Christian Widmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5688868/publications.pdf

Version: 2024-02-01

81900 43889 8,517 123 39 citations h-index papers

91 g-index 135 135 135 9607 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	APOBEC3C, a nucleolar protein induced by genotoxins, is excluded from DNA damage sites. FEBS Journal, 2022, 289, 808-831.	4.7	5
2	HDLs extract lipophilic drugs from cells. Journal of Cell Science, 2022, 135, .	2.0	2
3	The EnvZ/OmpR Two-Component System Regulates the Antimicrobial Activity of TAT-RasGAP ₃₁₇₋₃₂₆ and the Collateral Sensitivity to Other Antibacterial Agents. Microbiology Spectrum, 2022, 10, e0200921.	3.0	2
4	The proteolytic landscape of cells exposed to non-lethal stresses is shaped by executioner caspases. Cell Death Discovery, 2021, 7, 164.	4.7	4
5	The antimicrobial peptide TAT-RasGAP317-326 inhibits the formation and expansion of bacterial biofilms in vitro. Journal of Global Antimicrobial Resistance, 2021, 25, 227-231.	2.2	13
6	Bacterial surface properties influence the activity of the TAT-RasGAP317-326 antimicrobial peptide. IScience, 2021, 24, 102923.	4.1	5
7	Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. ELife, 2021, 10, .	6.0	31
8	The endocytic pathway taken by cationic substances requires Rab14 but not Rab5 and Rab7. Cell Reports, 2021, 37, 109945.	6.4	18
9	The interplay between serum amyloid A and HDLs. Current Opinion in Lipidology, 2020, 31, 300-301.	2.7	4
10	ASH2L drives proliferation and sensitivity to bleomycin and other genotoxins in Hodgkin's lymphoma and testicular cancer cells. Cell Death and Disease, 2020, 11, 1019.	6.3	10
11	Loss-of-function of the long non-coding RNA A830019P07Rik in mice does not affect insulin expression and secretion. Scientific Reports, 2020, 10, 6413.	3.3	3
12	TAT-RasGAP ₃₁₇₋₃₂₆ kills cells by targeting inner-leaflet–enriched phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31871-31881.	7.1	22
13	The PI3K/Akt pathway is not a main driver in HDL-mediated cell protection. Cellular Signalling, 2019, 62, 109347.	3.6	4
14	Squalene: friend or foe for cancers. Current Opinion in Lipidology, 2019, 30, 353-354.	2.7	5
15	Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion. Journal of Virology, 2019, 93, .	3.4	43
16	Reactive oxygen/nitrogen species contribute substantially to the antileukemia effect of APO866, a NAD lowering agent. Oncotarget, 2019, 10, 6723-6738.	1.8	19
17	CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma. Oncotarget, 2019, 10, 7058-7070.	1.8	50
18	Burning fat to keep your stem cells? The role of fatty acid oxidation in various tissue stem cells. Current Opinion in Lipidology, 2018, 29, 426-427.	2.7	5

