 Catalysts Prepared Using [Pd(hfac)2] in Liquid CO2. Topics in Catalysis, 2008, 49, 178-186.	2.8	18

#	Article	IF	CITATIONS
199	Effect of prepolymer molecular weight on solid state polymerization of poly(bisphenol a carbonate) with nitrogen as a sweep fluid. Journal of Polymer Science Part A, 2008, 46, 4959-4969.	2.3	16
200	Spectroscopic analysis of poly(bisphenol A carbonate) using high resolution 13C and 1H NMR. Polymer, 2008, 49, 394-404.	3.8	26
201	Characterization of Palladium (Pd) on Alumina Catalysts Prepared Using Liquid Carbon Dioxide. Journal of Physical Chemistry C, 2008, 112, 10446-10452.	3.1	22
202	Continuous Synthesis of Surface-Modified Metal Oxide Nanoparticles Using Supercritical Methanol for Highly Stabilized Nanofluids. Chemistry of Materials, 2008, 20, 6301-6303.	6.7	63
203	Hydrogen Production by Gasification of Isooctane Using Supercritical Water. International Journal of Green Energy, 2008, 5, 322-333.	3.8	16
204	Surface Properties of Poly[2-(perfluorooctyl)ethyl acrylate] Deposited from Liquid CO2 High-Pressure Free Meniscus Coating. Macromolecules, 2007, 40, 588-597.	4.8	24
205	Deposition of poly[2-(perfluorooctyl)ethyl acrylate] from liquid CO2 high-pressure free meniscus coating—Uniformity and morphology. Journal of Supercritical Fluids, 2007, 42, 129-141.	3.2	14
206	Deposition of poly[2-(perfluorooctyl)ethyl acrylate] on silicon wafers by the displacement of two immiscible supercritical phases (DISP). Journal of Supercritical Fluids, 2007, 43, 139-149.	3.2	6
207	Supported Pd Catalyst Preparation Using Liquid Carbon Dioxide. Chemistry of Materials, 2006, 18, 4710-4712.	6.7	18
208	Ultrathin Film Deposition by Liquid CO2 Free Meniscus CoatingUniformity and Morphology. Langmuir, 2006, 22, 642-657.	3.5	22
209	Deposition of Small Organic Molecules by the Displacement of Two Immiscible Supercritical Phases. Langmuir, 2006, 22, 2117-2129.	3.5	10
210	Morphology of a Poly(imide siloxane) Segmented Copolymer/Silica Hybrid Composite. Macromolecular Rapid Communications, 2002, 23, 544.	3.9	38
211	Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene) Tj ETQq1 1 0.78	84314 rgBT 8.2	/Oyerlock 1
212	Gas permeation of poly(amide-6-b-ethylene oxide) copolymer. Journal of Membrane Science, 2001, 190, 179-193.	8.2	320
213	Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes. Journal of Membrane Science, 2001, 193, 209-225.	8.2	385
214	Annealing Effects of Dilute Polyaniline/NMP Solution. Macromolecules, 2000, 33, 7431-7439.	4.8	57