Jose Luis G Fierro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5688554/publications.pdf

Version: 2024-02-01

996 papers

51,319 citations

104 h-index ⁴⁹⁷⁸
167
g-index

1024 all docs

1024 docs citations

1024 times ranked 35565 citing authors

#	Article	IF	CITATIONS
1	Advances in membranes and membrane reactors for the Fischer-Tropsch synthesis process for biofuel production. Reviews in Chemical Engineering, 2022, 38, 55-76.	2.3	15
2	Formation and Photoinduced Electron Transfer in Porphyrin―and Phthalocyanineâ€Bearing Nâ€Doped Graphene Hybrids Synthesized by Click Chemistry. Chemistry - A European Journal, 2022, , .	1.7	3
3	Cover Feature: Formation and Photoinduced Electron Transfer in Porphyrin―and Phthalocyanineâ€Bearing Nâ€Doped Graphene Hybrids Synthesized by Click Chemistry (Chem. Eur. J.) Tj ETQq1	1 0 17 8431	4 ngBT/Overk
4	Effect of sulfidation pressure on the structure and activity of Ni(CyDTA)W/ \hat{I}^3 -Al2O3 hydrodesulfurization catalysts. Catalysis Today, 2021, 377, 92-99.	2.2	9
5	Influence of bimetallic characteristics on the performance of MoCoP and MoFeP catalysts for methyl laurate hydrodeoxygenation. Catalysis Today, 2021, 367, 43-50.	2.2	11
6	Direct Synthesis of Dimethyl Ether from CO2: Recent Advances in Bifunctional/Hybrid Catalytic Systems. Catalysts, 2021, 11, 411.	1.6	45
7	Conversion of levulinic acid over rhenium oxide catalysts: Effect of metal content. Applied Catalysis A: General, 2021, 625, 118328.	2.2	5
8	Synergistic Effect in Vapor Phase Hydrodeoxygenation on USY Zeolite Supported Ir–Pt Catalyst: Role of Pentacoordinated Al ³⁺ Ions. Industrial & Engineering Chemistry Research, 2021, 60, 18707-18721.	1.8	5
9	Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356, 330-338.	2.2	9
10	Titanium carbonitride–graphene composites assembled with organic linkers as electrocatalytic supports for methanol oxidation reaction. Catalysis Today, 2020, 356, 101-109.	2.2	4
11	Factors influencing selectivity in the liquid-phase phenol hydrodeoxygenation over ZSM-5 supported Pt/Ir and Pt+Ir catalysts. Molecular Catalysis, 2020, 482, 110669.	1.0	5
12	Characterization of none and yttrium-modified Ni-based catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 2020, 278, 119335.	10.8	52
13	Promotional effect of palladium in Co-SiO2 core@shell nanocatalysts for selective liquid phase hydrogenation of chloronitroarenes. Journal of Catalysis, 2020, 385, 224-237.	3.1	29
14	Triplet photosensitizer-nanotube conjugates: synthesis, characterization and photochemistry of charge stabilizing, palladium porphyrin/carbon nanotube conjugates. Nanoscale, 2020, 12, 9890-9898.	2.8	10
15	Direct synthesis of hydrogen peroxide without the use of acids or halide promoters in dissolution. Catalysis Science and Technology, 2020, 10, 2333-2336.	2.1	9
16	Trimetallic RuxMoNi Catalysts Supported on SBA-15 for the Hydrodesulfurization of Dibenzothiophene. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	1
17	Cycloaddition of Nitrile Oxides to Graphene: a Theoretical and Experimental Approach. Chemistry - A European Journal, 2019, 25, 14644-14650.	1.7	9
18	Modulating charge carrier density and mobility in doped graphene by covalent functionalization. Chemical Communications, 2019, 55, 9999-10002.	2.2	7

#	Article	IF	CITATIONS
19	Bidirectional charge-transfer behavior in carbon-based hybrid nanomaterials. Nanoscale, 2019, 11, 14978-14992.	2.8	20
20	The promoter effect of Co on the catalytic activity of the Cu oxide active phase supported on Al ₂ O ₃ in the hydrogenolysis of glycerol. New Journal of Chemistry, 2019, 43, 15636-15645.	1.4	5
21	Occurrence of excited state charge separation in a N-doped graphene–perylenediimide hybrid formed <i>via</i> â€~click' chemistry. Nanoscale Advances, 2019, 1, 4009-4015.	2.2	4
22	Effect of Re content and support in the liquid phase conversion of furfural to furfuryl alcohol and 2-methyl furan over ReOx catalysts. Fuel, 2019, 242, 532-544.	3.4	32
23	CdS Photocatalysts Modified with Ag: Effect of the Solvothermal Temperature on the Structure and Photoactivity for Hydrogen Production. Catalysts, 2019, 9, 110.	1.6	14
24	Lanthanum oxide behavior in La2O3-Al2O3 and La2O3-ZrO2 catalysts with application in FAME production. Fuel, 2019, 253, 400-408.	3.4	34
25	Enhanced bimetallic Rh-Ni supported catalysts on alumina doped with mixed lanthanum-cerium oxides for ethanol steam reforming. Molecular Catalysis, 2019, 469, 87-97.	1.0	35
26	Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. Nature Communications, 2019, 10, 2041.	5.8	227
27	Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2) for the discoloration of methylene blue in water. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 136-141.	2.0	44
28	Synergetic effect in RuxMo(1-x)S2/SBA-15 hydrodesulfurization catalysts: Comparative experimental and DFT studies. Applied Catalysis B: Environmental, 2019, 251, 143-153.	10.8	9
29	Partial Oxidation of Methane to Syngas Over Nickel-Based Catalysts: Influence of Support Type, Addition of Rhodium, and Preparation Method. Frontiers in Chemistry, 2019, 7, 104.	1.8	59
30	Post-synthesis Treatment of TS-1 with TPAOH: Effect of Hydrophobicity on the Liquid-Phase Oxidation of Furfural to Maleic Acid. Topics in Catalysis, 2019, 62, 560-569.	1.3	12
31	Deep eutectic solvents as active media for the preparation of highly conducting 3D free-standing PANI xerogels and their derived N-doped and N-, P-codoped porous carbons. Carbon, 2019, 146, 813-826.	5.4	11
32	Selective hydrodeoxygenation of biomass derived 5-hydroxymethylfurfural over silica supported iridium catalysts. Applied Catalysis B: Environmental, 2019, 241, 270-283.	10.8	64
33	Influence of calcination on metallic dispersion and support interactions for NiRu/TiO2 catalyst in the hydrodeoxygenation of phenol. Catalysis Today, 2019, 329, 149-155.	2.2	23
34	Catalytic gasification of pine-sawdust: Effect of primary and secondary catalysts. Journal of the Energy Institute, 2019, 92, 1727-1735.	2.7	9
35	Hydrogen-bond supramolecular hydrogels as efficient precursors in the preparation of freestanding 3D carbonaceous architectures containing BCNO nanocrystals and exhibiting a high CO2/CH4 adsorption ratio. Carbon, 2018, 134, 470-479.	5.4	13
36	Steam reforming of tar model compounds over Ni/Mayenite catalysts: effect of Ce addition. Fuel, 2018, 224, 676-686.	3.4	72

#	Article	IF	CITATIONS
37	Edge-on and face-on functionalized Pc on enriched semiconducting SWCNT hybrids. Nanoscale, 2018, 10, 5205-5213.	2.8	18
38	Hydrogen production by methane decomposition: A comparative study of supported and bulk ex-hydrotalcite mixed oxide catalysts with Ni, Mg and Al. International Journal of Hydrogen Energy, 2018, 43, 9607-9621.	3.8	35
39	Hydrogen storage in liquid hydrocarbons: Effect of platinum addition to partially reduced Mo-SiO2 catalysts. Materials Chemistry and Physics, 2018, 209, 188-199.	2.0	14
40	Stable reduced Ni catalysts for xylose hydrogenation in aqueous medium. Catalysis Today, 2018, 310, 59-67.	2.2	17
41	Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production. Applied Catalysis B: Environmental, 2018, 225, 340-353.	10.8	96
42	Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process. Chemical Engineering Journal, 2018, 335, 703-711.	6.6	56
43	Characterizations and HDS performances of sulfided NiMoW catalysts supported on mesoporous titania-modified SBA-15. Catalysis Today, 2018, 305, 152-161.	2.2	19
44	Effect of partial Mo substitution by W on HDS activity using sulfide CoMoW/Al2O3–TiO2 catalysts. Fuel, 2018, 233, 644-657.	3.4	28
45	Structure and photoactivity for hydrogen production of CdS nanorods modified with In, Ga, Ag-In and Ag-Ga and prepared by solvothermal method. Materials Today Energy, 2018, 9, 345-358.	2.5	11
46	Regioselectivity of the Pauson–Khand reaction in single-walled carbon nanotubes. Nanoscale, 2018, 10, 15078-15089.	2.8	11
47	Microwave-Assisted Coprecipitation Synthesis of LaCoO3 Nanoparticles and Their Catalytic Activity for Syngas Production by Partial Oxidation of Methane. Frontiers in Energy Research, 2018, 6, .	1.2	8
48	Hydrodeoxygenation of phenol on bifunctional Ni-based catalysts: Effects of Mo promotion and support. Applied Catalysis B: Environmental, 2018, 238, 147-160.	10.8	83
49	Improving the production of maleic acid from biomass: TS-1 catalysed aqueous phase oxidation of furfural in the presence of \hat{I}^3 -valerolactone. Green Chemistry, 2018, 20, 2845-2856.	4.6	58
50	N-Doped graphene/C60 covalent hybrid as a new material for energy harvesting applications. Chemical Science, 2018, 9, 8221-8227.	3.7	12
51	Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 2. Catalytic hydrodeoxygenation reactions of lignin model compounds in organic and aqueous systems. Applied Catalysis A: General, 2018, 562, 294-309.	2.2	43
52	Effect of phosphorus on the activity of Cu/SiO 2 catalysts in the hydrogenolysis of glycerol. Catalysis Today, 2017, 279, 217-223.	2.2	17
53	Catalytic hydrodeoxygenation of anisole over Re-MoO x $/$ TiO 2 and Re-VO x $/$ TiO 2 catalysts. Applied Catalysis B: Environmental, 2017, 208, 60-74.	10.8	73
54	High- <i>k</i> gadolinium scandate on Si obtained by high pressure sputtering from metal targets and <i>in-situ</i> plasma oxidation. Semiconductor Science and Technology, 2017, 32, 035016.	1.0	5

#	Article	IF	CITATIONS
55	Support effect and metals interactions for NiRu/Al 2 O 3, TiO 2 and ZrO 2 catalysts in the hydrodeoxygenation of phenol. Catalysis Today, 2017, 296, 219-227.	2.2	61
56	Effect of the Acidity of the Groups of Functionalized Silicas on the Direct Synthesis of H2O2. Topics in Catalysis, 2017, 60, 1151-1155.	1.3	11
57	Deactivation of CuZn Catalysts Used in Glycerol Hydrogenolysis to Obtain 1,2-Propanediol. Topics in Catalysis, 2017, 60, 1062-1071.	1.3	23
58	Enhancing xylose aqueous-phase hydrogenation catalytic performance of A-site Ce substituted and B-site Rh doped reduced perovskites. Molecular Catalysis, 2017, 436, 182-189.	1.0	13
59	Charge stabilizing tris(triphenylamine)-zinc porphyrin–carbon nanotube hybrids: synthesis, characterization and excited state charge transfer studies. Nanoscale, 2017, 9, 7551-7558.	2.8	35
60	Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 1. Effect of nickel loading and preparation conditions on catalyst properties. Applied Catalysis A: General, 2017, 540, 7-20.	2.2	32
61	Influence of the Reduction of Graphene Oxide with Hydroiodic Acid on the Structure and Photoactivity of CdS–rGO Hybrids. Topics in Catalysis, 2017, 60, 1183-1195.	1.3	10
62	Gas phase oxidation of furfural to maleic anhydride on V 2 O 5 \hat{I}^3 -Al 2 O 3 catalysts: Reaction conditions to slow down the deactivation. Journal of Catalysis, 2017, 348, 265-275.	3.1	48
63	Influence of the reduction of graphene oxide (rGO) on the structure and photoactivity of CdS-rGO hybrid systems. International Journal of Hydrogen Energy, 2017, 42, 13691-13703.	3.8	24
64	New insights in the adsorption of Bovine Serum Albumin onto carbon nanoparticles derived from organic resin: Experimental and theoretical studies. Microporous and Mesoporous Materials, 2017, 241, 418-428.	2.2	24
65	The effect of cellulose loading on the photoactivity of cellulose-TiO2 hybrids for hydrogen production under simulated sunlight. International Journal of Hydrogen Energy, 2017, 42, 28747-28754.	3.8	23
66	HDO activity of carbon-supported Rh, Ni and Mo-Ni catalysts. Molecular Catalysis, 2017, 441, 209-220.	1.0	50
67	Conversion of guaiacol over different Re active phases supported on CeO2-Al2O3. Applied Catalysis A: General, 2017, 547, 256-264.	2.2	17
68	Sulfated Ce x Zr $1\hat{a}^{"}$ x O 2 oxides. Surface properties and performance for methane oxidation under fuel-rich conditions. Materials Chemistry and Physics, 2017, 200, 223-232.	2.0	2
69	Optimization of nickel loading of mixed oxide catalyst ex -hydrotalcite for H 2 production by methane decomposition. Applied Catalysis A: General, 2017, 548, 71-82.	2.2	34
70	Nickel ferrite supported on calcium-stabilized zirconia for solar hydrogen production by two-step thermochemical water splitting. Materials Today Energy, 2017, 6, 248-254.	2.5	10
71	Structure and Reactivity of sol–gel V/SiO2 Catalysts for the Direct Conversion of Methane to Formaldehyde. Topics in Catalysis, 2017, 60, 1129-1139.	1.3	11
72	Structural effects of LaNiO3 as electrocatalyst for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2017, 203, 363-371.	10.8	69

#	Article	IF	CITATIONS
73	Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method. Applied Catalysis B: Environmental, 2017, 203, 753-767.	10.8	146
74	Characterization and HDS activity of sulfided Co Mo W/SBA-16 catalysts: Effects of P addition and Mo/(Mo + W) ratio. Fuel, 2017, 198, 145-158.	3.4	32
75	Oxidation of furfural in aqueous H2O2 catalysed by titanium silicalite: Deactivation processes and role of extraframework Ti oxides. Applied Catalysis B: Environmental, 2017, 202, 269-280.	10.8	85
76	From Nanorods to Nanowires of CdS Synthesized by a Solvothermal Method: Influence of the Morphology on the Photoactivity for Hydrogen Evolution from Water. Molecules, 2016, 21, 401.	1.7	19
77	Self-Assembly of $1D/2D$ Hybrid Nanostructures Consisting of a Cd(II) Coordination Polymer and NiAl-Layered Double Hydroxides. Polymers, 2016, 8, 5.	2.0	13
78	Straightforward Highâ€Pressure Synthesis and Characterization of Indiumâ€Based Thiospinels: Photocatalytic Potential for Hydrogen Production. European Journal of Inorganic Chemistry, 2016, 2016, 1558-1565.	1.0	14
79	Perovskite as nickel catalyst precursor – impact on catalyst stability on xylose aqueous-phase hydrogenation. RSC Advances, 2016, 6, 67817-67826.	1.7	22
80	On the effect of Ce incorporation on pillared clay-supported Pt and Ir catalysts for aqueous-phase hydrodechlorination. Applied Catalysis B: Environmental, 2016, 197, 236-243.	10.8	17
81	Performance of carbon-supported palladium and palladium ruthenium catalysts for alkaline membrane direct ethanol fuel cells. International Journal of Hydrogen Energy, 2016, 41, 8954-8962.	3.8	42
82	Identifying the time-dependent predominance regimes of step and terrace sites for the Fischer–Tropsch synthesis on ruthenium based catalysts. Catalysis Science and Technology, 2016, 6, 6495-6503.	2.1	10
83	Dehydrogenation of methylcyclohexane to toluene over partially reduced silica-supported Pt-Mo catalysts. Journal of Molecular Catalysis A, 2016, 420, 96-106.	4.8	64
84	Tailoring the textural properties of hierarchical porous carbons using deep eutectic solvents. Journal of Materials Chemistry A, 2016, 4, 9146-9159.	5.2	39
85	Modulation of the exfoliated graphene work function through cycloaddition of nitrile imines. Physical Chemistry Chemical Physics, 2016, 18, 29582-29590.	1.3	16
86	K2O supported on sol-gel CeO2-Al2O3 and La2O3-Al2O3 catalysts for the transesterification reaction of canola oil. Journal of Molecular Catalysis A, 2016, 423, 503-510.	4.8	17
87	Phenol hydrodeoxygenation: effect of support and Re promoter on the reactivity of Co catalysts. Catalysis Science and Technology, 2016, 6, 7289-7306.	2.1	56
88	Effect of Cu addition as a promoter on Re/SiO2 catalysts in the hydrodeoxygenation of 2-methoxyphenol as a model bio oil compound. Fuel, 2016, 186, 112-121.	3.4	36
89	Direct synthesis of hydrogen peroxide with no ionic halides in solution. RSC Advances, 2016, 6, 99291-99296.	1.7	13
90	Effect of Re addition on the WGS activity and stability of Pt/CeO2â€"TiO2 catalyst for membrane reactor applications. Catalysis Today, 2016, 268, 95-102.	2.2	25

#	Article	IF	Citations
91	Ultrafast electron transfer in all-carbon-based SWCNT–C ₆₀ donor–acceptor nanoensembles connected by poly(phenylene–ethynylene) spacers. Nanoscale, 2016, 8, 14716-14724.	2.8	18
92	Hydrogen production by autothermal reforming of methane over lanthanum chromites modified with Ru and Sr. International Journal of Hydrogen Energy, 2016, 41, 19373-19381.	3.8	25
93	Effect of A-site deficiency in LaMn0.9Co0.1O3 perovskites on their catalytic performance for soot combustion. Materials Research Bulletin, 2016, 81, 134-141.	2.7	28
94	Evolution of the nanostructure of CdS using solvothermal synthesis at different temperature and its influence on the photoactivity for hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 11558-11567.	3.8	36
95	Synthesis of palladium nanoparticles on carbon nanotubes and graphene for the chemoselective hydrogenation of para-chloronitrobenzene. Catalysis Communications, 2016, 75, 55-59.	1.6	22
96	Selective conversion of sorbitol to glycols and stability of nickel–ruthenium supported on calcium hydroxide catalysts. Applied Catalysis B: Environmental, 2016, 185, 141-149.	10.8	32
97	The effect of Cu loading on Ni/carbon nanotubes catalysts for hydrodeoxygenation of guaiacol. RSC Advances, 2016, 6, 26658-26667.	1.7	50
98	Electronic properties and catalytic performance for DME combustion of lanthanum manganites with partial B-site substitution. Journal of Catalysis, 2016, 338, 47-55.	3.1	19
99	Catalytic membrane reactor for the production of biofuels. Catalysis Today, 2016, 268, 37-45.	2.2	16
100	Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene. Applied Catalysis A: General, 2016, 513, 89-97.	2.2	24
101	Effect of Ni Loading on Lanthanide (La and Ce) Promoted \hat{I}^3 -Al2O3 Catalysts Applied to Ethanol Steam Reforming. Catalysis Letters, 2016, 146, 433-441.	1.4	19
102	Hydrodeoxygenation of guaiacol over Ni/carbon catalysts: effect of the support and Ni loading. RSC Advances, 2016, 6, 2611-2623.	1.7	94
103	Synthesis, characterization and photoinduced charge separation of carbon nanohorn–oligothienylenevinylene hybrids. Physical Chemistry Chemical Physics, 2016, 18, 1828-1837.	1.3	8
104	Preparation of un-promoted molybdenum HDS catalysts supported on titania by equilibrium deposition filtration: Optimization of the preparative parameters and investigation of the promoting action of titania. Journal of Molecular Catalysis A, 2016, 412, 1-12.	4.8	20
105	Effect of Mg/Al Ratio on Catalytic Behavior of Fischer–Tropsch Cobalt-Based Catalysts Obtained from Hydrotalcites Precursors. Topics in Catalysis, 2016, 59, 230-240.	1.3	5
106	Deep Hydrodesulfurization of Dibenzothiophenes Over NiW Sulfide Catalysts Supported on Sol–Gel Titania–Alumina. Topics in Catalysis, 2016, 59, 241-251.	1.3	18
107	Enhanced methylcyclohexane dehydrogenation to toluene over Ir/USY catalyst. Catalysis Today, 2016, 259, 119-129.	2.2	45
108	Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction. Catalysis Today, 2016, 259, 27-38.	2.2	115