#	Article	IF	CITATIONS
19	Harnessing Oxidative Stress as an Innovative Target for Cancer Therapy. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-2.	4.0	29
20	The caspaseâ€3/p120 RasGAP stressâ€sensing module reduces liver cancer incidence but does not affect overall survival in gammaâ€irradiated and carcinogenâ€treated mice. Molecular Carcinogenesis, 2017, 56, 1680-1684.	2.7	4
21	Fatty acid metabolism regulates cell survival in specific niches. Current Opinion in Lipidology, 2017, 28, 284-285.	2.7	О
22	TAT-RasGAP317–326 Enhances Radiosensitivity of Human Carcinoma Cell Lines In Vitro and In Vivo through Promotion of Delayed Mitotic Cell Death. Radiation Research, 2017, 187, 562.	1.5	11
23	The Anticancer Peptide TAT-RasGAP317â~'326 Exerts Broad Antimicrobial Activity. Frontiers in Microbiology, 2017, 8, 994.	3.5	23
24	Evaluation and validation of commercial antibodies for the detection of Shb. PLoS ONE, 2017, 12, e0188311.	2.5	3
25	Aldehyde dehydrogenase activity plays a Key role in the aggressive phenotype of neuroblastoma. BMC Cancer, 2016, 16, 781.	2.6	44
26	Are HDL receptors really located where we think they are in the liver?. Current Opinion in Lipidology, 2016, 27, 424-425.	2.7	0
27	Acetate is the master of its fate, genetics, and molecular biology bimonthly update. Current Opinion in Lipidology, 2016, 27, 636-637.	2.7	0
28	Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL. PLoS ONE, 2016, 11, e0163046.	2.5	75
29	The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner. Oncotarget, 2016, 7, 64342-64359.	1.8	21
30	Genetics and molecular biology. Current Opinion in Lipidology, 2015, 26, 596-597.	2.7	5
31	HDLs, Diabetes, and Metabolic Syndrome. Handbook of Experimental Pharmacology, 2015, 224, 405-421.	1.8	44
32	RasGAP Shields Akt from Deactivating Phosphatases in Fibroblast Growth Factor Signaling but Loses This Ability Once Cleaved by Caspase-3. Journal of Biological Chemistry, 2015, 290, 19653-19665.	3.4	4
33	The Î-Opioid Receptor Affects Epidermal Homeostasis via ERK-Dependent Inhibition of Transcription Factor POU2F3. Journal of Investigative Dermatology, 2015, 135, 471-480.	0.7	21
34	The caspase-3/p120 RasGAP module generates a NF- \hat{l}° B repressor in response to cellular stress. Journal of Cell Science, 2015, 128, 3502-13.	2.0	7
35	Combinative effects of \hat{I}^2 -Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation. Biochimie, 2015, 116, 141-153.	2.6	14
36	Assessment of the Chemosensitizing Activity of TAT-RasGAP317-326 in Childhood Cancers. PLoS ONE, 2015, 10, e0120487.	2.5	8

#	Article	IF	CITATIONS
37	A WXW Motif Is Required for the Anticancer Activity of the TAT-RasGAP317–326 Peptide. Journal of Biological Chemistry, 2014, 289, 23701-23711.	3.4	21
38	Triglyceride and HDL. Current Opinion in Lipidology, 2014, 25, 404-405.	2.7	0
39	Caspase-3 and RasGAP: a stress-sensing survival/demise switch. Trends in Cell Biology, 2014, 24, 83-89.	7.9	35
40	GAP-independent functions of DLC1 in metastasis. Cancer and Metastasis Reviews, 2014, 33, 87-100.	5.9	32
41	TAT-RasGAP317–326-mediated tumor cell death sensitization can occur independently of Bax and Bak. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 719-733.	4.9	10
42	Fragment N2, a caspase-3-generated RasGAP fragment, inhibits breast cancer metastatic progression. International Journal of Cancer, 2014, 135, 242-247.	5.1	16
43	The activity of the anti-apoptotic fragment generated by the caspase-3/p120 RasGAP stress-sensing module displays strict Akt isoform specificity. Cellular Signalling, 2014, 26, 2992-2997.	3.6	4
44	High-density lipoprotein, beta cells, and diabetes. Cardiovascular Research, 2014, 103, 384-394.	3.8	93
45	HDLs protect the MIN6 insulinoma cell line against tunicamycin-induced apoptosis without inhibiting ER stress and without restoring ER functionality. Molecular and Cellular Endocrinology, 2013, 381, 291-301.	3.2	17
46	Genetics and molecular biology. Current Opinion in Lipidology, 2013, 24, 103-104.	2.7	0
47	The control of lipid-induced inflammation by macrophages. Current Opinion in Lipidology, 2013, 24, 528-529.	2.7	O
48	Role of mTOR, Bad, and Survivin in RasGAP Fragment N-Mediated Cell Protection. PLoS ONE, 2013, 8, e68123.	2.5	5
49	HDLs Protect Pancreatic \hat{l}^2 -Cells Against ER Stress by Restoring Protein Folding and Trafficking. Diabetes, 2012, 61, 1100-1111.	0.6	63
50	Genetics and molecular biology. Current Opinion in Lipidology, 2012, 23, 165-166.	2.7	8
51	The role of endogenous and exogenous RasGAP-derived fragment N in protecting cardiomyocytes from peroxynitrite-induced apoptosis. Free Radical Biology and Medicine, 2012, 53, 926-935.	2.9	5
52	Caspase-3 Protects Stressed Organs against Cell Death. Molecular and Cellular Biology, 2012, 32, 4523-4533.	2.3	63
53	UV-B induces cytoplasmic survivin expression in mouse epidermis. Journal of Dermatological Science, 2012, 67, 196-199.	1.9	3
54	RasGAP-Derived Fragment N Increases the Resistance of Beta Cells towards Apoptosis in NOD Mice and Delays the Progression from Mild to Overt Diabetes. PLoS ONE, 2011, 6, e22609.	2.5	14