#	Article	IF	Citations
109	Competitive HDS and HDN reactions over NiMoS/HMS-Al catalysts: Diminishing of the inhibition of HDS reaction by support modification with P. Applied Catalysis B: Environmental, 2016, 180, 569-579.	10.8	69
110	Thio-oxynitride phosphate glass electrolytes prepared by mechanical milling. Journal of Materials Research, 2015, 30, 2940-2948.	1.2	8
111	In situ electrochemical study of the interaction of cells with thermally treated titanium. Biointerphases, 2015, 10, 021006.	0.6	2
112	Introduction to hydrogen production. , 2015, , 21-61.		9
113	In-situ study of the promotional effect of chlorine on the Fischer–Tropsch synthesis with Ru/Al 2 O 3. Journal of Catalysis, 2015, 332, 177-186.	3.1	23
114	Cu-Promoted Fe ₂ O ₃ /MgO-Based Fischerâ€"Tropsch Catalysts of Biomass-Derived Syngas. Industrial & Derived Synga	1.8	33
115	Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: Treatment performance and characterization of final composites. Chemical Engineering Journal, 2015, 269, 298-305.	6.6	113
116	Effect of Ir and Pt Addition on the HDO Performance of RuS2/SBA-15 Sulfide Catalysts. Topics in Catalysis, 2015, 58, 247-257.	1.3	10
117	Dehydrogenation of methylcyclohexane to toluene over partially reduced Mo–SiO2 catalysts. Applied Catalysis A: General, 2015, 502, 329-339.	2.2	53
118	Ortho-xylene hydroisomerization under pressure on HMS-Ti mesoporous silica decorated with Ga2O3 nanoparticles. Fuel, 2015, 158, 405-415.	3.4	14
119	Rh/Al 2 O 3 –La 2 O 3 catalysts promoted with CeO 2 for ethanol steam reforming reaction. Journal of Molecular Catalysis A, 2015, 407, 169-181.	4.8	45
120	Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: Application to the determination of adiponectin cytokine in serum. Biosensors and Bioelectronics, 2015, 74, 24-29.	5.3	47
121	Ruthenium Effect on Formation Mechanism and Structural Characteristics of LaCo _{1â€"<i>x</i>} Ru _{<i>x</i>} O ₃ Perovskites and Its Influence on Catalytic Performance for Hydrocarbon Oxidative Reforming. Journal of Physical Chemistry C, 2015, 119. 16708-16723.	1.5	6
122	Effect of high-temperature pre-reduction in Fischer–Tropsch synthesis on Fe/ZrO 2 catalysts. Applied Catalysis A: General, 2015, 499, 109-117.	2.2	31
123	Syngas Conversion to Hydrocarbons on Zirconia-Supported Iron Catalysts. Catalysis Letters, 2015, 145, 1126-1137.	1.4	6
124	Catalytic Epoxidation of Cyclohexene with Tert-butylhydroperoxide Using an Immobilized Molybdenum Catalyst. Topics in Catalysis, 2015, 58, 325-333.	1.3	14
125	A new non-cinchona chiral modifier immobilized on Pt/SiO 2 catalysts for enantioselective heterogeneous hydrogenation. Applied Catalysis A: General, 2015, 498, 76-87.	2.2	7
126	Influence of Ni environment on the reactivity of Ni–Mg–Al catalysts for the acetone steam reforming reaction. International Journal of Hydrogen Energy, 2015, 40, 5289-5296.	3.8	29

#	Article	IF	CITATIONS
127	Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides. Journal of Materials Chemistry C, 2015, 3, 4960-4969.	2.7	16
128	A simple approach to synthesize g-C3N4 with high visible light photoactivity for hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 7273-7281.	3.8	53
129	Low-temperature water-gas shift on Pt/Ce0.8La0.2O2â^ΖCNT: The effect of Ce0.8La0.2O2â^Î/CNT ratio. Applied Catalysis A: General, 2015, 504, 585-598.	2.2	15
130	Covalent functionalization of N-doped graphene by N-alkylation. Chemical Communications, 2015, 51, 16916-16919.	2.2	24
131	Nano-laminate vs. direct deposition of high permittivity gadolinium scandate on silicon by high pressure sputtering. Thin Solid Films, 2015, 593, 62-66.	0.8	8
132	Peripheral versus axial substituted phthalocyanine-double-walled carbon nanotube hybrids as light harvesting systems. Journal of Materials Chemistry C, 2015, 3, 10215-10224.	2.7	17
133	Structure and Activity of Pt–Ni Catalysts Supported on Modified Al ₂ O ₃ for Ethanol Steam Reforming. Journal of Nanoscience and Nanotechnology, 2015, 15, 6592-6603.	0.9	5
134	H ₂ oxidation versus organic substrate oxidation in non-heme iron mediated reactions with H ₂ O ₂ . Chemical Communications, 2015, 51, 14992-14995.	2.2	4
135	Effects of pH and chelating agent on the NiWS phase formation in NiW/ \hat{I}^3 -Al2O3 HDS catalysts. Materials Chemistry and Physics, 2015, 166, 105-115.	2.0	33
136	Improved ethanol steam reforming on Rh/Al2O3 catalysts doped with CeO2 or/and La2O3: Influence in reaction pathways including coke formation. Applied Catalysis A: General, 2015, 505, 159-172.	2.2	49
137	Immobilised chiral inducer on Pt-based mesoporous titanate nanotubes as heterogeneous catalysts for enantioselective hydrogenation. Journal of Molecular Catalysis A, 2015, 398, 190-202.	4.8	8
138	Hydrogen-reduced Cu/ZnO composite as efficient reusable catalyst for diesel particulate matter oxidation. Applied Catalysis B: Environmental, 2015, 165, 555-565.	10.8	21
139	Hydrodeoxygenation of 2-methoxyphenol over different Re active phases supported on SiO 2 catalysts. Applied Catalysis A: General, 2015, 490, 71-79.	2.2	78
140	Ni–Co electrodes prepared by electroless-plating deposition. A study of their electrocatalytic activity for the hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2015, 40, 51-61.	3.8	75
141	Ni- and PtNi-catalysts supported on Al2O3 for acetone steam reforming: Effect of the modification of support with Ce, La and Mg. Catalysis Today, 2015, 242, 60-70.	2.2	50
142	Hydrogenation of nitro-compounds over rhodium catalysts supported on poly[acrylic acid]/Al2O3 composites. Applied Catalysis A: General, 2015, 489, 280-291.	2.2	23
143	TiO ₂ -supported heteropoly acid catalysts for dehydration of methanol to dimethyl ether: relevance of dispersion and support interaction. Catalysis Science and Technology, 2015, 5, 484-491.	2.1	80
144	Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction. Applied Catalysis B: Environmental, 2015, 165, 651-660.	10.8	103

#	Article	IF	Citations
145	On the relationship between N content, textural properties and catalytic performance for the oxygen reduction reaction of N/CNT. Applied Catalysis B: Environmental, 2015, 162, 420-429.	10.8	44
146	Evidences of Twoâ€Regimes in the Measurement of Ru Particle Size Effect for CO Dissociation during Fischer–Tropsch Synthesis. ChemCatChem, 2014, 6, 2084-2094.	1.8	19
147	Hydrogen production by autothermal reforming of methane over NiPd catalysts: Effect of support composition and preparation mode. International Journal of Hydrogen Energy, 2014, 39, 20992-21006.	3.8	43
148	Sulfurâ€Doped Carbons Prepared from Eutectic Mixtures Containing Hydroxymethylthiophene as Metalâ€Free Oxygen Reduction Catalysts. ChemSusChem, 2014, 7, 3347-3355.	3.6	17
149	Effects of multiwalled carbon nanotube morphology on the synthesis and electrocatalytic performance of Pt supported by multiwalled carbon nanotubes. Applied Catalysis B: Environmental, 2014, 150-151, 21-29.	10.8	34
150	Study of correlation between activity and structural properties of Cu-(Cr, Mn and Co)2 nano mixed oxides in VOC combustion. Ceramics International, 2014, 40, 6157-6163.	2.3	56
151	Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3. An approach to O-removal from bio-oils. Fuel, 2014, 117, 1061-1073.	3.4	117
152	Photoinduced electron transfer in a carbon nanohorn–C60 conjugate. Chemical Science, 2014, 5, 2072.	3.7	21
153	One dimensional (1D) \hat{I}^3 -alumina nanorod linked networks: Synthesis, characterization and application. Applied Catalysis A: General, 2014, 472, 1-10.	2.2	29
154	TiO2-supported heteropoly acids for low-temperature synthesis of dimethyl ether from methanol. Journal of Catalysis, 2014, 312, 195-203.	3.1	89
155	Hydrodeoxygenation of guaiacol over ReS2/activated carbon catalysts. Support and Re loading effect. Applied Catalysis A: General, 2014, 475, 427-437.	2.2	42
156	Doubleâ€Wall Carbon Nanotube–Porphyrin Supramolecular Hybrid: Synthesis and Photophysical Studies. ChemPhysChem, 2014, 15, 100-108.	1.0	11
157	One-pot manufacture of nanoparticle-based films in aqueous media via an electric field-driven assembly process. Green Chemistry, 2014, 16, 3286-3296.	4.6	8
158	Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium. International Journal of Hydrogen Energy, 2014, 39, 5204-5212.	3.8	92
159	The fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. Journal of Materials Chemistry B, 2014, 2, 706-717.	2.9	66
160	Aqueous-phase catalytic oxidation of furfural with H ₂ O ₂ : high yield of maleic acid by using titanium silicalite-1. RSC Advances, 2014, 4, 54960-54972.	1.7	97
161	Reduced graphene oxide supported piperazine in aminocatalysis. Chemical Communications, 2014, 50, 6270.	2.2	47
162	A photoresponsive graphene oxide–C ₆₀ conjugate. Chemical Communications, 2014, 50, 9053.	2.2	39

#	Article	IF	Citations
163	Soot Oxidation on Silver-Substituted LaMn _{0.9} Co _{0.1} O ₃ Perovskites. Industrial & Engineering Chemistry Research, 2014, 53, 10090-10096.	1.8	35
164	Efficient nitrogen-doping and structural control of hierarchical carbons using unconventional precursors in the form of deep eutectic solvents. Journal of Materials Chemistry A, 2014, 2, 17387-17399.	5 . 2	37
165	Enantioselective hydrogenation of 1-phenyl-1,2-propanedione on immobilised cinchonidine-TiO2 catalysts. Catalysis Today, 2014, 235, 226-236.	2.2	7
166	Structure and electrical properties of a new thio-phosphorus oxynitride glass electrolyte. Journal of Non-Crystalline Solids, 2014, 405, 159-162.	1.5	12
167	Methane partial oxidation over a LaCr 0.85 Ru 0.15 O 3 catalyst: Characterization, activity tests and kinetic modeling. Applied Catalysis A: General, 2014, 486, 239-249.	2.2	26
168	Complete Chemical Hydrolysis of Cellulose into Fermentable Sugars through Ionic Liquids and Antisolvent Pretreatments. ChemSusChem, 2014, 7, 3467-3475.	3.6	26
169	Optimization of the process of chemical hydrolysis of cellulose to glucose. Cellulose, 2014, 21, 2397-2407.	2.4	42
170	Effect of transition metal (M: Fe, Co or Mn) for the oxygen reduction reaction with non-precious metal catalysts in acid medium. International Journal of Hydrogen Energy, 2014, 39, 5309-5318.	3.8	73
171	Controlling the impregnation of nickel on nanoporous aluminum oxide nanoliths as catalysts for partial oxidation of methane. Chemical Engineering Journal, 2014, 256, 458-467.	6.6	8
172	3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth. Journal of Materials Chemistry B, 2014, 2, 5698.	2.9	108
173	Hydrogen production by autothermal reforming of methane: Effect of promoters (Pt, Pd, Re, Mo, Sn) on the performance of Ni/La2O3 catalysts. Applied Catalysis A: General, 2014, 481, 104-115.	2.2	42
174	Bimetallic MNi/Al2O3-La catalysts (M=Pt, Cu) for acetone steam reforming: Role of M on catalyst structure and activity. Applied Catalysis A: General, 2014, 474, 168-177.	2.2	29
175	Effect of water on the conversions of 2-methoxyphenol and phenol as bio-oil model compounds over ReS2/SiO2 catalyst. Catalysis Communications, 2014, 53, 33-37.	1.6	21
176	DES assisted synthesis of hierarchical nitrogen-doped carbon molecular sieves for selective CO ₂ versus N ₂ adsorption. Journal of Materials Chemistry A, 2014, 2, 8719-8729.	5 . 2	66
177	Chemoselective hydrogenation of o-, p- and m-chloronitrobenzene at ambient temperature on Au/Fe2O3 catalysts. Applied Catalysis A: General, 2014, 482, 127-136.	2.2	38
178	Enantioselective hydrogenation of 1-phenyl-1,2-propanodione on cinchonidine-modified Rh/MCM-41 catalysts. Journal of Molecular Catalysis A, 2014, 392, 321-328.	4.8	13
179	Nature of the Mixed-Oxide Interface in Ceria–Titania Catalysts: Clusters, Chains, and Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 14463-14471.	1.5	73
180	Nitrobenzene Hydrogenation on Au/TiO2 and Au/SiO2 Catalyst: Synthesis, Characterization and Catalytic Activity. Catalysis Letters, 2013, 143, 763-771.	1.4	45

#	Article	IF	CITATIONS
181	Efficient cycloaddition of arynes to carbon nanotubes under microwave irradiation. Carbon, 2013, 63, 140-148.	5.4	26
182	Role of Pt in the Activity and Stability of PtNi/CeO2â€"Al2O3 Catalysts in Ethanol Steam Reforming for H2 Production. Topics in Catalysis, 2013, 56, 1672-1685.	1.3	11
183	Efficient solvent regeneration of Basolite C300 used in the liquid-phase adsorption of dibenzothiophene. Fuel, 2013, 113, 216-220.	3.4	18
184	Synthesis and characterization of gold nanoparticles supported on thiol functionalized chitosan for solvent-free oxidation of cyclohexene with molecular oxygen. Journal of Molecular Catalysis A, 2013, 379, 340-349.	4.8	22
185	Photostabilization study of ethylene-butyl acrylate copolymers functionalized in the molten state with hindered amine light stabilizers (HALS). Polymer Degradation and Stability, 2013, 98, 2146-2152.	2.7	10
186	Effect of P content in the conversion of guaiacol over Mo/ \hat{l}^3 -Al2O3 catalysts. Applied Catalysis A: General, 2013, 467, 568-574.	2.2	26
187	Renewable Syngas Production via Dry Reforming of Methane. Green Energy and Technology, 2013, , 45-66.	0.4	4
188	Hydrogenation of substituted aromatic nitrobenzenes over 1% 1.0wt.%lr/ZrO2 catalyst: Effect of meta position and catalytic performance. Catalysis Today, 2013, 213, 93-100.	2.2	44
189	Supramolecular Attachment of Metalloporphyrins to Graphene Oxide and its Pyridineâ€Containing Derivative. Chemistry - A European Journal, 2013, 19, 10463-10467.	1.7	7
190	Hybrid chitosan derivative–carbon support for oxygen reduction reactions. RSC Advances, 2013, 3, 5378.	1.7	21
191	Cd1â^xZnxS supported on SBA-16 as photocatalysts for water splitting under visible light: Influence of Zn concentration. International Journal of Hydrogen Energy, 2013, 38, 11799-11810.	3.8	21
192	Carbon monoxide and methanol oxidations on Pt/X@MoO3/C ($X\hat{A}=\hat{A}Mo2C$, MoO2, MoO) electrodes at different temperatures. Journal of Power Sources, 2013, 231, 163-172.	4.0	35
193	Insights into the deactivation and reactivation of Ru/TiO2 during Fischer–Tropsch synthesis. Catalysis Today, 2013, 214, 2-11.	2.2	33
194	Electrocatalytic Activity of 3â€Dimensional Ordered Macroporous Gold Electrodeâ€Based Lactate Biosensors Platforms as a Function of Pore Layer Number. Electroanalysis, 2013, 25, 179-188.	1.5	5
195	Conductivity and long term stability of polypyrrole poly(styrene-co-methacrylic acid) core–shell particles at different polypyrrole loadings. Thin Solid Films, 2013, 539, 154-160.	0.8	15
196	Enantioselective hydrogenation of 1-phenyl-1,2-propanedione over Pt on immobilized cinchonidine on \hat{I}^3 -Al2O3 catalysts. Applied Catalysis A: General, 2013, 466, 198-207.	2.2	8
197	MCr2O4 (M=Co, Cu, and Zn) nanospinels for 2-propanol combustion: Correlation of structural properties with catalytic performance and stability. Ceramics International, 2013, 39, 9253-9261.	2.3	72
198	The effect of Pt characteristics on the photoactivity of Pt/TiO2 for hydrogen production from ethanol. Catalysis Today, 2013, 210, 33-38.	2.2	27

#	Article	IF	CITATIONS
199	Preliminary studies of the electrochemical performance of $Pt/X@MoO3/C$ (XÂ=ÂMo2C, MoO2, MoO) catalysts for the anode ofÂa DMFC: Influence of the Pt loading and Mo-phase. International Journal of Hydrogen Energy, 2013, 38, 7811-7821.	3.8	39
200	Recovery of carbon fibres by the thermolysis and gasification of waste prepreg. Journal of Analytical and Applied Pyrolysis, 2013, 104, 675-683.	2.6	105
201	TiO2 modifications by hydrothermal treatment and doping to improve its photocatalytic behaviour under visible light. Catalysis Today, 2013, 210, 135-141.	2.2	28
202	Nanoscale control during synthesis of Me/La2O3, Me/CexGd1â^'xOy and Me/CexZr1â^'xOy (Me=Ni, Pt, Pd,) Tj ET	Qq <u>0 0</u> 0 rg	gBT ₃ /Overlock
203	Combined Effects of Ag Nanoparticles and Oxygen Plasma Treatment on PLGA Morphological, Chemical, and Antibacterial Properties. Biomacromolecules, 2013, 14, 626-636.	2.6	52
204	Characterization and catalytic activity of a novel Fe nano-catalyst as efficient heterogeneous catalyst for selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol. Journal of Molecular Catalysis A, 2013, 372, 90-99.	4.8	78
205	Effect of carbon nanotube diameter for the synthesis of Fe/N/multiwall carbon nanotubes and repercussions for the oxygen reduction reaction. Journal of Power Sources, 2013, 240, 494-502.	4.0	39
206	Ultrasensitive non-chemically amplified low-contrast negative electron beam lithography resist with dual-tone behaviour. Journal of Materials Chemistry C, 2013, 1, 1392.	2.7	24
207	Plasma oxidation of metallic gadolinium deposited on silicon by high pressure sputtering as high permittivity dielectric., 2013,,.		0
208	Supported WOx-based catalysts for methanol dehydration to dimethyl ether. Fuel, 2013, 113, 1-9.	3.4	41
209	Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 241-248.	10.8	145
210	Stability and regeneration of Cu–ZrO2 catalysts used in glycerol hydrogenolysis to 1,2-propanediol. Catalysis Today, 2013, 210, 98-105.	2.2	48
211	An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses. Solid State Ionics, 2013, 233, 73-79.	1.3	72
212	Hydrogen Production from Water Splitting Using Photo-Semiconductor Catalysts., 2013,, 43-61.		12
213	Microwave-assisted synthesis of (S)Fe/TiO2 systems: Effects of synthesis conditions and dopant concentration on photoactivity. Applied Catalysis B: Environmental, 2013, 140-141, 213-224.	10.8	34
214	Catalyst studies on the ring opening of tetrahydrofuran–dimethanol to 1,2,6-hexanetriol. Catalysis Today, 2013, 210, 106-116.	2.2	67
215	Thermal regeneration of the metal organic frameworks used in the adsorption of refractory organosulfur compounds from liquid fuels. Fuel, 2013, 105, 459-465.	3.4	23
216	Gadolinium scandate by high-pressure sputtering for future generations of high-κ dielectrics. Semiconductor Science and Technology, 2013, 28, 085004.	1.0	6

#	Article	IF	CITATIONS
217	Carbon-Supported PtRuMo Electrocatalysts for Direct Alcohol Fuel Cells. Catalysts, 2013, 3, 811-838.	1.6	12
218	Polypyrroleâ€Modifiedâ€Carbonâ€Supported Ruâ€Pt Nanoparticles as Highly Methanolâ€Tolerant Electrocatalysts for the Oxygenâ€Reduction Reaction. ChemCatChem, 2013, 5, 3680-3689.	1.8	12
219	The Role of Oxidative Debris on Graphene Oxide Films. ChemPhysChem, 2013, 14, 4002-4009.	1.0	36
220	EFFECT OF MO CONTENT IN MO(X)/γ-AL2O3 CATALYSTS OVER THE CONVERSION OF 2-METHOXYPHENOL AS LIGNIN-DERIVATES COMPONENTS. Journal of the Chilean Chemical Society, 2013, 58, 1947-1951.	0.5	5
221	Novel Metal Nanoparticles Stabilized with (2R,4R)-2,4-bis(diphenylphosphino) Pentane on SiO2. Their Use as Catalysts in Enantioselective Hydrogenation Reactions. Current Organic Chemistry, 2012, 16, 2754-2762.	0.9	5
222	Photochemical Evidence of Electronic Interwall Communication in Doubleâ€Wall Carbon Nanotubes. Chemistry - A European Journal, 2012, 18, 16922-16930.	1.7	11
223	Supported niobium catalysts for methanol dehydration to dimethyl ether: FTIR studies of acid properties. Catalysis Today, 2012, 192, 136-143.	2.2	53
224	Characterization and reactivity of Ce-promoted PtBa lean NOx trap catalysts. Catalysis Today, 2012, 197, 178-189.	2.2	22
225	Tunable uptake of poly(ethylene oxide) by graphite-oxide-based materials. Carbon, 2012, 50, 5232-5241.	5.4	22
226	In situ characterization of Ptcatalysts supported on ceria modified TiO2 for the WGS reaction: influence of ceria loading. Physical Chemistry Chemical Physics, 2012, 14, 2192-2202.	1.3	34
227	Influence of dopant anions on properties of polypyrrole nanocoated poly(styrene-co-methacrylic) Tj ETQq1 1 0.78	4 <u>3.1</u> 4 rgBT	 Qverlock 20
228	Poly (acrylic acid) microchannel modification for the enhanced resolution of catecholamines microchip electrophoresis with electrochemical detection. Analytica Chimica Acta, 2012, 724, 136-143.	2.6	12
229	Comparison of alumina- and SBA-15-supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol. Applied Catalysis A: General, 2012, 435-436, 51-60.	2.2	110
230	Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: Effects of nitriding methods and support properties. Applied Catalysis A: General, 2012, 439-440, 111-124.	2.2	126
231	Comparison of the morphology and HDS activity of ternary Ni(Co)-Mo-W catalysts supported on Al-HMS and Al-SBA-16 substrates. Applied Catalysis B: Environmental, 2012, 125, 473-485.	10.8	67
232	Fabrication of luminescent nanostructures by electron-beam direct writing of PMMA resist. Materials Letters, 2012, 88, 93-96.	1.3	8
233	Cd1â^3xZnxS solid solutions supported on ordered mesoporous silica (SBA-15): Structural features and photocatalytic activity under visible light. International Journal of Hydrogen Energy, 2012, 37, 9948-9958.	3.8	34
234	Selective hydrogenation of hydrogen peroxide in the epoxidation effluent of the HPPO process. Catalysis Communications, 2012, 26, 83-87.	1.6	5

#	Article	IF	Citations
235	Functionalization of Reduced Graphite Oxide Sheets with a Zwitterionic Surfactant. ChemPhysChem, 2012, 13, 3682-3690.	1.0	33
236	Enhancement of electrocatalytic activity towards hydrogen evolution reaction by boron-modified nickel nanoparticles. International Journal of Hydrogen Energy, 2012, 37, 14984-14991.	3.8	19
237	Ni-based catalysts for reforming of methane with CO2. International Journal of Hydrogen Energy, 2012, 37, 15966-15975.	3.8	158
238	Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel. Green Chemistry, 2012, 14, 2759.	4.6	33
239	Exploring the Structural and Electronic Properties of Pt/Ceria-Modified TiO ₂ and Its Photocatalytic Activity for Water Splitting under Visible Light. Journal of Physical Chemistry C, 2012, 116, 14062-14070.	1.5	69
240	Phosphateâ€Functionalized Carbon Monoliths from Deep Eutectic Solvents and their Use as Monolithic Electrodes in Supercapacitors. ChemSusChem, 2012, 5, 1405-1409.	3.6	87
241	Selective decomposition of hydrogen peroxide in the epoxidation effluent of the HPPO process. Catalysis Today, 2012, 187, 168-172.	2.2	23
242	Glycerol hydrogenolysis to 1,2-propanediol with Cu/ \hat{I}^3 -Al2O3: Effect of the activation process. Catalysis Today, 2012, 187, 122-128.	2.2	64
243	High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chemical Engineering Journal, 2012, 181-182, 538-541.	6.6	79
244	Electrostatic charge dependence on surface hydroxylation for different Al2O3 powders. Ceramics International, 2012, 38, 1427-1434.	2.3	13
245	Biohydrogen production by gas phase reforming of glycerine and ethanol mixtures. International Journal of Hydrogen Energy, 2012, 37, 2028-2036.	3.8	33
246	Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources. International Journal of Hydrogen Energy, 2012, 37, 1173-1183.	3.8	131
247	Ethanol oxidation on PtRuMo/C catalysts: In situ FTIR spectroscopy and DEMS studies. International Journal of Hydrogen Energy, 2012, 37, 7131-7140.	3.8	49
248	Evolution of the Ni-active centres into ex hydrotalcite oxide catalysts during the COx-free hydrogen production by methane decomposition. International Journal of Hydrogen Energy, 2012, 37, 7042-7055.	3.8	23
249	Electrocatalytic performance of different Mo-phases obtained during the preparation of innovative Pt-MoC catalysts for DMFC anode. International Journal of Hydrogen Energy, 2012, 37, 7171-7179.	3.8	46
250	Electrooxidation of CO and methanol on well-characterized carbon supported PtxSn electrodes. Effect of crystal structure. International Journal of Hydrogen Energy, 2012, 37, 7109-7118.	3.8	42
251	Diesel fuel reforming over catalysts derived from LaCo1â^xRuxO3 perovskites with high Ru loading. International Journal of Hydrogen Energy, 2012, 37, 7056-7066.	3.8	22
252	Bimetallic Co-Fe nanocrystals deposited on SBA-15 and HMS mesoporous silicas as catalysts for Fischer–Tropsch synthesis. Applied Catalysis A: General, 2012, 423-424, 146-153.	2.2	59

#	Article	IF	Citations
253	Deactivation of Pd/Ce0.5Zr0.5O2 model three-way catalyst by P, Ca and Zn deposition. Applied Catalysis B: Environmental, 2012, 111-112, 233-245.	10.8	36
254	Simultaneous hydrodesulfurization and hydrodenitrogenation on MoP/SiO2 catalysts: Effect of catalyst preparation method. Applied Catalysis B: Environmental, 2012, 113-114, 87-99.	10.8	43
255	Insights on the role of Ru substitution in the properties of LaCoO3-based oxides as catalysts precursors for the oxidative reforming of diesel fuel. Applied Catalysis B: Environmental, 2012, 113-114, 271-280.	10.8	32
256	Low-temperature conversion of phenol into CO, CO2 and H2 by steam reforming over La-containing supported Rh catalysts. Applied Catalysis B: Environmental, 2012, 117-118, 81-95.	10.8	62
257	On the genesis of molybdenum carbide phases during reduction-carburization reactions. Journal of Solid State Chemistry, 2012, 190, 285-295.	1.4	47
258	Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion. Journal of Environmental Management, 2012, 98, 23-28.	3.8	38
259	Perovskites as Catalysts in the Reforming of Hydrocarbons: A Review. Micro and Nanosystems, 2012, 4, 231-252.	0.3	14
260	O–O Bond activation in H2O2 and (CH3)3C-OOH mediated by [Ni(cyclam)(CH3CN)2](ClO4)2: Different mechanisms to form the same Ni(iii) product?. Dalton Transactions, 2011, 40, 6868.	1.6	15
261	Electrical and chemical characterization of high pressure sputtered scandium oxide for memory applications. , 2011, , .		2
262	Synthesis of Coreâ^'Shell PtRu Dendrimer-Encapsulated Nanoparticles. Relevance as Electrocatalysts for CO Oxidation. Journal of Physical Chemistry C, 2011, 115, 1287-1294.	1.5	31
263	Role of Cs on Hydrodesulfurization Activity of RuS ₂ Catalysts Supported on a Mesoporous SBA-15 Type Material. ACS Catalysis, 2011, 1, 175-186.	5.5	18
264	Insights into the Effects of Functional Groups on Carbon Nanotubes for the Electrooxidation of Methanol. Langmuir, 2011, 27, 9621-9629.	1.6	28
265	Bifunctional carbosilane dendrons for the immobilization of zirconocene catalysts on silica. New Journal of Chemistry, 2011, 35, 2203.	1.4	8
266	Support effects on the structure and performance of ruthenium catalysts for the Fischer–Tropsch synthesis. Catalysis Science and Technology, 2011, 1, 1013.	2.1	46
267	A soluble hybrid material combining carbon nanohorns and C60. Chemical Communications, 2011, 47, 12771.	2.2	24
268	Effects of Reaction Temperature and Support Composition on the Mechanism of Water–Gas Shift Reaction over Supported-Pt Catalysts. Journal of Physical Chemistry C, 2011, 115, 11595-11610.	1.5	90
269	Direct evidence of the SMSI decoration effect: the case of Co/TiO2 catalyst. Chemical Communications, 2011, 47, 7131.	2.2	87
270	Direct transformation of ethanol into ethyl acetate through catalytic membranes containing Pd or Pd-Zn: comparison with conventional supported catalysts. Green Chemistry, 2011, 13, 2569.	4.6	15

#	Article	IF	CITATIONS
271	CO oxidation at 20 \hat{A}° C over Au/SBA-15 catalysts decorated by Fe2O3 nanoparticles. Catalysis Communications, 2011, 15, 108-112.	1.6	18
272	Silane Coupling Agent Structures on Carbon Nanofibers. Journal of Nanoscience and Nanotechnology, 2011, 11, 4142-4152.	0.9	11
273	Revisiting the effects of organic solvents on the thermal reduction of graphite oxide. Thermochimica Acta, 2011, 526, 65-71.	1.2	10
274	Structural and optical properties of tellurite thin film glasses deposited by pulsed laser deposition. Thin Solid Films, 2011, 520, 131-137.	0.8	6
275	Enantioselective hydrogenation of 1-phenyl-propane-1,2-dione on immobilised cinchonidine Pt/SiO2 catalysts. Journal of Molecular Catalysis A, 2011, 348, 30-41.	4.8	10
276	Hydrogen production by reforming of diesel fuel over catalysts derived from LaCo1â^'xRuxO3 perovskites: Effect of the partial substitution of Co by Ru (x=0.01â€"0.1). Journal of Power Sources, 2011, 196, 9087-9095.	4.0	22
277	Catalytic effects of ruthenium particle size on the Fischer–Tropsch Synthesis. Journal of Catalysis, 2011, 284, 102-108.	3.1	150
278	Electrochemical stability of carbon nanofibers in proton exchange membrane fuel cells. Electrochimica Acta, 2011, 56, 9370-9377.	2.6	31
279	Alumina support-stabilized nanoscaled vanadium–phosphorous mixed oxides as new catalysts for propane ammoxidation. Applied Catalysis A: General, 2011, 404, 93-102.	2.2	19
280	Structural changes occurring at the surface of alumina-supported nanoscaled Mo–V–Nb–(Te)–O catalytic system during the selective oxidation of propane to acrylic acid. Applied Catalysis A: General, 2011, 406, 34-42.	2,2	17
281	Biogas reforming over bimetallic PdNi catalysts supported on phosphorus-modified alumina. International Journal of Hydrogen Energy, 2011, 36, 10635-10647.	3.8	47
282	Electrooxidation of H2/CO on carbon-supported PtRu-MoO nanoparticles for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2011, 36, 14590-14598.	3.8	26
283	Hydrogenolysis of anisole over mesoporous sulfided CoMoW/SBA-15(16) catalysts. Catalysis Today, 2011, 172, 103-110.	2.2	73
284	Hydrodeoxygenation of 2-methoxyphenol over Mo2N catalysts supported on activated carbons. Catalysis Today, 2011, 172, 232-239.	2.2	109
285	Effect of alkali cations on the CuZnOAl2O3 low temperature water gas-shift catalyst. Catalysis Today, 2011, 172, 166-170.	2.2	19
286	Catalysts for Hydrogen Production from Heavy Hydrocarbons. ChemCatChem, 2011, 3, 440-457.	1.8	58
287	Few-layer graphenes from ball-milling of graphite with melamine. Chemical Communications, 2011, 47, 10936.	2.2	299
288	Deep Hydrodesulphurization via Hydrogen Spillover. Catalysis Letters, 2011, 141, 1796-1802.	1.4	8

#	Article	IF	Citations
289	Effect of the Mesostructuration of the Beta Zeolite Support on the Properties of Cobalt Catalysts for Fischer–Tropsch Synthesis. Topics in Catalysis, 2011, 54, 179-189.	1.3	44
290	Oxidative reforming of diesel fuel over LaCoO3 perovskite derived catalysts: Influence of perovskite synthesis method on catalyst properties and performance. Applied Catalysis B: Environmental, 2011, 105, 276-288.	10.8	93
291	Ballâ€Milling Modification of Singleâ€Walled Carbon Nanotubes: Purification, Cutting, and Functionalization. Small, 2011, 7, 665-674.	5.2	60
292	Delamination of Layered Covalent Organic Frameworks. Small, 2011, 7, 1207-1211.	5.2	234
293	Effect of Bâ€site cation on the catalytic activity of La _{1â^'x} Ca _x BO ₃ (B) Tj E Biotechnology, 2011, 86, 1067-1073.	TQq1 1 0.	.784314 rg8 47
294	Equilibrium and kinetics of adsorption of methylene blue on Tiâ€modified volcanic ashes. AICHE Journal, 2011, 57, 819-825.	1.8	12
295	An Oxygenâ€Deficient Perovskite as Selective Catalyst in the Oxidation of Alkyl Benzenes. Angewandte Chemie - International Edition, 2011, 50, 6557-6561.	7.2	51
296	Direct methane conversion routes to chemicals and fuels. Catalysis Today, 2011, 171, 15-23.	2.2	275
297	Catalytic partial oxidation of CH4 with nickel–lanthanum-based catalysts. Catalysis Today, 2011, 171, 84-96.	2.2	52
298	Surface reactivity of LaCoO3 and Ru/LaCoO3 towards CO, CO2 and C3H8: Effect of H2 and O2 pretreatments. Applied Catalysis B: Environmental, 2011, 102, 291-301.	10.8	28
299	An FTIR study of Rh-PtSn/C catalysts for ethanol electrooxidation: Effect of surface composition. Applied Catalysis B: Environmental, 2011, 106, 520-528.	10.8	43
300	Effectiveness of metal–organic frameworks for removal of refractory organo-sulfur compound present in liquid fuels. Fuel, 2011, 90, 190-197.	3.4	124
301	Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts. International Journal of Hydrogen Energy, 2011, 36, 1512-1523.	3.8	87
302	MWCNT-supported PtRu catalysts for the electrooxidation of methanol: Effect of the functionalized support. International Journal of Hydrogen Energy, 2011, 36, 8267-8278.	3.8	35
303	Comparison of metal and carbon catalysts for hydrogen production by methane decomposition. Applied Catalysis A: General, 2011, 396, 40-51.	2.2	77
304	Catalytic and structural properties of co-precipitated Mg–Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone. Applied Catalysis B: Environmental, 2011, 101, 638-648.	10.8	96
305	Glycerol liquid phase conversion over monometallic and bimetallic catalysts: Effect of metal, support type and reaction temperatures. Applied Catalysis B: Environmental, 2011, 106, 83-83.	10.8	27
306	Suppression of the oxygen storage and release kinetics in Ce0.5Zr0.5O2 induced by P, Ca and Zn chemical poisoning. Applied Catalysis B: Environmental, $2011, \ldots$	10.8	10