#	Article	IF	Citations
55	Genetics and molecular biology. Current Opinion in Lipidology, 2011, 22, 315-316.	2.7	1
56	Promises of Apoptosis-Inducing Peptides in Cancer Therapeutics. Current Pharmaceutical Biotechnology, 2011, 12, 1153-1165.	1.6	48
57	Revisiting G3BP1 as a RasGAP Binding Protein: Sensitization of Tumor Cells to Chemotherapy by the RasGAP 317–326 Sequence Does Not Involve G3BP1. PLoS ONE, 2011, 6, e29024.	2.5	46
58	The HDL: adipocyte connection. Current Opinion in Lipidology, 2010, 21, 388-389.	2.7	1
59	Glucose metabolism in cancer cells. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 466-470.	2.5	164
60	MAP/ERK Kinase Kinase 1 (MEKK1) Mediates Transcriptional Repression by Interacting with Polycystic Kidney Disease-1 (PKD1) Promoter-bound p53 Tumor Suppressor Protein*. Journal of Biological Chemistry, 2010, 285, 38818-38831.	3.4	20
61	Expression of the NH2-Terminal Fragment of RasGAP in Pancreatic Â-Cells Increases Their Resistance to Stresses and Protects Mice From Diabetes. Diabetes, 2009, 58, 2596-2606.	0.6	7
62	Involvement of 4E-BP1 in the Protection Induced by HDLs on Pancreatic \hat{l}^2 -Cells. Molecular Endocrinology, 2009, 23, 1572-1586.	3.7	18
63	LDLs stimulate p38 MAPKs and wound healing through SR-BI independently of Ras and PI3 kinase. Journal of Lipid Research, 2009, 50, 81-89.	4.2	15
64	Effect of RasGAP N2 Fragment–Derived Peptide on Tumor Growth in Mice. Journal of the National Cancer Institute, 2009, 101, 828-832.	6.3	34
65	Glucagon-Like Peptide-1 Protects \hat{i}^2 -Cells Against Apoptosis by Increasing the Activity of an Igf-2/Igf-1 Receptor Autocrine Loop. Diabetes, 2009, 58, 1816-1825.	0.6	118
66	Role of the sub-cellular localization of RasGAP fragment N2 for its ability to sensitize cancer cells to genotoxin-induced apoptosis. Experimental Cell Research, 2009, 315, 2081-2091.	2.6	5
67	Caspase substrates and neurodegenerative diseases. Brain Research Bulletin, 2009, 80, 251-267.	3.0	35
68	Role of the transcriptional factor C/EBP \hat{l}^2 in free fatty acid-elicited \hat{l}^2 -cell failure. Molecular and Cellular Endocrinology, 2009, 305, 47-55.	3.2	23
69	ABC transporters: HDL-regulated gatekeepers at the endothelial border. Current Opinion in Lipidology, 2009, 20, 526-527.	2.7	1
70	Genetics and molecular biology: so, so complex HDLs!. Current Opinion in Lipidology, 2009, 20, 254-255.	2.7	0
71	Exendin-4 Protects β-Cells From Interleukin-1β–Induced Apoptosis by Interfering With the c-Jun NH2-Terminal Kinase Pathway. Diabetes, 2008, 57, 1205-1215.	0.6	134
72	Alterations in MicroRNA Expression Contribute to Fatty Acid–Induced Pancreatic β-Cell Dysfunction. Diabetes, 2008, 57, 2728-2736.	0.6	331