#	Article	IF	CITATIONS
307	Effect of the Partial Substitution of Fe by Ni on the Structure and Activity of Nanocrystalline Ni _{<i>x</i>} Fe _{3–⟨I>x} O ₄ Ferrites for Hydrogen Production by Two-Step Water-Splitting. Nanoscience and Nanotechnology Letters, 2011, 3, 705-716.	0.4	8
308	Biogas as a source of renewable syngas production: advances and challenges. Biofuels, 2011, 2, 325-343.	1.4	32
309	Structural and surface analysis of unsupported and alumina-supported La(Mn,Fe,Mo)O3 perovskite oxides. Analytical and Bioanalytical Chemistry, 2010, 396, 2785-2795.	1.9	9
310	Relevance of the synthesis route of Se-modified Ru/C as methanol tolerant electrocatalysts for the oxygen reduction reaction. Journal of Power Sources, 2010, 195, 2478-2487.	4.0	27
311	Controlled synthesis of carbon-supported Pt3Sn by impregnation-reduction and performance on the electrooxidation of CO and ethanol. Journal of Power Sources, 2010, 195, 5564-5572.	4.0	24
312	Role of Pt Oxidation State on the Activity and Selectivity for Crotonaldehyde Hydrogenation Over Pt–Sn/Al2O3–La and Pt–Pb/Al2O3–La Catalysts. Topics in Catalysis, 2010, 53, 1142-1144.	1.3	10
313	A Carbon NanohornPorphyrin Supramolecular Assembly for Photoinduced Electronâ€Transfer Processes. Chemistry - A European Journal, 2010, 16, 10752-10763.	1.7	45
314	Oxidative processes of desulfurization of liquid fuels. Journal of Chemical Technology and Biotechnology, 2010, 85, 879-890.	1.6	382
315	Relevance of sulfiding pretreatment on the performance of Re/ZrO2 and Re/ZrO2-sulfated catalysts for the hydrodeoxygenation of guayacol. Applied Catalysis A: General, 2010, 384, 78-83.	2.2	49
316	Photodegradation of dye pollutants using new nanostructured titania supported on volcanic ashes. Applied Catalysis A: General, 2010, 388, 7-14.	2.2	38
317	Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS–HDN competitive reactions. Applied Catalysis A: General, 2010, 390, 253-263.	2.2	90
318	A comparative study of the steam reforming of phenol towards H2 production over natural calcite, dolomite and olivine materials. Applied Catalysis B: Environmental, 2010, 95, 255-269.	10.8	77
319	Synergy effect in the HDO of phenol over Ni–W catalysts supported on active carbon: Effect of tungsten precursors. Applied Catalysis B: Environmental, 2010, 101, 1-12.	10.8	180
320	HUSY zeolite modified by lanthanum: Effect of lanthanum introduction as a vanadium trap. Microporous and Mesoporous Materials, 2010, 133, 75-81.	2.2	32
321	A study of Pt–Pd∫î³-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning. Journal of Molecular Catalysis A, 2010, 315, 35-42.	4.8	72
322	Influence of the preparation methods and redox properties of Cu/ZnO/Al2O3 catalysts for the water gas shift reaction. Journal of Molecular Catalysis A, 2010, 318, 15-20.	4.8	27
323	Effect of Co in the efficiency of the methanol electrooxidation reaction on carbon supported Pt. Journal of Power Sources, 2010, 195, 7959-7967.	4.0	40
324	Hydrogen production by methane decomposition: Origin of the catalytic activity of carbon materials. Fuel, 2010, 89, 1241-1248.	3.4	134

#	Article	IF	CITATIONS
325	Highly dispersed molybdenum carbide as non-noble electrocatalyst for PEM fuel cells: Performance for CO electrooxidation. International Journal of Hydrogen Energy, 2010, 35, 7881-7888.	3.8	29
326	Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina. International Journal of Hydrogen Energy, 2010, 35, 11622-11633.	3.8	184
327	Role of perfluorosulfonic ionomer as protective agent against strong adsorption of (bi)sulfate anions. Relevance in the determination of the area of Pt/C electrocatalysts. International Journal of Hydrogen Energy, 2010, 35, 11576-11581.	3.8	7
328	PtRuMo/C catalysts for direct methanol fuel cells: Effect of the pretreatment on the structural characteristics and methanol electrooxidation. International Journal of Hydrogen Energy, 2010, 35, 11478-11488.	3.8	67
329	Electrochemical activation of nanostructured carbon-supported PtRuMo electrocatalyst for methanol oxidation. Electrochimica Acta, 2010, 55, 7634-7642.	2.6	22
330	Fischer Tropsch synthesis from a simulated biosyngas feed over $Co(x)/SiO2$ catalysts: Effect of Co-loading. Applied Catalysis A: General, 2010, 373, 71-75.	2.2	20
331	Supported gold catalysts in SBA-15 modified with TiO2 for oxidation of carbon monoxide. Applied Catalysis A: General, 2010, 375, 37-48.	2.2	53
332	Nanoscaled rutile active phase in Moâ \in "Vâ \in "Nbâ \in "O supported catalysts for the oxidation of propane to acrylic acid. Applied Catalysis A: General, 2010, 375, 55-62.	2.2	29
333	SBA-15-supported gold nanoparticles decorated by CeO2: Structural characteristics and CO oxidation activity. Applied Catalysis A: General, 2010, 381, 42-53.	2.2	60
334	Post-synthesis alumination of MCM-41: Effect of the acidity on the HDS activity of supported Pd catalysts. Applied Catalysis A: General, 2010, 383, 211-216.	2.2	40
335	Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: The role of acid and metal sites on product selectivity and the reaction mechanism. Applied Catalysis B: Environmental, 2010, 97, 248-256.	10.8	198
336	Functionalization of multi-walled carbon nanotubes and application as supports for electrocatalysts in proton-exchange membrane fuel cell. Applied Catalysis B: Environmental, 2010, 99, 343-352.	10.8	80
337	A comparative study of the water gas shift reaction over platinum catalysts supported on CeO2, TiO2 and Ce-modified TiO2. Catalysis Today, 2010, 149, 372-379.	2.2	128
338	Highly efficient deep desulfurization of fuels by chemical oxidation. Catalysis Today, 2010, 157, 390-396.	2.2	63
339	Some insights on the negative effect played by silylation of functionalized commercial silica in the direct synthesis of hydrogen peroxide. Catalysis Today, 2010, 158, 97-102.	2.2	12
340	The effect of the Mo precursor on the nanostructure and activity of PtRuMo electrocatalysts for proton exchange membrane fuel cells. Catalysis Today, 2010, 158, 12-21.	2.2	25
341	Silylation of titanium-containing amorphous silica catalyst: Effect on the alkenes epoxidation with H2O2. Catalysis Today, 2010, 158, 103-108.	2.2	23
342	CONVERSION OF METHANOL TO FORMALDEHYDE ON TiO2 SUPPORTED Ag NANOPARTICLES. Journal of the Chilean Chemical Society, 2010, 55, 506-510.	0.5	20

#	Article	IF	Citations
343	PHOTOCATALYTIC DEGRADATION OF TRICHLOROETHYLENE OVER SILVER NANOPARTICLES SUPPORTED ON TIO2. Journal of the Chilean Chemical Society, 2010, 55, 404-407.	0.5	4
344	Glycerol conversion into H2 by steam reforming over Ni and PtNi catalysts supported on MgO modified \hat{l}^3 -Al2O3. Studies in Surface Science and Catalysis, 2010, 175, 449-452.	1.5	9
345	Mechanistic Aspects of the Ethanol Steam Reforming Reaction for Hydrogen Production on Pt, Ni, and PtNi Catalysts Supported on Î ³ -Al ₂ O ₃ . Journal of Physical Chemistry A, 2010, 114, 3873-3882.	1.1	103
346	Synthesis and Characterization of Zwitterionic SBA-15 Nanostructured Materials. Chemistry of Materials, 2010, 22, 6459-6466.	3.2	94
347	Liquid-phase oxidation of p-xylene using N-hydroxyimides. Catalysis Communications, 2010, 12, 5-8.	1.6	25
348	A framework for visible-light water splitting. Energy and Environmental Science, 2010, 3, 1865.	15.6	181
349	Butyraldehyde production by butanol oxidation over Ru and Cu catalysts supported on ZrO2, TiO2 and CeO2. Studies in Surface Science and Catalysis, 2010, , 453-456.	1.5	7
350	Photocatalytic Hydrogen Production on Cd _{1â^'<i>x</i>} Zn _{<i>x</i>} S Solid Solutions under Visible Light: Influence of Thermal Treatment. Industrial & Description of the Seearch, 2010, 49, 6854-6861.	1.8	45
351	Removal of refractory organosulfur compounds via oxidation with hydrogen peroxide on amorphous Ti/SiO2 catalysts. Energy and Environmental Science, 2010, 3, 328.	15.6	70
352	Large-scale synthesis of porous magnetic composites for catalytic applications. Studies in Surface Science and Catalysis, 2010, , 347-350.	1.5	1
353	Direct synthesis of hydrogen peroxide on palladium catalyst supported on sulfonic acid-functionalized silica. Green Chemistry, 2010, 12, 1163.	4.6	45
354	Cycloaddition of benzyne to SWCNT: towards CNT-based paddle wheels. Chemical Communications, 2010, 46, 7028.	2.2	40
355	Interactions in YBa2Cu3O7â^'x aqueous suspensions. Materials Chemistry and Physics, 2009, 116, 368-375.	2.0	4
356	Kinetics and selectivity of methyl-ethyl-ketone combustion in air over alumina-supported PdOx–MnOx catalysts. Journal of Catalysis, 2009, 261, 50-59.	3.1	45
357	Enhancement of biphenyl hydrogenation over gold catalysts supported on Fe-, Ce- and Ti-modified mesoporous silica (HMS). Journal of Catalysis, 2009, 267, 30-39.	3.1	44
358	Water Splitting on Semiconductor Catalysts under Visible‣ight Irradiation. ChemSusChem, 2009, 2, 471-485.	3 . 6	504
359	Promoting effect of tin oxides on alumina-supported gold catalysts used in CO oxidation. Applied Surface Science, 2009, 256, 726-736.	3.1	17
360	Effect of Phosphorous Additive on the Surface Chromium Oxide Species on Alumina for Propane Oxidation to Propylene. Topics in Catalysis, 2009, 52, 1459-1469.	1.3	10

#	Article	IF	Citations
361	Reforming of Diesel Fuel for Hydrogen Production over Catalysts Derived from LaCo1â^ $^{\circ}$ x M x O3 (MÂ=ÂRu, Fe). Topics in Catalysis, 2009, 52, 1995-2000.	1.3	19
362	Regeneration of Aged Commercial Three-Way Catalytic Converters. Topics in Catalysis, 2009, 52, 2029-2034.	1.3	11
363	Proofs of the Coexistence of Two Magnetic Contributions in Pure and Doped CaCu ₃ Ti ₄ O ₁₂ Giant Dielectric Constant Ceramics. Journal of the American Ceramic Society, 2009, 92, 2311-2318.	1.9	38
364	Comparison of the morphology and reactivity in HDS of CoMo/HMS, CoMo/P/HMS and CoMo/SBA-15 catalysts. Microporous and Mesoporous Materials, 2009, 118, 189-201.	2.2	49
365	Structural and optical properties of amorphous oxygenated iron boron nitride thin films produced by reactive co-sputtering. Thin Solid Films, 2009, 517, 4281-4285.	0.8	13
366	CO tolerant PtRu–MoOx nanoparticles supported on carbon nanofibers for direct methanol fuel cells. Journal of Power Sources, 2009, 186, 299-304.	4.0	55
367	Promotional effect of upper Ru oxides as methanol tolerant electrocatalyst for the oxygen reduction reaction. Journal of Power Sources, 2009, 191, 280-288.	4.0	21
368	Some clues about the interphase reaction between ZnO and MnO2 oxides. Journal of Solid State Chemistry, 2009, 182, 1211-1216.	1.4	37
369	Influence of Zn concentration in the activity of Cd1â^'xZnxS solid solutions for water splitting under visible light. Catalysis Today, 2009, 143, 51-56.	2.2	107
370	Identification of Ru phases in PtRu based electrocatalysts and relevance in the methanol electrooxidation reaction. Catalysis Today, 2009, 143, 69-75.	2.2	26
371	Ethylbenzene oxidation to its hydroperoxide in the presence of N-hydroxyimides and minute amounts of sodium hydroxide. Applied Catalysis A: General, 2009, 363, 32-39.	2.2	41
372	Effect of additive Ag on the physicochemical and catalytic properties of LaMn0.9Co0.1O3.5 perovskite. Applied Catalysis A: General, 2009, 371, 78-84.	2.2	19
373	The phenol steam reforming reaction towards H2 production on natural calcite. Applied Catalysis B: Environmental, 2009, 90, 347-359.	10.8	42
374	Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Applied Catalysis B: Environmental, 2009, 92, 154-167.	10.8	158
375	MCM-41 supported PdNi catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 2009, 92, 250-261.	10.8	143
376	Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Applied Catalysis B: Environmental, 2009, 92, 445-453.	10.8	54
377	Characterisation and reactivity of Re/carbon catalysts in hydrodesulphurisation of dibenzothiophene: Effect of textural and chemical properties of support. Applied Catalysis A: General, 2009, 358, 26-31.	2,2	19
378	Tailoring and structure of PtRu nanoparticles supported on functionalized carbon for DMFC applications: New evidence of the hydrous ruthenium oxide phase. Applied Catalysis B: Environmental, 2009, 88, 505-514.	10.8	94

#	Article	IF	Citations
379	The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming. Applied Catalysis B: Environmental, 2009, 89, 149-159.	10.8	218
380	Controlled synthesis of Pt-Sn/C fuel cell catalysts with exclusive Sn–Pt interaction. Applied Catalysis B: Environmental, 2009, 91, 83-91.	10.8	77
381	Comparison of the morphology and HDS activity of ternary Co-Mo-W catalysts supported on P-modified SBA-15 and SBA-16 substrates. Applied Catalysis B: Environmental, 2009, 92, 168-184.	10.8	111
382	Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface. Langmuir, 2009, 25, 7148-7155.	1.6	54
383	Role of the Ru and Support in Sulfided RuNiMo Catalysts in Simultaneous Hydrodearomatization (HDA), Hydrodesulfurization (HDS), and Hydrodenitrogenation (HDN) Reactions. Energy & Ener	2.5	16
384	Plasma Fluorination of Chemically Derived Graphene Sheets and Subsequent Modification With Butylamine. Chemistry of Materials, 2009, 21, 3433-3438.	3.2	151
385	Photocatalytic Water Splitting Under Visible Light. Advances in Chemical Engineering, 2009, 36, 111-143.	0.5	77
386	Gold Particle Size Determination on Au/TiO ₂ -CeO ₂ Catalysts by Means of Carbon Monoxide, Hydrogen Chemisorption and Transmission Electron Microscopy. Journal of Nano Research, 2009, 5, 13-23.	0.8	16
387	Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen. Catalysis Communications, 2009, 10, 1275-1278.	1.6	125
388	Monitoring the states of vanadium oxide during the transformation of TiO2 anatase-to-rutile under reactive environments: H2 reduction and oxidative dehydrogenation of ethane. Catalysis Communications, 2009, 11 , 15 - 19 .	1.6	49
389	Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy and Environmental Science, 2009, 2, 35-54.	15.6	378
390	H2 production from CH4 decomposition: Regeneration capability and performance of nickel and rhodium oxide catalysts. Journal of Power Sources, 2008, 184, 265-275.	4.0	26
391	La $1\hat{a}$ °x Ca x NiO3 Perovskite Oxides: Characterization and Catalytic Reactivity in Dry Reforming of Methane. Catalysis Letters, 2008, 124, 195-203.	1.4	71
392	Hydrogen Production from Glycerol Over Nickel Catalysts Supported on Al2O3 Modified by Mg, Zr, Ce or La. Topics in Catalysis, 2008, 49, 46-58.	1.3	224
393	Relevance of the nature of bimetallic PtAu nanoparticles as electrocatalysts for the oxygen reduction reaction in the presence of methanol. Journal of Power Sources, 2008, 177, 9-16.	4.0	56
394	Surface properties and performance for VOCs combustion of LaFe1â^'yNiyO3 perovskite oxides. Journal of Solid State Chemistry, 2008, 181, 905-912.	1.4	85
395	Influence of reduction temperature and metal loading on the performance of molybdenum phosphide catalysts for dibenzothiophene hydrodesulfurization. Applied Catalysis A: General, 2008, 334, 330-338.	2.2	32
396	Study of the surface and redox properties of ceria–zirconia oxides. Applied Catalysis A: General, 2008, 337, 86-96.	2,2	213

#	Article	IF	Citations
397	Structural features and performance of LaNi1â^'xRhxO3 system for the dry reforming of methane. Applied Catalysis A: General, 2008, 344, 10-19.	2.2	105
398	Pt/Ta2O5–ZrO2 catalysts for vapour phase selective hydrogenation of crotonaldehyde. Applied Catalysis A: General, 2008, 349, 165-169.	2.2	30
399	Palladium-manganese catalysts supported on monolith systems for methane combustion. Applied Catalysis B: Environmental, 2008, 79, 122-131.	10.8	30
400	Influence of the acidity of nanostructured CoMo/P/Ti-HMS catalysts on the HDS of 4,6-DMDBT reaction pathways. Applied Catalysis B: Environmental, 2008, 80, 1-14.	10.8	58
401	The effects of La2O3 on the structural properties of La2O3–Al2O3 prepared by the sol–gel method and on the catalytic performance of Pt/La2O3–Al2O3 towards steam reforming and partial oxidation of methane. Applied Catalysis B: Environmental, 2008, 84, 552-562.	10.8	75
402	Sulfonation of vulcanized ethylene–propylene–diene terpolymer membranes. Acta Materialia, 2008, 56, 4780-4788.	3.8	13
403	Preparation and characterization of nickel-based mixed-oxides and their performance for catalytic methane decomposition. Catalysis Today, 2008, 133-135, 367-373.	2.2	62
404	Effect of aluminum on the properties of lanthana-supported nickel catalysts. Catalysis Today, 2008, 133-135, 925-930.	2.2	19
405	Citral hydrogenation over Ir/TiO2 and Ir/TiO2/SiO2 catalysts. Catalysis Today, 2008, 133-135, 699-705.	2.2	33
406	The inhibiting effect of extra-framework Al on monolithic Co-ZSM5 catalysts used for NO SCR. Catalysis Today, 2008, 133-135, 428-434.	2.2	10
407	Zirconia-supported LaCoO3 catalysts for hydrogen production by oxidative reforming of diesel: Optimization of preparation conditions. Catalysis Today, 2008, 138, 135-140.	2.2	21
408	Sb–V–O-based catalysts for the ammoxidation of propane with a fluidized bed reactor. Catalysis Today, 2008, 139, 202-208.	2.2	10
409	Kinetic modelling of methylcyclohexane ring-opening over a HZSM-5 zeolite catalyst. Chemical Engineering Journal, 2008, 140, 287-295.	6.6	23
410	Synthesis, characterization and catalytic activity of ruthenium-doped cobalt catalysts. Applied Catalysis A: General, 2008, 341, 35-42.	2.2	22
411	Promoter effect of Co on the catalytic activity of Re \hat{I}^3 -Al2O3 catalysts for the HDS and HDN of gas oil. Applied Catalysis A: General, 2008, 350, 6-15.	2.2	10
412	Hydrogen production for fuel cell by oxidative reforming of diesel surrogate: Influence of ceria and/or lanthana over the activity of Pt/Al2O3 catalysts. Fuel, 2008, 87, 2502-2511.	3.4	47
413	Effect of redox additives over Ni/Al2O3 catalysts on syngas production via methane catalytic partial oxidation. Fuel, 2008, 87, 3223-3231.	3.4	31
414	Performance of La,Ce-modified alumina-supported Pt and Ni catalysts for the oxidative reforming of diesel hydrocarbons. International Journal of Hydrogen Energy, 2008, 33, 652-663.	3.8	93

#	Article	IF	CITATIONS
415	Photocatalytic hydrogen evolution from CdS–ZnO–CdO systems under visible light irradiation: Effect of thermal treatment and presence of Pt and Ru cocatalysts. International Journal of Hydrogen Energy, 2008, 33, 4265-4273.	3.8	142
416	Effect of Al and Ti content in HMS material on the catalytic activity of NiMo and CoMo hydrotreating catalysts in the HDS of DBT. Microporous and Mesoporous Materials, 2008, 111, 157-170.	2.2	47
417	Synthesis and characterization of P-modified mesoporous CoMo/HMS–Ti catalysts. Microporous and Mesoporous Materials, 2008, 111, 493-506.	2.2	42
418	Promotional effect of C2–C4 hydrocarbon on CH4 oxidation on sulfated Pt/γ-Al2O3 catalysts. Journal of Molecular Catalysis A, 2008, 281, 179-183.	4.8	5
419	Deterioration of the oxygen storage and release properties of CeZrO4 by incorporation of calcium. Journal of Catalysis, 2008, 256, 172-182.	3.1	57
420	Insights into the room temperature magnetism of ZnOâ^•Co3O4 mixtures. Journal of Applied Physics, 2008, 103, 083905.	1.1	40
421	Nonlinear optical susceptibility of multicomponent tellurite thin film glasses. Journal of Applied Physics, 2008, 104, 113510.	1.1	15
422	<i>Operando</i> Raman-GC Study on the Structureâ ⁻ Activity Relationships in V ⁵⁺ /CeO ₂ Catalyst for Ethane Oxidative Dehydrogenation: The Formation of CeVO ₄ . Journal of Physical Chemistry C, 2008, 112, 11441-11447.	1.5	65
423	Loss of NO storage capacity of Pt–Ba/Al2O3 catalysts due to incorporation of phosphorous. Catalysis Communications, 2008, 9, 327-332.	1.6	3
424	Performance enhancement in the water–gas shift reaction of platinum deposited over a cerium-modified TiO2 support. Catalysis Communications, 2008, 9, 1759-1765.	1.6	44
425	Carbon dioxide hydrogenation over Fe–Ce catalysts. Catalysis Communications, 2008, 9, 1945-1948.	1.6	68
426	Improved activity of Pt/\hat{l}^3 -Al2O3 catalysts for CH4O2 reaction under lean conditions due to sulfation and catalyst loading. Catalysis Communications, 2008, 9, 2601-2605.	1.6	13
427	Ti-containing volcanic ash as photocatalyst for degradation of phenol. Energy and Environmental Science, 2008, 1, 364.	15.6	38
428	Highlights from a Development Process of Cetane-Enhancing Catalysts. Energy & Energy	2.5	6
429	Novel Synthesis Method of CO-Tolerant PtRuâ°'MoO _{<i>x</i>} Nanoparticles: Structural Characteristics and Performance for Methanol Electrooxidation. Chemistry of Materials, 2008, 20, 4249-4259.	3.2	99
430	Enhanced nonlinear optical properties of oxygen deficient lead-niobium-germanate film glasses. Applied Physics Letters, 2007, 90, 251907.	1.5	16
431	Interaction of isobutene and methacrolein with silica-supported uranium and molybdenum oxide catalysts. Journal of Chemical Technology and Biotechnology, 2007, 36, 219-229.	1.6	0
432	Effect of stacking of MoS ₂ slabs on catalytic performance of supported CoMo-catalysts in hydrodesulfurization of dibenzothiophene. Materials Research Innovations, 2007, 11, 54-59.	1.0	11

#	Article	IF	Citations
433	Optical constants of electron-beam evaporated boron films in the 68-900 eV photon energy range. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 3800.	0.8	19
434	Structural and surface features of PtNi catalysts for reforming of methane with CO2. Applied Catalysis A: General, 2007, 323, 188-201.	2.2	204
435	Reactivation of sulphated Pt/Al2O3 catalysts by reductive treatment in the simultaneous oxidation of CO and C3H6. Applied Catalysis B: Environmental, 2007, 72, 272-281.	10.8	40
436	Influence of the Preparation Route of Bimetallic Ptâ^'Au Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2007, 111, 2913-2923.	1.5	160
437	Evolution of the bulk structure and surface species on Fe–Ce catalysts during the Fischer–Tropsch synthesis. Green Chemistry, 2007, 9, 663-670.	4.6	53
438	Changes in Ceria-Supported Vanadium Oxide Catalysts during the Oxidative Dehydrogenation of Ethane and Temperature-Programmed Treatments. Journal of Physical Chemistry C, 2007, 111, 18708-18714.	1.5	55
439	Preparation, Characterization, and Performance of Alumina-Supported Nanostructured Moâ^'Phosphide Systems. Chemistry of Materials, 2007, 19, 5627-5636.	3.2	36
440	Effects of the 3- and 4-Methoxy and Acetamide Substituents and Solvent Environment on the Electronic Properties of N-Substituted 1,8-Naphthalimide Derivatives. Journal of Physical Chemistry A, 2007, 111, 9724-9732.	1.1	24
441	Support Effect on the Structure and Reactivity of VSbO ₄ Catalysts for Propane Ammoxidation to Acrylonitrile. Chemistry of Materials, 2007, 19, 6621-6628.	3.2	30
442	Hydrogen Production Reactions from Carbon Feedstocks:  Fossil Fuels and Biomass. Chemical Reviews, 2007, 107, 3952-3991.	23.0	1,108
443	Synergistic effect of Pd in methane combustion PdMnO /Al2O3 catalysts. Catalysis Communications, 2007, 8, 1287-1292.	1.6	40
444	An XPS evidence of the effect of the electronic state of Pd on CH4 oxidation on Pd/γ–Al2O3 catalysts. Catalysis Communications, 2007, 8, 1977-1980.	1.6	20
445	Kinetic Model Discrimination for Toluene Hydrogenation over Noble-Metal-Supported Catalysts. Industrial & Discrimination for Toluene Hydrogenation over Noble-Metal-Supported Catalysts.	1.8	20
446	Effect of Ce-doping on Rh/ZrO2 catalysts for partial oxidation of methane. Applied Catalysis A: General, 2007, 326, 8-16.	2.2	90
447	Fischer–Tropsch synthesis on mono- and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors. Applied Catalysis A: General, 2007, 326, 65-73.	2.2	103
448	Effect of the support on the kinetic and deactivation performance of Pt/support catalysts during coupled hydrogenation and ring-opening of pyrolysis gasoline. Applied Catalysis A: General, 2007, 333, 161-171.	2.2	27
449	The effect of Fe on the catalytic behavior of model Pd-Rh/CeO2-Al2O3 three-way catalyst. Applied Catalysis B: Environmental, 2007, 76, 375-385.	10.8	39
450	Degree of functionalization of carbon nanofibers with benzenesulfonic groups in an acid medium. Carbon, 2007, 45, 1669-1678.	5.4	43

#	Article	IF	CITATIONS
451	Ethanol steam reforming over Ni/La–Al2O3 catalysts: Influence of lanthanum loading. Catalysis Today, 2007, 129, 336-345.	2.2	174
452	CoMo/Ti-SBA-15 catalysts for dibenzothiophene desulfurization. Catalysis Today, 2007, 127, 70-84.	2.2	103
453	Factors influencing the thioresistance of nickel catalysts in aromatics hydrogenation. Applied Catalysis A: General, 2007, 317, 20-33.	2.2	32
454	Promotion of Re/Al2O3 and Re/C catalysts by Ni sulfide in the HDS and HDN of gas oil: Effects of Ni loading and support. Applied Catalysis A: General, 2007, 319, 218-229.	2.2	14
455	Influence of the preparation method on the activity of phosphate-containing CoMo/HMS catalysts in deep hydrodesulphurization. Applied Catalysis A: General, 2007, 321, 58-70.	2.2	58
456	Enhancement of pyrolysis gasoline hydrogenation over Pd-promoted Ni/SiO2–Al2O3 catalysts. Fuel, 2007, 86, 2262-2274.	3.4	64
457	Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons. Fuel Processing Technology, 2007, 88, 799-805.	3.7	96
458	Ethanol steam reforming over Ni/MxOyNi/MxOy–Al2O3Al2O3 (M=CeM=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy, 2007, 32, 1462-1471.	3.8	390
459	Nature and location of cerium in Ce-loaded Y zeolites as revealed by HRTEM and spectroscopic techniques. Microporous and Mesoporous Materials, 2007, 100, 276-286.	2.2	43
460	Effect of precursor nature on the behavior of titanium-polysiloxane homogeneous catalysts in primary alkene epoxidation. Journal of Molecular Catalysis A, 2007, 269, 133-140.	4.8	8
461	Propene epoxidation by nitrous oxide over Au–Cu/TiO2 alloy catalysts. Journal of Molecular Catalysis A, 2007, 274, 159-168.	4.8	87
462	Synthesis of the ceramic-metal catalysts (PtRuNi-TiO2) by the combustion method. Journal of Power Sources, 2007, 169, 98-102.	4.0	22
463	Selective destruction of nitrogen-containing organic volatile compounds over Sb–V–O catalysts. Applied Catalysis B: Environmental, 2007, 71, 85-93.	10.8	13
464	Removal of refractory S-containing compounds from liquid fuels on novel bifunctional CoMo/HMS catalysts modified with Ti. Applied Catalysis B: Environmental, 2007, 71, 223-236.	10.8	59
465	Pt, Ir and Pd promoted Co/MSU catalysts for hydrotreating of tetralin: A thiotolerance study. Applied Catalysis B: Environmental, 2007, 73, 180-192.	10.8	30
466	Effect of Ru on LaCoO3 perovskite-derived catalyst properties tested in oxidative reforming of diesel. Applied Catalysis B: Environmental, 2007, 73, 247-258.	10.8	80
467	Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 2007, 73, 317-326.	10.8	677
468	Industrial H2-SCR of NO on a novel Pt/MgO–CeO2 catalyst. Applied Catalysis B: Environmental, 2007, 75, 147-156.	10.8	109

#	Article	IF	Citations
469	Promoting effect of propane traces on the activity of Pt/l³-Al2O3 and Ptâ€"Sn/l³â€"Al2O3 catalysts in CH4â€"SO2â€"O2 reactions. Topics in Catalysis, 2007, 42-43, 47-50.	1.3	0
470	Nucleation of isolated PO4 units on CeO2 driven by high temperatures and the effect on its oxygen storage and release properties. Topics in Catalysis, 2007, 42-43, 443-447.	1.3	4
471	Promoting effect of Pt in Ni-based catalysts for CH4 reforming. Reaction Kinetics and Catalysis Letters, 2007, 91, 241-248.	0.6	15
472	Hydrogenation of citral on Ir/SiO2 catalysts. Effect of the addition of Nb2O5 on surface and catalytic properties. Reaction Kinetics and Catalysis Letters, 2007, 92, 369-376.	0.6	14
473	THE SOLVENT EFFECT IN THE HYDROGENATION OF CITRAL OVER Ir AND Ir-Fe/TiO2 CATALYSTS. Journal of the Chilean Chemical Society, 2007, 52, .	0.5	6
474	A density functional theory study of the dissociation of H2 on gold clusters: Importance of fluxionality and ensemble effects. Journal of Chemical Physics, 2006, 125, 164715.	1.2	114
475	TXRF analysis of aged three way catalysts. Analyst, The, 2006, 131, 590.	1.7	20
476	Silylation of a Co/SiO2Catalyst. Characterization and Exploitation of the CO Hydrogenation Reaction. Langmuir, 2006, 22, 3131-3137.	1.6	37
477	Hydrodesulfurization of dibenzothiophene over CoMo/HMS and CoMo/Ti-HMS catalysts. Catalysis Communications, 2006, 7, 33-41.	1.6	51
478	The role of lanthanum oxide in the formation of NO2 over Ptâ€"Pb/Al2O3â€"La2O3 catalysts under lean-burn conditions. Catalysis Communications, 2006, 7, 232-235.	1.6	6
479	Promotional effect of Sn addition to sulfated Pt/\hat{I}^3 -Al2O3 catalysts on CH4 combustion. Effect of C3H8 addition. Catalysis Communications, 2006, 7, 436-442.	1.6	4
480	Catalytic performance of Pt–Sn∫î³-Al2O3 for diesel soot oxidation. Catalysis Communications, 2006, 7, 867-874.	1.6	15
481	A Study about the Propane Ammoxidation to Acrylonitrile with an Alumina-Supported Sbâ^'Vâ^'O Catalyst. Industrial & Engineering Chemistry Research, 2006, 45, 4537-4543.	1.8	33
482	Synthesis, characterization and catalytic activity of metal nanoparticles in the selective oxidation of olefins in the gas phase. Journal of Experimental Nanoscience, 2006, 1, 399-418.	1.3	8
483	Relevance in the Fischerâ^'Tropsch Synthesis of the Formation of Feâ^'Oâ^'Ce Interactions on Ironâ^'Cerium Mixed Oxide Systems. Journal of Physical Chemistry B, 2006, 110, 23870-23880.	1.2	60
484	Synthesis, Structural Features, and Reactivity of Feâ ⁻ 'Mn Mixed Oxides Prepared by Microemulsion. Chemistry of Materials, 2006, 18, 2364-2375.	3.2	84
485	On the origin of the high performance of MWNT-supported PtPd catalysts for the hydrogenation of aromatics. Carbon, 2006, 44, 84-98.	5.4	90
486	Vanadium supported on carbon coated honeycomb monoliths for the selective catalytic reduction of NO at low temperatures: Influence of the oxidation pre-treatment. Carbon, 2006, 44, 407-417.	5.4	36

#	Article	IF	CITATIONS
487	Functionalization of carbon support and its influence on the electrocatalytic behaviour of Pt/C in H2 and CO electrooxidation. Carbon, 2006, 44, 1919-1929.	5.4	59
488	Hydrogen production by oxidative reforming of hexadecane over Ni and Pt catalysts supported on Ce/La-doped Al2O3. Applied Catalysis A: General, 2006, 297, 60-72.	2.2	110
489	Catalytic ring opening of naphthenic structures. Applied Catalysis A: General, 2006, 299, 14-29.	2.2	21
490	Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology. Applied Catalysis A: General, 2006, 311, 66-75.	2.2	146
491	Structural features of La1â^'xCexNiO3 mixed oxides and performance for the dry reforming of methane. Applied Catalysis A: General, 2006, 311, 94-104.	2.2	206
492	Aromatics reduction of pyrolysis gasoline (PyGas) over HY-supported transition metal catalysts. Applied Catalysis A: General, 2006, 315, 101-113.	2.2	41
493	Methanol electrooxidation on PtRu nanoparticles supported on functionalised carbon black. Catalysis Today, 2006, 116, 422-432.	2.2	68
494	Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation. Catalysis Today, 2006, 116, 304-312.	2.2	44
495	Tunning the Nb addition to Sb-V-O catalysts for an efficient promotion of the ammoxidation of propane to acrylonitrile. Catalysis Today, 2006, 118, 366-372.	2.2	23
496	Ethanol reforming processes over ZnO-supported palladium catalysts: Effect of alloy formation. Journal of Molecular Catalysis A, 2006, 250, 44-49.	4.8	65
497	Study of the effect of mechanical–chemical activation of Co–Mo/γ-AlO and Ni–Mo/γ-AlO catalysts for hydrodesulfurization. Applied Catalysis A: General, 2006, 298, 94-102.	2.2	17
498	Modification of a three-way catalyst washcoat by aging: A study along the longitudinal axis. Applied Surface Science, 2006, 252, 8442-8450.	3.1	13
499	Structure and magnetism in the Zn–Mn–O system: A candidate for room temperature ferromagnetic semiconductor. Journal of the European Ceramic Society, 2006, 26, 3017-3025.	2.8	30
500	Synthesis and reactivity of heterometallic RhO–M (M=Si, Ti) complexes. Journal of Molecular Catalysis A, 2006, 247, 44-51.	4.8	18
501	Styrene epoxidation over cesium promoted silver nanowires catalysts. Journal of Molecular Catalysis A, 2006, 258, 346-354.	4.8	18
502	TD-DFT analysis of the electronic spectra of Ti-containing catalysts. Topics in Catalysis, 2006, 41, 27-34.	1.3	23
503	Effect of synthesis method on stabilized nano-scaled Sbâ€"Vâ€"O catalysts for the ammoxidation of propane to acrylonitrile. Topics in Catalysis, 2006, 41, 43-53.	1.3	32
504	Catalytic combustion of ethyl acetate over ceria-promoted platinum supported on Al2O3 and ZrO2 catalysts. Journal of Sol-Gel Science and Technology, 2006, 37, 169-174.	1.1	6

#	Article	IF	Citations
505	Carbon oxide hydrogenation over silica-supported iron-based catalysts. Applied Catalysis A: General, 2006, 308, 19-30.	2.2	67
506	Structural changes and activation treatment in a Co/SiO2 catalyst for Fischer–Tropsch synthesis. Catalysis Today, 2006, 114, 422-427.	2.2	51
507	Design of a diesel reformer coupled to a PEMFC. Catalysis Today, 2006, 116, 324-333.	2.2	20
508	Hydrogen production via CH4 pyrolysis: Regeneration of ex hydrotalcite oxide catalysts. Catalysis Today, 2006, 116, 289-297.	2.2	35
509	Alumina-supported V–Mo–O mixed oxide catalysts, the formation of phases involving aluminum: AlVMoO7. Catalysis Today, 2006, 118, 353-359.	2.2	13
510	Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: Relationship between molecular structures and chemical reactivity. Catalysis Today, 2006, 118, 279-287.	2.2	171
511	Enhancement of naphthalene hydrogenation over PtPd/SiO2–Al2O3 catalyst modified by gold. Journal of Molecular Catalysis A, 2006, 253, 30-43.	4.8	40
512	Synergy of FexCe1â^'xO2 mixed oxides for N2O decomposition. Journal of Catalysis, 2006, 239, 340-346.	3.1	177
513	Effect of molybdenum and tungsten on Co/MSU as hydrogenation catalysts. Journal of Catalysis, 2006, 240, 258-267.	3.1	31
514	Absorption-enhanced reforming of phenol by steam over supported Fe catalysts. Journal of Catalysis, 2006, 241, 132-148.	3.1	129
515	Effect of Ti on the catalytic properties of CoMo/Ti(x)-HMS catalysts in the reaction of hydrodesulfurization of 4-ethyl-6-methyl dibenzothiophene. Journal of Catalysis, 2006, 242, 254-269.	3.1	61
516	Influence of molar ratio on Pd–Pt catalysts for methane combustion. Journal of Catalysis, 2006, 243, 14-24.	3.1	128
517	Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. Journal of Catalysis, 2006, 243, 199-211.	3.1	254
518	TWC deactivation by lead: A study of the Rh/CeO2 system. Applied Catalysis B: Environmental, 2006, 62, 132-143.	10.8	49
519	Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactorThe effect of copper nanoparticles. Applied Catalysis B: Environmental, 2006, 62, 77-85.	10.8	157
520	Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications. Applied Catalysis B: Environmental, 2006, 69, 75-84.	10.8	71
521	Synthesis of silver-gold alloy nanoparticles by a phase-transfer system. Journal of Materials Research, 2006, 21, 105-111.	1.2	43
522	Factors influencing selectivity in naphthalene hydrogenation over Au- and Pt–Au-supported catalysts. Applied Catalysis A: General, 2005, 283, 165-175.	2.2	40