#	Article	IF	CITATIONS
73	Lipid metabolism: sphingolipids- from membrane constituents to signaling molecules that control cell-to-cell communications. Current Opinion in Lipidology, 2008, 19, 620-621.	2.7	4
74	Genetics and molecular biology: HDLs and their multiple ways to protect cells. Current Opinion in Lipidology, 2008, 19, 95-97.	2.7	5
75	Generation of a tightly regulated all-cis \hat{l}^2 cell-specific tetracycline-inducible vector. BioTechniques, 2008, 45, 411-420.	1.8	4
76	TAT-RasGAP317-326 Requires p53 and PUMA to Sensitize Tumor Cells to Genotoxins. Molecular Cancer Research, 2007, 5, 497-507.	3.4	27
77	High resolution crystal structures of the p120 RasGAP SH3 domain. Biochemical and Biophysical Research Communications, 2007, 353, 463-468.	2.1	13
78	Caspases., 2007,, 1-3.		0
79	DNA-damage sensitizers: Potential new therapeutical tools to improve chemotherapy. Critical Reviews in Oncology/Hematology, 2007, 63, 160-171.	4.4	20
80	Effect of the TAT-RasGAP317–326 peptide on apoptosis of human malignant mesothelioma cells and fibroblasts exposed to meso-tetra-hydroxyphenyl-chlorin and light. Journal of Photochemistry and Photobiology B: Biology, 2007, 88, 29-35.	3.8	23
81	Splice variant-specific stabilization of JNKs by IB1/JIP1. Cellular Signalling, 2007, 19, 2201-2207.	3.6	11
82	Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia, 2007, 50, 1304-1314.	6.3	130
83	Caspase 3., 2007, , 1-9.		0
84	Lipoproteins and mitogen-activated protein kinase signaling: a role in atherogenesis?. Current Opinion in Lipidology, 2006, 17, 110-121.	2.7	7
85	Interleukin-8 Secretion by Fibroblasts Induced by Low Density Lipoproteins Is p38 MAPK-dependent and Leads to Cell Spreading and Wound Closure*. Journal of Biological Chemistry, 2006, 281, 199-205.	3.4	39
86	Expression of an Uncleavable N-terminal RasGAP Fragment in Insulin-secreting Cells Increases Their Resistance toward Apoptotic Stimuli without Affecting Their Glucose-induced Insulin Secretion. Journal of Biological Chemistry, 2005, 280, 32835-32842.	3.4	19
87	Impaired Akt Activity Down-Modulation, Caspase-3 Activation, and Apoptosis in Cells Expressing a Caspase-resistant Mutant of RasGAP at Position 157. Molecular Biology of the Cell, 2005, 16, 3511-3520.	2.1	37
88	Cholesterol is the major component of native lipoproteins activating the p38 mitogen-activated protein kinases. Biological Chemistry, 2005, 386, 909-918.	2.5	13
89	Islet-Brain (IB)/JNK-Interacting Proteins (JIPs): Future Targets for the Treatment of Neurodegenerative Diseases?. Current Neurovascular Research, 2004, 1, 111-127.	1.1	14
90	RasGTPase-activating protein is a target of caspases in spontaneous apoptosis of lung carcinoma cells and in response to etoposide. Carcinogenesis, 2004, 25, 909-921.	2.8	9

#	Article	IF	Citations
91	Partial Cleavage of RasGAP by Caspases Is Required for Cell Survival in Mild Stress Conditions. Molecular and Cellular Biology, 2004, 24, 10425-10436.	2.3	80
92	A RasGAP-derived cell permeable peptide potently enhances genotoxin-induced cytotoxicity in tumor cells. Oncogene, 2004, 23, 8971-8978.	5.9	53
93	Surviving the kiss of death. Biochemical Pharmacology, 2004, 68, 1027-1031.	4.4	44
94	LDLs induce fibroblast spreading independently of the LDL receptor via activation of the p38 MAPK pathway. Journal of Lipid Research, 2003, 44, 2382-2390.	4.2	8
95	Apoptosis Stimulated by the 91-kDa Caspase Cleavage MEKK1 Fragment Requires Translocation to Soluble Cellular Compartments. Journal of Biological Chemistry, 2002, 277, 10283-10291.	3.4	39
96	The RasGAP N-terminal Fragment Generated by Caspase Cleavage Protects Cells in a Ras/PI3K/Akt-dependent Manner That Does Not Rely on NFκB Activation. Journal of Biological Chemistry, 2002, 277, 14641-14646.	3.4	51
97	Role of the amino-terminal domains of MEKKs in the activation of NFήB and MAPK pathways and in the regulation of cell proliferation and apoptosis. Cellular Signalling, 2002, 14, 123-131.	3.6	59
98	A subset of caspase substrates functions as the Jekyll and Hyde of apoptosis. European Cytokine Network, 2002, 13, 404-6.	2.0	10
99	In vitro activity of MEKK2 and MEKK3 in detergents is a function of a valine to serine difference in the catalytic domain. BBA - Proteins and Proteomics, 2001, 1547, 167-173.	2.1	3
100	Antiapoptotic Signaling Generated by Caspase-Induced Cleavage of RasGAP. Molecular and Cellular Biology, 2001, 21, 5346-5358.	2.3	108
101	Reovirus Infection Activates JNK and the JNK-Dependent Transcription Factor c-Jun. Journal of Virology, 2001, 75, 11275-11283.	3.4	65
102	Spatial, temporal and subcellular localization of islet-brain 1 (IB1), a homologue of JIP-1, in mouse brain. European Journal of Neuroscience, 2000, 12, 621-632.	2.6	55
103	The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes. Nature Genetics, 2000, 24, 291-295.	21.4	182
104	MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7272-7277.	7.1	229
105	Reovirus-Induced Apoptosis Is Mediated by TRAIL. Journal of Virology, 2000, 74, 8135-8139.	3.4	186
106	Mitogen-Activated Protein Kinase: Conservation of a Three-Kinase Module From Yeast to Human. Physiological Reviews, 1999, 79, 143-180.	28.8	2,492
107	Differential Involvement of MEK Kinase 1 (MEKK1) in the Induction of Apoptosis in Response to Microtubule-targeted Drugsversus DNA Damaging Agents. Journal of Biological Chemistry, 1999, 274, 10916-10922.	3.4	62
108	Anti-apoptotic versus pro-apoptotic signal transduction: Checkpoints and stop signs along the road to death. Oncogene, 1998, 17, 1475-1482.	5.9	153