#	Article	IF	CITATIONS
523	Partial oxidation of methane to syngas over Ni/MgO and Ni/La2O3 catalysts. Applied Catalysis A: General, 2005, 289, 214-223.	2.2	108
524	Improved sulfur resistance of Pt-Sn/ \hat{I}^3 -Al2O3 catalysts for C3H8-NO-O2 reaction under lean conditions due to Pt-Sn surface interactions. Journal of Molecular Catalysis A, 2005, 228, 275-282.	4.8	12
525	Liquid-phase ethylbenzene oxidation to hydroperoxide with barium catalysts. Journal of Molecular Catalysis A, 2005, 227, 101-105.	4.8	27
526	Enhanced methanol electrooxidation activity of PtRu nanoparticles supported on H2O2-functionalized carbon black. Carbon, 2005, 43, 3002-3005.	5.4	70
527	Oxidation of o-xylene on mesoporous Ti-phosphate-supported VOx catalysts and promoter effect of K+ on selectivity. Catalysis Today, 2005, 99, 179-186.	2.2	12
528	New supported Pd catalysts for the direct transformation of ethanol to ethyl acetate under medium pressure conditions. Catalysis Today, 2005, 107-108, 431-435.	2.2	44
529	SCR of NO by CH4 on Pt/ZrO2–TiO2 sol–gel catalysts. Catalysis Today, 2005, 107-108, 149-156.	2.2	36
530	Role of quaternary ammonium salts in the liquid-phase oxidation of ethylbenzene to hydroperoxide with molecular oxygen. Applied Catalysis A: General, 2005, 294, 290-297.	2.2	16
531	AuPd alloy formation in Au-Pd/Al2O3 catalysts and its role on aromatics hydrogenation. Applied Surface Science, 2005, 242, 380-391.	3.1	108
532	Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles. Applied Surface Science, 2005, 252, 793-800.	3.1	49
533	Role of sulphates on the mechanism of NH3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths. Journal of Catalysis, 2005, 233, 166-175.	3.1	47
534	Metalâ∈"support interactions and reactivity of Co/CeO2 catalysts in the Fischerâ∈"Tropsch synthesis reaction. Journal of Catalysis, 2005, 234, 451-462.	3.1	109
535	Influence of the textural properties of supports on the behaviour of titanium-supported amorphous silica epoxidation catalysts. Journal of Catalysis, 2005, 234, 488-495.	3.1	20
536	Novel Fe–Mn–Zn–Ti–O mixed-metal oxides for the low-temperature removal of H2S from gas streams in the presence of H2, CO2, and H2O. Journal of Catalysis, 2005, 236, 205-220.	3.1	71
537	Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Applied Catalysis B: Environmental, 2005, 55, 229-241.	10.8	156
538	Novel Zn–Ti-based mixed metal oxides for low-temperature adsorption of H2S from industrial gas streams. Applied Catalysis B: Environmental, 2005, 57, 125-137.	10.8	92
539	Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol. Applied Catalysis B: Environmental, 2005, 57, 191-199.	10.8	101
540	The effect of calcination temperature on the oxygen storage and release properties of CeO2 and Ceâ€"Zrâ€"O metal oxides modified by phosphorus incorporation. Applied Catalysis B: Environmental, 2005, 59, 13-25.	10.8	81

#	Article	IF	Citations
541	Reactivation of sintered Pt/Al2O3 oxidation catalysts. Applied Catalysis B: Environmental, 2005, 59, 227-233.	10.8	47
542	A comparative study of Pd supported on MCM-41 and SiO2 in the liquid phase hydrogenation of phenyl alkyl acetylenes mixtures. Journal of Molecular Catalysis A, 2005, 231, 67-74.	4.8	27
543	Effect of the preparation of Re/\hat{I}^3 -Al2O3 catalysts on the HDS and HDN of gas oil. Applied Catalysis A: General, 2005, 281, 25-30.	2.2	14
544	Synergism between unsupported Re and Co or Ni sulfide catalysts in the HDS and HDN of gas oil. Applied Catalysis A: General, 2005, 287, 47-53.	2.2	21
545	Effect of low steam/carbon ratio on water gas shift reaction. Catalysis Today, 2005, 107-108, 671-675.	2.2	18
546	Effect of mileage on the deactivation of vehicle-aged three-way catalysts. Catalysis Today, 2005, 107-108, 77-85.	2.2	41
547	Iridium-supported catalyst for enantioselective hydrogenation of 1-phenyl-1,2-propanedione: The effects of the addition of promoter and the modifier concentration. Catalysis Today, 2005, 107-108, 235-243.	2.2	25
548	Strong dependence on pressure of the performance of a Co/SiO2 catalyst in Fischer–Tropsch slurry reactor synthesis. Catalysis Letters, 2005, 100, 105-116.	1.4	33
549	The Effect of the Addition of Re and Ge on the Properties of Pt/Al2O3. Catalysis Letters, 2005, 103, 229-237.	1.4	10
550	Fischer-Tropsch Synthesis. Reduction Behavior and Catalytic Activity of Fe-Ce Systems. AIP Conference Proceedings, 2005, , .	0.3	0
551	Structural and chemical analysis of amorphous B–N–C thin films deposited by RF sputtering. Diamond and Related Materials, 2005, 14, 1663-1668.	1.8	35
552	Removal of PAH Compounds from Liquid Fuels by Pd Catalysts. Environmental Science & Emp; Technology, 2005, 39, 3374-3381.	4.6	26
553	Synthesis and Characterization of Ti-HMS and CoMo/Ti-HMS Oxide Materials with Varying Ti Content. Chemistry of Materials, 2005, 17, 4062-4073.	3.2	84
554	Strong improvement on CH4 oxidation over Pt/\hat{I}^3 -Al2O3 catalysts. Catalysis Communications, 2005, 6, 287-292.	1.6	24
555	Chemical Structures of Coprecipitated Feâ^'Ce Mixed Oxides. Chemistry of Materials, 2005, 17, 2329-2339.	3.2	161
556	Effects of the CePO on the oxygen storage and release properties of CeO and CeZrO solid solution. Journal of Catalysis, 2004, 226, 443-456.	3.1	79
557	The phenol steam reforming reaction over MgO-based supported Rh catalysts. Journal of Catalysis, 2004, 228, 417-432.	3.1	136
558	Effects of calcination temperature on the stability of CePO4 detected in vehicle-aged commercial three-way catalysts. Applied Catalysis B: Environmental, 2004, 48, 113-123.	10.8	42

#	Article	IF	CITATIONS
559	Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst. Applied Catalysis B: Environmental, 2004, 51, 83-91.	10.8	128
560	Deactivation on Vehicle-Aged Diesel Oxidation Catalysts. Topics in Catalysis, 2004, 30/31, 451-456.	1.3	29
561	Production of Hydrogen by Partial Oxidation of Methanol over Carbon-Supported Copper Catalysts. Topics in Catalysis, 2004, 30/31, 481-486.	1.3	11
562	Silylation and surface properties of chemically grafted hydrophobic silica. Journal of Colloid and Interface Science, 2004, 277, 146-153.	5.0	89
563	Manganese-promoted Rh/Al2O3 for C2-oxygenates synthesis from syngas. Applied Catalysis A: General, 2004, 261, 47-55.	2.2	123
564	Hydrogenation of aromatics over Au-Pd/SiO2-Al2O3 catalysts; support acidity effect. Applied Catalysis A: General, 2004, 264, 43-51.	2.2	135
565	An experimental and theoretical study of the catalytic effect of quaternary ammonium salts on the oxidation of hydrocarbons. Tetrahedron, 2004, 60, 11527-11532.	1.0	18
566	A new low-cost synthetic route to obtain zirconium containing mesoporous silica. Microporous and Mesoporous Materials, 2004, 75, 23-32.	2.2	53
567	Synthesis of bis[N,O-{2′-pyridyl-methanolate}]dioxomolybdenum(VI) epoxidation catalyst and novel crystal structure derived from X-ray diffraction and DFT calculations. Journal of Molecular Catalysis A, 2004, 214, 269-272.	4.8	23
568	Enhanced hydrogen adsorption on single-wall carbon nanotubes by sample reduction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 120-123.	1.7	29
569	Propane oxidative dehydrogenation on VOx/ZrO2 catalysts. Journal of Catalysis, 2004, 224, 1-7.	3.1	55
570	Nature of the vanadia?ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. Journal of Catalysis, 2004, 225, 240-248.	3.1	143
571	Deep aromatics hydrogenation in the presence of DBT over Au–Pd/γ-alumina catalysts. Applied Catalysis A: General, 2004, 275, 127-139.	2.2	44
572	Binder effect upon the catalytic behavior of PtCoZSM5 washcoated on cordierite monoliths. Applied Catalysis A: General, 2004, 276, 197-205.	2.2	22
573	Simultaneous 1-pentene hydroisomerisation and thiophene hydrodesulphurisation over sulphided Ni/FAU and Ni/ZSM-5 catalysts. Applied Catalysis A: General, 2004, 262, 155-166.	2.2	54
574	Synthesis of Rh nano-particles by the microemulsion technology. Applied Catalysis A: General, 2004, 274, 33-41.	2.2	96
575	Highly efficient deep desulfurization of fuels by chemical oxidation. Green Chemistry, 2004, 6, 557.	4.6	171

Modification of the Pd/SiO2â€"Al2O3 catalyst's thioresistance by the addition of a second metal (Pt, Ru,) Tj ETQq0 0 0 0 rgBT /Overlous (Pt, Ru,) Tj ETQq0 0 rgBT /Overlou

576

#	Article	IF	Citations
577	Catalytic performance of Pt–Snſi³-Al2O3 for particulates emission prevention. Catalysis Communications, 2004, 5, 547-552.	1.6	2
578	Strong enhancement of the Fischer–Tropsch synthesis on a Co/SiO2 catalyst activate in syngas mixture. Catalysis Communications, 2004, 5, 635-638.	1.6	34
579	Inhibition of oxygenated compounds formation during CO hydrogenation over Rh/ \hat{I}^3 -Al2O3 catalysts calcined at high temperature. Catalysis Communications, 2004, 5, 703-707.	1.6	18
580	Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO2catalyst. Green Chemistry, 2004, 6, 330-334.	4.6	108
581	Support Effect in Supported Ni Catalysts on Their Performance for Methane Partial Oxidation. Catalysis Letters, 2003, 87, 211-218.	1.4	66
582	Mechanistic Aspects of Hydrogen Production by Partial Oxidation of Methanol Over Cu/ZnO Catalysts. Topics in Catalysis, 2003, 22, 245-251.	1.3	33
583	Catalytic Combustion of Methane on Fe-TiO2 Catalysts Prepared by Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2003, 27, 205-214.	1.1	36
584	Unusually High Selectivity to C2+ Alcohols on Bimetallic CoFe Catalysts During CO Hydrogenation. Catalysis Letters, 2003, 88, 123-128.	1.4	46
585	Oxidation of o-Xylene to Phthalic Anhydride on Sb-V/ZrO2 Catalysts. Catalysis Letters, 2003, 89, 27-34.	1.4	3
586	Alkynes Hydrogenation over Pd-Supported Catalysts. Catalysis Letters, 2003, 91, 115-121.	1.4	32
587	A highly sulfur resistant Pt-Sn/ \hat{I}^3 -Al2O3 catalyst for C3H8-NO-O2 reaction under lean conditions. Applied Catalysis B: Environmental, 2003, 46, 307-317.	10.8	26
588	Catalytic combustion of methane over cerium-doped palladium catalysts. Journal of Catalysis, 2003, 215, 78-86.	3.1	111
589	Influence of solvent in the synthesis steps of titanium-supported amorphous silica epoxidation catalysts. Journal of Catalysis, 2003, 217, 195-195.	3.1	23
590	Effect of lanthanum on the catalytic properties of PtSn/ \hat{l}^3 -Al2O3 bimetallic catalysts prepared by successive impregnation and \hat{A} controlled \hat{A} surface reaction. Journal of Catalysis, 2003, 219, 63-73.	3.1	72
591	Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. Journal of Catalysis, 2003, 219, 389-403.	3.1	364
592	Manganese micro-nodules on ancient brick walls. Science of the Total Environment, 2003, 302, 267-274.	3.9	8
593	Influence of carbon–oxygen surface complexes on the surface acidity of tungsten oxide catalysts supported on activated carbons. Carbon, 2003, 41, 1157-1167.	5.4	43
594	Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation. Carbon, 2003, 41, 2247-2256.	5.4	333

#	Article	IF	CITATIONS
595	Hydrodesulfurization and hydrogenation of model compounds on silica–alumina supported bimetallic systemsâ⁻†. Fuel, 2003, 82, 501-509.	3.4	45
596	Role of potassium on the structure and activity of alumina-supported vanadium oxide catalysts for propane oxidative dehydrogenation. Catalysis Today, 2003, 78, 219-228.	2.2	63
597	Silica–alumina-supported transition metal sulphide catalysts for deep hydrodesulphurization. Catalysis Today, 2003, 86, 73-85.	2.2	37
598	Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD. Microporous and Mesoporous Materials, 2003, 60, 173-181.	2.2	154
599	Influence of residual chloride ions in the CO hydrogenation over Rh/SiO2 catalysts. Journal of Molecular Catalysis A, 2003, 202, 179-186.	4.8	16
600	Effect of Fe/Ir ratio on the surface and catalytic properties in citral hydrogenation on Fe-Ir/TiO2 catalysts. Journal of Molecular Catalysis A, 2003, 203, 203-211.	4.8	36
601	Hydrogenation of aromatics over supported noble metal catalysts ex organometallic complexes. Journal of Molecular Catalysis A, 2003, 206, 299-311.	4.8	6
602	Microwave assisted N-propargylation of imidazole using alkaline promoted carbons. Applied Catalysis A: General, 2003, 240, 287-293.	2.2	17
603	Aromatics hydrogenation on silica–alumina supported palladium–nickel catalysts. Applied Catalysis A: General, 2003, 242, 17-30.	2.2	60
604	Kinetic study of liquid-phase hydrogenation of citral over Ir/TiO2 catalysts. Applied Catalysis A: General, 2003, 248, 59-65.	2.2	45
605	Evaluation of silica-alumina-supported nickel catalysts in dibenzothiophene hydrodesulphurisation. Applied Catalysis A: General, 2003, 248, 211-225.	2.2	29
606	Immobilization of 12-molybdophosphoric and 12-tungstophosphoric acids on metal-substituted hexagonal mesoporous silica. Applied Catalysis A: General, 2003, 256, 183-197.	2.2	92
607	Compositional and photoluminescent properties of anodically and stain etched porous silicon. Physica Status Solidi A, 2003, 197, 137-143.	1.7	11
608	Characterization and performance for propane oxidative dehydrogenation of Li-modified MoO3/Al2O3 catalysts. Applied Catalysis A: General, 2003, 251, 435-447.	2.2	30
609	Applications of Thermal Analysis in The Preparation of Catalysts and in Catalysis. Handbook of Thermal Analysis and Calorimetry, 2003, , 119-190.	1.6	2
610	Sulfonic acid-functionalized silica through quantitative oxidation of thiol groups. Chemical Communications, 2003, , 246-247.	2.2	87
611	Acid-Functionalized Amorphous Silica by Chemical Graftingâ^'Quantitative Oxidation of Thiol Groups. Langmuir, 2003, 19, 7621-7627.	1.6	118
612	Alumina-supported manganese- and manganese–palladium oxide catalysts for VOCs combustion. Catalysis Communications, 2003, 4, 223-228.	1.6	126

#	Article	IF	CITATIONS
613	An XPS evidence of Pt4+ present on sulfated Pt/Al2O3 and its effect on propane combustion. Catalysis Communications, 2003, 4, 371-376.	1.6	76
614	Effect of the oxide support on the propane ammoxidation with Sb–V–O-based catalysts. Catalysis Today, 2003, 78, 387-396.	2.2	38
615	Niobia-supported Sb–V–O catalysts for propane ammoxidation: effect of catalyst composition on the selectivity to acrylonitrile. Physical Chemistry Chemical Physics, 2003, 5, 4032-4039.	1.3	25
616	Bulk and Surface Structures of Palladium-Modified Copperâ [*] Zinc OxidesexHydroxycarbonate Precursors. Chemistry of Materials, 2002, 14, 1863-1872.	3.2	6
617	Chemical Analysis of Used Three-Way Catalysts by Total Reflection X-ray Fluorescence. Analytical Chemistry, 2002, 74, 5463-5469.	3.2	46
618	XANES Mo L-Edges and XPS Study of Mo Loaded in HY Zeolite. Journal of Physical Chemistry B, 2002, 106, 7824-7831.	1.2	48
619	Bulk and Surface Structures of V2O5/ZrO2Systems and Their Relevance foro-Xylene Oxidation. Langmuir, 2002, 18, 2642-2648.	1.6	47
620	Surface and Structural Features of Pt/Pd-Loaded Mesoporous Silica-Delaminated Zirconium Phosphate Systems. Langmuir, 2002, 18, 7953-7963.	1.6	12
621	SrFeO3-Î Perovskite Oxides:Â Chemical Features and Performance for Methane Combustion. Chemistry of Materials, 2002, 14, 2325-2333.	3.2	165
622	Activation of methane by oxygen and nitrogen oxides. Catalysis Reviews - Science and Engineering, 2002, 44, 1-58.	5.7	118
623	Raman spectroscopy during catalytic operations with on-line activity measurement (operando) Tj ETQq1 1 0.7843 materials. Journal of Materials Chemistry, 2002, 12, 3337-3342.	14 rgBT /C 6.7	
624	Breakthrough in the direct conversion of methane into c1-oxygenates. Chemical Communications, 2002, , 1184-1185.	2.2	38
625	Microwave single walled carbon nanotubes purification. Chemical Communications, 2002, , 1000-1001.	2.2	65
626	Thermal decomposition of a hydrotalcite-containing Cuâ€"Znâ€"Al precursor: thermal methods combined with an in situ DRIFT study. Physical Chemistry Chemical Physics, 2002, 4, 3122-3127.	1.3	47
627	Hydrogenation of aromatics over PtPd Metals supported on a mixed γ-ZrP–silica carrier promoted with lithium. Catalysis Communications, 2002, 3, 305-311.	1.6	13
628	Effective homogeneous molybdenum catalyst for linear terminal alkenes epoxidation with organic hydroperoxide. Catalysis Communications, 2002, 3, 247-251.	1.6	29
629	Support effects in Pt/TiO2–ZrO2 catalysts for NO reduction with CH4. Catalysis Today, 2002, 75, 385-391.	2.2	20
630	Liquid-phase hydrogenation of citral over Ir-supported catalysts. Journal of Molecular Catalysis A, 2002, 179, 293-299.	4.8	56