#	Article	IF	Citations
109	Caspase-dependent Cleavage of Signaling Proteins during Apoptosis. Journal of Biological Chemistry, 1998, 273, 7141-7147.	3.4	374
110	14-3-3 Proteins Interact with Specific MEK Kinases. Journal of Biological Chemistry, 1998, 273, 3476-3483.	3.4	137
111	MEK Kinase 1, a Substrate for DEVD-Directed Caspases, Is Involved in Genotoxin-Induced Apoptosis. Molecular and Cellular Biology, 1998, 18, 2416-2429.	2.3	227
112	Internalization and Homologous Desensitization of the GLP-1 Receptor Depend on Phosphorylation of the Receptor Carboxyl Tail at the Same Three Sites. Molecular Endocrinology, 1997, 11, 1094-1102.	3.7	66
113	MEKKs, GCKs, MLKs, PAKs, TAKs, and Tpls: upstream regulators of the c-Jun amino-terminal kinases?. Current Opinion in Genetics and Development, 1997, 7, 67-74.	3.3	303
114	The Regulation of Anoikis: MEKK-1 Activation Requires Cleavage by Caspases. Cell, 1997, 90, 315-323.	28.9	495
115	Potentiation of apoptosis by low dose stress stimuli in cells expressing activated MEK kinase 1. Oncogene, 1997, 15, 2439-2447.	5.9	70
116	Internalization and Homologous Desensitization of the GLP-1 Receptor Depend on Phosphorylation of the Receptor Carboxyl Tail at the Same Three Sites. Molecular Endocrinology, 1997, 11, 1094-1102.	3.7	26
117	Signal transduction and desensitization of the glucagon-like peptide-1 receptor. Acta Physiologica Scandinavica, 1996, 157, 317-319.	2.2	12
118	The functional halfâ€life of Hâ€2K ^d â€restricted T cell epitopes on living cells. European Journal of Immunology, 1996, 26, 1993-1999.	2.9	21
119	Heterologous Desensitization of the Glucagon-like Peptide-1 Receptor by Phorbol Esters Requires Phosphorylation of the Cytoplasmic Tail at Four Different Sites. Journal of Biological Chemistry, 1996, 271, 19957-19963.	3.4	37
120	Desensitization and phosphorylation of the glucagon-like peptide-1 (GLP-1) receptor by GLP-1 and 4-phorbol 12-myristate 13-acetate. Molecular Endocrinology, 1996, 10, 62-75.	3.7	46
121	H-2-restricted cytolytic T lymphocytes specific for HLA display T cell receptors of limited diversity Journal of Experimental Medicine, 1992, 176, 439-447.	8.5	102
122	T helper epitopes enhance the cytotoxic response of mice immunized with MHC class I-restricted malaria peptides. Journal of Immunological Methods, 1992, 155, 95-99.	1.4	91
123	T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen-specific repertoire Journal of Experimental Medicine, 1991, 174, 1371-1383.	8.5	297