#	Article	IF	Citations
631	Supported rhodium thiolate complexes as catalyst precursors for the hydroformylation of 1-heptene in organic media. Journal of Molecular Catalysis A, 2002, 184, 19-29.	4.8	10
632	Hydrogenation of crotonaldehyde on Rh-Sn/SiO2 catalysts prepared by reaction of tetrabutyltin on prereduced Rh/SiO2 precursors. Journal of Molecular Catalysis A, 2002, 184, 431-441.	4.8	39
633	Selective oxidation of o-xylene over ternary V-Ti-Si catalysts. Applied Catalysis A: General, 2002, 224, 141-151.	2.2	19
634	Influence of pH of the impregnation solution on the phosphorus promotion in W/Al2O3 hydrotreating catalysts. Applied Catalysis A: General, 2002, 224, 97-110.	2.2	39
635	Hydrogenation of aromatics over supported Pt-Pd catalysts. Applied Catalysis A: General, 2002, 225, 223-237.	2.2	148
636	Effect of Fe-addition on the catalytic activity of silicas in the partial oxidation of methane to formaldehyde. Applied Catalysis A: General, 2002, 226, 163-174.	2.2	60
637	Liquid phase hydrogenation of crotonaldehyde over bimetallic Rh-Sn/SiO2 catalysts. Applied Catalysis A: General, 2002, 233, 183-196.	2.2	47
638	Characterization and reactivity of Re(x)/ \hat{l}^3 -Al2O3 catalysts in hydrodesulfurization and hydrodenitrogenation of gas oil: effect of Re loading. Applied Catalysis A: General, 2002, 234, 45-54.	2.2	52
639	Effect of Sb/V Ratio and of Sb + V Coverage on the Molecular Structure and Activity of Alumina-Supported Sbâ \in "O Catalysts for the Ammoxidation of Propane to Acrylonitrile. Journal of Catalysis, 2002, 206, 339-348.	3.1	94
640	Interfacial Properties of an Ir/TiO2 System and Their Relevance in Crotonaldehyde Hydrogenation. Journal of Catalysis, 2002, 208, 229-237.	3.1	67
641	Alumina- and Alumina–Zirconia-Supported PtSn Bimetallics: Microstructure and Performance for the n-Butane ODH Reaction. Journal of Catalysis, 2002, 208, 467-478.	3.1	40
642	Production of Hydrogen by Partial Oxidation of Methanol over a Cu/ZnO/Al2O3 Catalyst: Influence of the Initial State of the Catalyst on the Start-Up Behaviour of the Reformer. Journal of Catalysis, 2002, 212, 112-118.	3.1	45
643	Title is missing!. Catalysis Letters, 2002, 79, 165-170.	1.4	56
644	Title is missing!. Catalysis Letters, 2002, 84, 153-161.	1.4	17
645	EFFECT OF CHLORINE PRECURSOR IN SURFACE AND CATALYTIC PROPERTIES OF Fe/TiO2 CATALYSTS. Journal of the Chilean Chemical Society, 2002, 47, .	0.1	1
646	Surface Structures of Rhâ^'Cu Solâ^'Gel Catalysts and Performance for Crotonaldehyde Hydrogenation. Langmuir, 2001, 17, 522-527.	1.6	38
647	Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews, 2001, 101, 1981-2018.	23.0	2,309
648	Highly effective epoxidation of alkenes with Ti-containing soluble polymers. Chemical Communications, 2001, , 2228-2229.	2.2	7

#	Article	IF	CITATIONS
649	Chemical Structures of ZrO2-Supported Vâ^'Sb Oxides. Chemistry of Materials, 2001, 13, 1174-1180.	3.2	32
650	Tungsten and Tungsten Carbide Supported on Activated Carbon:  Surface Structures and Performance for Ethylene Hydrogenation. Langmuir, 2001, 17, 1752-1756.	1.6	59
651	1-Heptene hydroformylation over phosphinated silica-anchored rhodium thiolate complexes. Journal of Molecular Catalysis A, 2001, 166, 255-264.	4.8	14
652	CO hydrogenation with Co catalyst supported on porous media. Journal of Molecular Catalysis A, 2001, 167, 81-89.	4.8	16
653	Carbon-supported tungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions. Applied Catalysis A: General, 2001, 206, 295-307.	2.2	93
654	Surface properties and catalytic performance for ethane combustion of La1â^'xKxMnO3+δ perovskites. Applied Catalysis A: General, 2001, 207, 17-24.	2.2	96
655	Methanol oxidation over ZrO2–SiO2 supported phosphomolybdic acid. Applied Catalysis A: General, 2001, 208, 63-75.	2.2	26
656	Hydrogen peroxide decomposition over $Ln1\hat{a}^2xAxMnO3$ (Ln = La or Nd and A = K or Sr) perovskites. Applied Catalysis A: General, 2001, 215, 245-256.	2.2	113
657	Structural and morphological study of metal deposition on an aged hydrotreating catalyst. Applied Catalysis A: General, 2001, 220, 93-104.	2.2	35
658	Pt- (and Co-) Promoted Molybdena–Alumina Catalysts: Analysis of the Impregnation Steps. Journal of Colloid and Interface Science, 2001, 237, 290-293.	5.0	0
659	Oxidative Methanol Reforming Reactions on CuZnAl Catalysts Derived from Hydrotalcite-like Precursors. Journal of Catalysis, 2001, 198, 338-347.	3.1	167
660	Study of the Co–Pt Synergism for the Selective Catalytic Reduction of NOx with CH4. Journal of Catalysis, 2001, 199, 60-72.	3.1	34
661	The Inhibiting Effect of Lanthanum on the Formation of Benzene over PtSn/Al2O3 Reforming Catalysts. Journal of Catalysis, 2001, 203, 257-263.	3.1	11
662	Correlation of Oxidation States in LaFexNi1-xO3+ $\hat{\Gamma}$ Oxides with Catalytic Activity for H2O2 Decomposition. Journal of Catalysis, 2001, 203, 264-272.	3.1	66
663	α-TiP-Supported Vanadium Oxide Catalysts: Influence of Calcination Pretreatments on Structure and Performance for o-Xylene Oxidation. Journal of Catalysis, 2001, 204, 466-478.	3.1	12
664	Hydrogenation of Cinnamaldehyde on Ir/\hat{I}^3 -Al2O3 Catalysts. Influence of the Surface Acidity. Reaction Kinetics and Catalysis Letters, 2001, 74, 127-133.	0.6	4
665	CO/CO2 hydrogenation and ethylene hydroformylation over silica-supported PdZn catalysts. Catalysis Letters, 2001, 72, 183-189.	1.4	21
666	Adsorption of nitric oxide and temperature programmed desorption on nonstoichiometric nickel–copper manganites. Applied Surface Science, 2001, 174, 289-295.	3.1	5

#	Article	IF	CITATIONS
667	Partial oxidation of methane into C1-oxygenates: role of homogeneous reactions and catalyst surface area. Catalysis Today, 2001, 71, 11-19.	2.2	10
668	Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: influence of support and promoter. Applied Catalysis B: Environmental, 2001, 29, 207-215.	10.8	228
669	Role of bulk and surface structures of La1â^'xSrxNiO3 perovskite-type oxides in methane combustion. Applied Catalysis B: Environmental, 2001, 33, 45-55.	10.8	100
670	Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Applied Catalysis B: Environmental, 2001, 34, 255-266.	10.8	160
671	Structural features and activity for CO oxidation of LaFexNi1-xO3+ $\ddot{l}f$ catalysts. Studies in Surface Science and Catalysis, 2000, , 2195-2200.	1.5	10
672	Identification and roles of the different active sites in supported vanadia catalysts by in situ techniques. Studies in Surface Science and Catalysis, 2000, 130, 3125-3130.	1.5	35
673	Characterization of polymer systems based on sulfonated poly(2,6-dimethyl-1,4-phenylene oxide). Polymer International, 2000, 49, 1534-1538.	1.6	18
674	Equilibrium and Kinetics of NO and CO Chemisorptions on Nonstoichiometric Nickel–Copper Manganites. Journal of Colloid and Interface Science, 2000, 225, 440-446.	5.0	5
675	Surface modified amorphous titanosilicate catalysts for liquid phase epoxidation. Catalysis Today, 2000, 61, 49-54.	2.2	51
676	Preliminary study on the TS-1 deactivation during styrene oxidation with H2O2. Catalysis Today, 2000, 61, 263-270.	2.2	40
677	Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane. Catalysis Today, 2000, 61, 295-301.	2.2	115
678	Catalytic combustion of methane on Pd–Cu/SiO2 catalysts. Catalysis Today, 2000, 62, 209-217.	2.2	49
679	Factors affecting Ni-sulfide formation in Y-type zeolites: a combined Fourier transform infrared and X-ray photoelectron spectroscopy study. Microporous and Mesoporous Materials, 2000, 34, 181-194.	2.2	27
680	Crotonaldehyde hydrogenation on Ir supported catalysts. Journal of Molecular Catalysis A, 2000, 164, 245-251.	4.8	54
681	Thiophene hydrodesulfurization on sulfided Ni, W and NiW/USY zeolite catalysts: effect of the preparation method. Applied Catalysis A: General, 2000, 197, 47-60.	2.2	84
682	Oxygen distribution in AlN and Si3N4 powders as revealed by chemical and spectroscopy techniques. Ceramics International, 2000, 26, 141-146.	2.3	14
683	Large enhancement of the catalytic activity for CO oxidation on hole doped (Ln,Sr)NiO3 (Ln=Pr, Sm,) Tj ETQq1 1	0.784314 1.3	rgBT /Ovedo
684	Methyl-naphthalene hydrogenation on Pt/HYâ€"Al2O3 catalysts. An approach to hydrogenation of polyaromatic hydrocarbon mixtures. Fuel Processing Technology, 2000, 64, 117-133.	3.7	9

#	Article	IF	Citations
685	Defect LaCuO3â^Î^(Î^=0.05â^0.45) perovskites. Applied Catalysis B: Environmental, 2000, 26, 131-142.	10.8	68
686	Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Applied Catalysis B: Environmental, 2000, 24, 193-205.	10.8	521
687	Promoting effect of Mo on the selective hydrogenation of cinnamaldehyde on Rh/SiO2 catalysts. Catalysis Letters, 2000, 69, 27-32.	1.4	30
688	Title is missing!. Catalysis Letters, 2000, 64, 191-196.	1.4	54
689	In situ DRIFTS study of NO reduction with CH4 over PtCo-ferrierite catalysts. Catalysis Letters, 2000, 68, 169-174.	1.4	10
690	Hydrogenation of Aromatics on Sulfur-Resistant PtPd Bimetallic Catalysts. Journal of Catalysis, 2000, 189, 184-194.	3.1	219
691	QuÃmica y TecnologÃas QuÃmicas. Arbor, 2000, 166, 141-153.	0.1	0
692	Morphology and Surface Properties of Titaniaâ°'Silica Hydrophobic Xerogels. Langmuir, 2000, 16, 9460-9467.	1.6	57
693	Vanadium oxide loaded tin–titanium phosphates. Solid State Sciences, 2000, 2, 177-185.	0.8	4
694	X-ray photoelectron spectroscopic study of non-stoichiometric nickel and nickel–copper spinel manganites. Solid State Sciences, 2000, 2, 419-426.	0.8	57
695	Alumina- and Zirconiaâ^'Alumina-Loaded Tinâ^'Platinum. Surface Features and Performance for Butane Dehydrogenation. Langmuir, 2000, 16, 10294-10300.	1.6	50
696	Effective alkene epoxidation with dilute hydrogen peroxide on amorphous silica-supported titanium catalysts. Chemical Communications, 2000, , 855-856.	2.2	76
697	Oxidative methanol reforming reactions for the production of hydrogen. Studies in Surface Science and Catalysis, 2000, , 177-186.	1.5	20
698	Thermal Behavior of 12-Molybdophosphoric Acid Supported on Zirconium-Loaded Silica. Chemistry of Materials, 2000, 12, 501-510.	3.2	56
699	CROTONALDEHYDE HYDROGENATION ON Rh SUPPORTED CATALYSTS. Journal of the Chilean Chemical Society, 2000, 45, .	0.1	3
700	Influence of oxidation and carbon-containing contamination in the stabilization of the luminescence in porous silicon. Thin Solid Films, 1999, 354, 34-37.	0.8	10
701	Supported Pt–Sn catalysts highly selective for isobutane dehydrogenation: preparation, characterization and catalytic behavior. Applied Catalysis A: General, 1999, 189, 77-86.	2.2	110
702	Acid-redox properties of titania-supported 12-molybdophosphates for methanol oxidation. Journal of Molecular Catalysis A, 1999, 142, 85-100.	4.8	58

#	Article	IF	Citations
703	Highly dispersed cobalt in CuCo/SiO2 cluster-derived catalyst. Journal of Molecular Catalysis A, 1999, 149, 225-232.	4.8	20
704	Dibenzothiophene hydrodesulfurization on HY-zeolite-supported transition metal sulfide catalysts. Fuel Processing Technology, 1999, 61, 73-88.	3.7	39
705	Nature of Vanadium Sites in $V/\hat{l}\pm$ -Ti Phosphate Catalysts for the Oxidative Dehydrogenation of Ethane. Journal of Catalysis, 1999, 181, 280-284.	3.1	19
706	Characterization of Bimetallic PtSn Catalysts Supported on Purified and H2O2-Functionalized Carbons Used for Hydrogenation Reactions. Journal of Catalysis, 1999, 184, 514-525.	3.1	72
707	CuO–SiO2 Sol–Gel Catalysts: Characterization and Catalytic Properties for NO Reduction. Journal of Catalysis, 1999, 187, 1-14.	3.1	89
708	Oxidation of Toluene and o-Xylene on Ti Phosphate-Supported Vanadium Oxide Catalysts. Journal of Catalysis, 1999, 188, 203-214.	3.1	18
709	Resistance to sulfur poisoning of Rh supported catalysts. Reaction Kinetics and Catalysis Letters, 1999, 67, 177-182.	0.6	1
710	Methane combustion on sol-gel Rh/ZrO2-SiO2 catalysts. Journal of Chemical Technology and Biotechnology, 1999, 74, 897-903.	1.6	4
711	X-ray photoelectron spectroscopy analysis of platinum- and/or cobalt-loaded zeolites relevant for selective catalytic reduction of NOx. Surface and Interface Analysis, 1999, 27, 1107-1113.	0.8	18
712	Surface Behavior of Supported 12-Heteropoly Acid As Revealed by Nuclear Magnetic Resonance, X-ray Photoelectron Spectroscopy, and Fourier Transform Infrared Techniques. Langmuir, 1999, 15, 469-476.	1.6	52
713	Structural Characteristics and Reactivity/Reducibility Properties of Dispersed and Bilayered V2O5/TiO2/SiO2 Catalysts. Journal of Physical Chemistry B, 1999, 103, 618-629.	1.2	117
714	IR and XPS Study of NO and CO Interaction with Palladium Catalysts Supported on Aluminosilicates. Langmuir, 1999, 15, 1176-1181.	1.6	23
715	Structural Characteristics and Catalytic Properties of Highly Dispersed ZrO2/SiO2and V2O5/ZrO2/SiO2Catalysts. Langmuir, 1999, 15, 3169-3178.	1.6	100
716	Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4and CuCr2O4Spinel Type Catalysts. Journal of Catalysis, 1998, 177, 82-95.	3.1	241
717	Spectroscopic Evidence of Cu–Al Interactions in Cu–Zn–Al Mixed Oxide Catalysts Used in CO Hydrogenation. Journal of Catalysis, 1998, 178, 146-152.	3.1	130
718	Methane Combustion on Pd/SiO2Sol Gel Catalysts. Journal of Catalysis, 1998, 179, 309-314.	3.1	53
719	Selective Production of Hydrogen by Partial Oxidation of Methanol over ZnO-Supported Palladium Catalysts. Journal of Catalysis, 1998, 179, 150-162.	3.1	196
720	Methane combustion on Rh/ZrO2 catalysts. Applied Catalysis B: Environmental, 1998, 17, L7-L13.	10.8	40

#	Article	IF	Citations
721	TPR, ESR, and XPS Study of Cu2+lons in Sol–Gel-Derived TiO2. Journal of Solid State Chemistry, 1998, 138, 1-6.	1.4	64
722	Resistance to sulphur poisoning of alumina-supported iridium catalysts in toluene hydrogenation and methylcyclohexane dehydrogenation. Journal of Chemical Technology and Biotechnology, 1998, 73, 1-6.	1.6	12
723	Changes induced by metal oxide promoters in the performance of Rh–Mo/ZrO2 catalysts during CO and CO2 hydrogenation. Journal of Molecular Catalysis A, 1998, 129, 269-278.	4.8	15
724	Studies of molybdenum sulfide catalyst ex ammonium tetrathiomolybdate: effect of pretreatment on hydrodesulfurization of dibenzothiophene. Applied Catalysis A: General, 1998, 168, 205-217.	2.2	23
725	Surface properties and hydrocracking activity of NiMo zeolite catalysts. Applied Catalysis A: General, 1998, 169, 37-53.	2.2	25
726	Partial oxidation of methanol over supported palladium catalysts. Applied Catalysis A: General, 1998, 168, 307-322.	2.2	186
727	Study by XPS and TPD of the interaction of n-pentane and n-butane with the surface of `non-equilibrated' and `equilibrated' Vâ€"Pâ€"O catalysts. Catalysis Today, 1998, 40, 251-261.	2.2	21
728	CO2 hydrogenation over Pd-modified methanol synthesis catalysts. Catalysis Today, 1998, 45, 251-256.	2.2	60
729	Preparation of alumina-supported CuCo catalysts from cyanide complexes and their performance in CO hydrogenation. Applied Catalysis A: General, 1998, 170, 145-157.	2.2	26
730	Structural Features and Thermal Stability of Titania-Supported 12-Molybdophosphoric Heteropoly Compounds. Chemistry of Materials, 1998, 10, 871-879.	3.2	62
731	Bimetallic Silica-Supported Catalysts Based on Niâ^'Sn, Pdâ^'Sn, and Ptâ^'Sn as Materials in the CO Oxidation Reaction. Chemistry of Materials, 1998, 10, 1333-1342.	3.2	80
732	Variation in Structural Characteristics of a Hydrotreatment Catalyst with Deactivation/Regeneration Cycles. Industrial & Engineering Chemistry Research, 1998, 37, 374-379.	1.8	11
733	Preparation and in-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium Oxide on Silica. Journal of Physical Chemistry B, 1998, 102, 5653-5666.	1.2	311
734	Influence of the Preparation Methodology on the Reactivity and Characteristics of Fe-Mo-oxide Nanocrystals Stabilized inside Pentasyl-type Zeolites. Studies in Surface Science and Catalysis, 1998, 118, 577-591.	1.5	10
735	Characterization of Ni-honeycomb catalysts for high pressure methane partial oxidation. Studies in Surface Science and Catalysis, 1998, 119, 729-734.	1.5	5
736	Hydrogen production on nickel-monolith structures by partial oxidation of methane at high pressure. Studies in Surface Science and Catalysis, 1997, 107, 397-402.	1.5	4
737	Partial oxidation of methane to syngas over Ni-loaded ultrastable HY zeolite catalysts. Studies in Surface Science and Catalysis, 1997, , 441-446.	1.5	7
738	Study of the interfacial chemistry of poly(vinyl chloride) paint on steel exposed to the ultravioletwater condensation test. Journal of Adhesion Science and Technology, 1997, 11, 591-611.	1.4	5

#	Article	IF	Citations
739	Hydrocracking activity of NiMo-USY zeolite hydrotreating catalysts. Studies in Surface Science and Catalysis, 1997, 106, 567-572.	1.5	2
740	Deactivation by coking and poisoning of spinel-type Ni catalysts. Catalysis Today, 1997, 37, 255-265.	2.2	35
741	Characterization and catalytic properties of several LaNi and SrNi solids. Applied Catalysis A: General, 1997, 152, 249-269.	2.2	11
742	Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt/C catalysts. Applied Catalysis A: General, 1997, 161, 213-226.	2.2	120
743	Interfacial chemistry of humidity-induced adhesion loss of chlorinated rubber on rusted steel substrates. Progress in Organic Coatings, 1997, 30, 247-253.	1.9	2
744	Partial Oxidation of Methane to Synthesis Gas Using LnCoO3Perovskites as Catalyst Precursors. Journal of Catalysis, 1997, 167, 198-209.	3.1	153
745	On Oxygen Chemisorption for Characterization of Silica-Supported Vanadium Oxide Catalysts. Journal of Catalysis, 1997, 168, 110-116.	3.1	26
746	Oxidative Dehydrogenation ofn-Butane over Alkali and Alkaline Earth-Promoted α-NiMoO4Catalysts. Journal of Catalysis, 1997, 169, 469-479.	3.1	36
747	Selective Oxidation of Ethanol to Acetaldehyde on V2O5/TiO2/SiO2Catalysts. Journal of Catalysis, 1997, 171, 1-13.	3.1	99
748	Influence of process conditions on the surface oxidation of silicon nitride green compacts. Journal of Materials Science, 1997, 32, 157-162.	1.7	55
749	Selective oxidation of o-xylene to phthalic anhydride on V2O5 supported on TiO2-coated SiO2. Catalysis Letters, 1997, 43, 117-121.	1.4	32
750	o-xylene hydrogenation on supported ruthenium catalysts. Catalysis Letters, 1997, 46, 71-75.	1.4	33
751	Partial oxidation of methanol on TiO2- supported 12-molybdophosphate catalysts. Catalysis Letters, 1997, 49, 223-227.	1.4	6
752	Gas phase hydrogenation of crotonaldehyde over Pt/Activated carbon catalysts. Influence of the oxygen surface groups on the support. Applied Catalysis A: General, 1997, 150, 165-183.	2.2	134
75 3	Partial oxidation of methanol to produce hydrogen over Cuî—,Zn-based catalysts. Applied Catalysis A: General, 1997, 162, 281-297.	2.2	224
754	The nature of the support and the metal precursor on the resistance to sulphur poisoning of Pt supported catalysts. Applied Catalysis A: General, 1997, 163, 145-152.	2.2	45
755	Surface oxidation of Si3N4 green compacts: Effect of sintering aids. Journal of the European Ceramic Society, 1997, 17, 383-391.	2.8	21
756	Dopant distribution and grain growth control in BaTiO3 ceramics doped with ZnO-SiO2-P2O5. Journal of the European Ceramic Society, 1997, 17, 1223-1230.	2.8	10

#	Article	IF	CITATIONS
757	Partial oxidation of methane to formaldehyde on silica-supported transition metal oxide catalysts. Catalysis Today, 1997, 33, 73-83.	2.2	61
758	Support effect on the formation of the well-defined PtSn alloy from a Ptî—,Sn bimetallic complex. Catalytic properties in the activation of CO2. Journal of Molecular Catalysis A, 1997, 118, 101-111.	4.8	43
759	Structural characterization of NiO doped with several caesium loadings. Journal of Molecular Catalysis A, 1997, 119, 77-85.	4.8	16
760	Thermal reduction of sillenite and eulite single crystals. Journal of Physics and Chemistry of Solids, 1997, 58, 1461-1467.	1.9	9
761	The effect of sulfidation on the Ni distribution in Ni/USY zeolites. Zeolites, 1997, 18, 250-259.	0.9	15
762	A Review of Deep Hydrodesulfurization Catalysis. Catalysis Reviews - Science and Engineering, 1996, 38, 161-188.	5.7	204
763	Influence of Diborane Flow Rate on the Structure and Stability of CVD Boron Nitride Films. The Journal of Physical Chemistry, 1996, 100, 2148-2153.	2.9	42
764	Surface and Catalytic Properties of Lanthanum-PromotedNi/Sepiolite Catalysts for Styrene Hydrogenation. Journal of Catalysis, 1996, 159, 150-161.	3.1	43
765	A Comparison of the Reactivity of "Nonequilibrated―and "Equilibrated―V–P–O Catalysts: Structura Evolution, Surface Characterization, and Reactivity in the Selective Oxidation ofn-Butane andn-Pentane. Journal of Catalysis, 1996, 160, 52-64.	3.1	109
766	Promoter Effect of Cesium on C–C Bond Formation during Alcohol Synthesis from CO/H2over Cu/ZnO/Cr2O3Catalysts. Journal of Catalysis, 1996, 163, 418-428.	3.1	49
767	Changes of copper location in CuY zeolites induced by preparation methods. Catalysis Letters, 1996, 41, 55-61.	1.4	15
768	Ethane oxidehydrogenation selectivity and reductibility of mixed NiVSb oxides. Catalysis Letters, 1996, 40, 223-228.	1.4	14
769	X-ray Photoelectron Spectroscopic Study of Petroleum Fuel Cokes. Surface and Interface Analysis, 1996, 24, 223-236.	0.8	86
770	Synthesis and Characterization of Mixed Fe–Cr Oxide Pillared α-Zirconium Phosphate Materials. Journal of Solid State Chemistry, 1996, 122, 231-238.	1.4	18
771	Study of Xerogel–Glass Transition of CuO/SiO2. Journal of Solid State Chemistry, 1996, 123, 93-99.	1.4	67
772	The Role of Vanadium Oxide on the Titania Transformation under Thermal Treatments and Surface Vanadium States. Journal of Solid State Chemistry, 1996, 124, 69-76.	1.4	59
773	Crotonaldehyde hydrogenation over bimetallic Ptî—,Sn catalysts supported on pregraphitized carbon black. Effect of the Sn/Pt atomic ratio. Applied Catalysis A: General, 1996, 136, 231-248.	2.2	105
774	Deep hydrodesulfurization of DBT and diesel fuel on supported Pt and Ir catalysts. Applied Catalysis A: General, 1996, 137, 269-286.	2.2	50

#	Article	IF	CITATIONS
775	Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: a study of the activity evolution and reactivation of the catalyst. Applied Catalysis A: General, 1996, 142, 375-386.	2.2	129
776	Surface properties of titania-supported 12-molybdophosphoric acid hydrodesulphurization catalysts. Applied Catalysis A: General, 1996, 144, 59-77.	2.2	39
777	New catalytic routes for syngas and hydrogen production. Applied Catalysis A: General, 1996, 144, 7-57.	2.2	617
778	Effect of fluoride on the structure and activity of NiW/Al2O3 catalysts for HDS of thiophene and HDN of pyridine. Applied Catalysis A: General, 1996, 144, 343-364.	2.2	49
779	Acid properties studies of Si and AlSi oxide pillared ZrTi phosphates. Applied Catalysis A: General, 1996, 144, 365-375.	2.2	7
780	Characterization of nickel species on several \hat{l}^3 -alumina supported nickel samples. Journal of Molecular Catalysis A, 1996, 106, 125-134.	4.8	139
781	X-Ray photoelectron spectroscopy and optical studies of Bi12(GaxBi1â^'x)O20â^'δ and Bi12(ZnxBi1â^'x)O20â^'δ single crystals. Journal of Physics and Chemistry of Solids, 1996, 57, 1667-1672.	1.9	11
782	Mixed MVSb oxides as oxidehydrogenation catalysts. Catalysis Today, 1996, 32, 177-183.	2.2	15
783	Crotonaldehyde hydrogenation over bimetallic Ptî—,Sn catalysts supported on pregraphitized carbon black. Effect of the preparation method. Applied Catalysis A: General, 1996, 148, 63-80.	2.2	132
784	Dibenzothiophene hydrodesulfurization on silica-alumina-supported transition metal sulfide catalysts. Applied Catalysis A: General, 1996, 148, 23-40.	2.2	49
785	Chemical vapor deposition synthesis and characterization of co-deposited silicon–nitrogen–boron materials. Journal of Materials Research, 1996, 11, 2565-2574.	1.2	12
786	Hot gas desulfurization using zinc-ferrite regenerable sorbents. Coal Science and Technology, 1995, , 1883-1886.	0.0	2
787	Synthesis and X-ray Structure of [(.eta.5-C5Me5)Ti(.mu.3-O)3{Rh(COD)}3] (COD = Cycloocta-1,5-diene). Organometallic Approach to Strong Metal-Support Interaction in Heterogeneous Catalysis. Organometallics, 1995, 14, 2162-2163.	1.1	18
788	Catalytic behaviour of carbon-supported FeM (M = Ru, Pt) in pyridine hydrodenitrogenation. Fuel, 1995, 74, 279-283.	3.4	12
789	Effect of fluorine on hydrodenitrogenation activity of doubly promoted (Zn + Co) molybdena-alumina catalysts. Fuel, 1995, 74, 285-290.	3.4	6
790	Effect of outgassing treatments on the surface reactivity of catalysts: CO adsorption. Vacuum, 1995, 46, 1201-1204.	1.6	27
791	Probing Ruî—,PdSiO2 catalysts by gas phase o-xylene hydrogenation. Journal of Molecular Catalysis A, 1995, 96, 155-161.	4.8	15
792	Influence of the preparation method on the behaviour of Fe-Mo catalysts for the oxidation of methanol. Journal of Materials Science, 1995, 30, 496-503.	1.7	46

#	Article	IF	CITATIONS
793	Kinetic behaviour and reactivity of zinc ferrites for hot gas desulphurization. Journal of Materials Science, 1995, 30, 6171-6178.	1.7	22
794	Reactions of propene on supported molybdenum and tungsten oxides. Journal of Molecular Catalysis A, 1995, 95, 147-154.	4.8	43
795	Oxidative dehydrogenation of ethane on supported vanadium-containing oxides. Applied Catalysis A: General, 1995, 124, 281-296.	2.2	39
796	Promoter effects of dichloromethane on the oxidative coupling of methane over MnMgO catalysts. Applied Catalysis A: General, 1995, 131, 243-261.	2.2	17
797	NO adsorption sites in TiO2-supported 12-molybdophosphoric heteropoly compounds. Reaction Kinetics and Catalysis Letters, 1995, 56, 321-330.	0.6	5
798	Influence of Metallic Precursors on the Preparation of Silica-Supported Ptsn Alloy: Characterization and Reactivity in the Catalytic Activation of CO2. Journal of Catalysis, 1995, 156, 139-146.	3.1	49
799	Structural and Surface Properties of CuO-ZnO-Cr2O3 Catalysts and Their Relationship with Selectivity to Higher Alcohol Synthesis. Journal of Catalysis, 1995, 156, 208-218.	3.1	55
800	The effect of Mo on the catalytic and surface properties of Rh-Mo/ZrO2 catalysts. Catalysis Letters, 1995, 34, 331-341.	1.4	8
801	A highly active silica(silicon)-supported vanadia catalyst for C1 oxygenates and hydrocarbon production from partial oxidation of methane. Catalysis Letters, 1995, 33, 279-289.	1.4	17
802	X-ray photoelectron spectroscopy of luminescent porous silicon. Materials Science and Technology, 1995, 11, 711-715.	0.8	5
803	Advanced catalysts for coal-derived liquids hydrotreating via acidic supports. Coal Science and Technology, 1995, 24, 1287-1290.	0.0	0
804	HDS AND HDN ACTIVITY AND CHARACTERIZATION OF NiMo â€USY ZEOLITE CATALYSTS. Bulletin Des Société Chimiques Belges, 1995, 104, 197-204.	o.o	14
805	INFLUENCE ON THE PHOSPHORUS CONCENTRATION AND THE METHOD OF PREPARATION ON THE HYDRODESULFURIZATION ACTIVITY OF Pâ€Niâ€W/ALUMINA CATALYSTS. Bulletin Des Sociétés Chimiques Belges, 1995, 104, 219-223.	0.0	9
806	Structural Features of Silica-Supported Vanadia Catalysts and Their Relevance in the Selective Oxidation of Methane to Formaldehyde., 1995,, 241-247.		2
807	Promotion by Dichloromethane of the Oxidative Coupling of Methane on LiMn/MgO Catalysts. , 1995, , 79-84.		0
808	Physicochemical and catalytic characterizations of materials prepared from copper malonate by thermal decomposition or chemical reduction. Journal of Thermal Analysis, 1994, 41, 651-669.	0.7	3
809	Characterization of corrosion products on chalcographic copper plates after 200 years' exposure to indoor atmospheres. Materials and Corrosion - Werkstoffe Und Korrosion, 1994, 45, 387-391.	0.8	14
810	Bulk and Surface Properties of Copper-Containing Oxides of the General Formula LaZr1-xCuxO3. Journal of Solid State Chemistry, 1994, 108, 305-313.	1.4	49

#	Article	IF	CITATIONS
811	Structure and reactivity of undoped and sodium- doped PbO/α-Al2O3 catalysts for oxidative coupling of methane. Applied Catalysis A: General, 1994, 111, 79-97.	2.2	11
812	Hydrogenation of styrene over nickel/sepiolite catalysts. Applied Catalysis A: General, 1994, 113, 75-88.	2.2	31
813	Incorporation of titania into preshaped silica monolith structures. Applied Catalysis A: General, 1994, 116, 205-219.	2.2	20
814	X-Ray photoelectron spectroscopy of Ti-Beta zeolite. Microporous Materials, 1994, 3, 259-263.	1.6	33
815	Surface analysis of titanium electrodes. Applied Surface Science, 1994, 78, 457-466.	3.1	4
816	Characterization of Ni cathodes used in molten carbonate fuel cells. Vacuum, 1994, 45, 1087-1089.	1.6	0
817	Heterogeneously catalyzed coal hydroliquefaction: Screening of catalysts and characterization. International Journal of Energy Research, 1994, 18, 145-166.	2.2	5
818	Features of Li-Mn-MgO Catalysts and Their Relevance in the Oxidative Coupling of Methane. Journal of Catalysis, 1994, 147, 535-543.	3.1	25
819	Pretreatment effects and NO x decomposition on alumina supported Rh/MoO3 catalysts. Topics in Catalysis, 1994, 1, 123-136.	1.3	6
820	Preparation of Platinum Supported on Pregraphitized Carbon Blacks. Langmuir, 1994, 10, 750-755.	1.6	181
821	Ternary V–Ti–Si catalysts and their behaviour in the CO + NO reaction. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3711-3718.	1.7	40
822	Characterization of several \hat{l}^3 -alumina-supported nickel catalysts and activity for selective hydrogenation of hexanedinitrile. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1455-1459.	1.7	34
823	Surface distribution and heteroatom removal activity of equilibrium adsorption prepared, doubly promoted (Zn,Co)Mo/Al2O3catalysts. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2125-2131.	1.7	8
824	Oxidative dehydrogenation of ethane over chromia-pillared montmorillonite catalysts. Studies in Surface Science and Catalysis, 1994, 82, 103-111.	1.5	7
825	NiO Reducibilities: Structural and Catalytic Properties of Their Pure and Potassium-Doped Reduced Forms. Journal of Catalysis, 1993, 142, 392-405.	3.1	29
826	The Partial Oxidation of Methane on MoO3/SiO2 Catalysts: Influence of the Molybdenum Content and Type of Oxidant. Journal of Catalysis, 1993, 142, 406-417.	3.1	96
827	Surface Characterization of Zirconia-Coated Alumina and Silica Carriers. Journal of Colloid and Interface Science, 1993, 159, 454-459.	5.0	22
828	Study of the activation process and catalytic behaviour of a supported iron ammonia synthesis catalyst. Applied Surface Science, 1993, 72, 103-111.	3.1	2

#	Article	IF	Citations
829	Structural characteristics and catalytic performance of nickel catalysts for selective hydrogenation of 1,6-hexanedinitrile. Journal of Molecular Catalysis, 1993, 81, 363-371.	1.2	26
830	Characterization of potassium-doped nickel catalysts and activity for selective hydrogenation of 1,6-hexanedinitrile. Journal of Molecular Catalysis, 1993, 81, 387-395.	1.2	30
831	Synthesis and characterization of several potassium-doped iron-nickel samples active for the 1,6-hexanedinitrile hydrogenation. Solid State Ionics, 1993, 59, 205-210.	1.3	14
832	Mg-Ni-O based OCM catalyst obtained by carbonate precursor method. Solid State Ionics, 1993, 63-65, 325-331.	1.3	2
833	Covalent binding of viologen to electrode surfaces coated with poly(acrylic acid) formed by electropolymerization of acrylate ions. Journal of Electroanalytical Chemistry, 1993, 358, 247-259.	1.9	27
834	Influence of nitrogen dioxide on the selective reduction of NOx with a catalyst of copper and nickel oxides. Applied Catalysis A: General, 1993, 96, 331-343.	2.2	27
835	Surface characterization and catalytic properties of several graphite supported potassium-free and potassium-doped nickel catalysts. Applied Catalysis A: General, 1993, 99, 115-129.	2.2	28
836	Acidity and catalytic behavior of vanadium-phosphorus-oxygen catalysts. Applied Catalysis A: General, 1993, 100, 37-50.	2.2	41
837	Structure and reactivity of alkali-doped calcium oxide catalysts for oxidative coupling of methane. Applied Catalysis A: General, 1993, 101, 167-183.	2.2	10
838	Coking kinetics of fresh and thermally aged commercial Cr2O3/Al2O3 catalyst. Applied Catalysis A: General, 1993, 101, 185-198.	2.2	21
839	Mo-USY zeolites for hydrodesulphurization. I Applied Catalysis A: General, 1993, 99, 37-54.	2.2	26
840	Mo-USY zeolites for hydrodesulphurization. Applied Catalysis A: General, 1993, 99, 55-70.	2.2	29
841	Hydrocarbons from synthesis gas: selectivity changes induced by the zeolite matrix on the metallic function in Rh/Y catalysts. Applied Catalysis A: General, 1993, 107, 59-71.	2.2	2
842	Benzene hydrogenation and hydrogenolysis of n-butane on $Rh/H(x)NaY$ zeolite catalysts. Applied Catalysis A: General, 1993, 103, 5-16.	2.2	16
843	Decomposition of NO on Cu-loaded zeolites. Catalysis Today, 1993, 17, 167-174.	2.2	23
844	Spectroscopic studies of surface copper spinels. Influence of pretreatments on chemical state of copper. Surface and Interface Analysis, 1993, 20, 1067-1074.	0.8	33
845	Selective oxidation of methane to formaldehyde on supported molybdate catalysts. Catalysis Letters, 1993, 17, 205-211.	1.4	41
846	Carbon monoxide hydrogenation over Fe/HZSM-5 catalysts. Effect of SiO2/Al2O3 zeolite ratio. Catalysis Letters, 1993, 18, 65-71.	1.4	3

#	Article	IF	Citations
847	Catalysis in C1 chemistry: Future and prospect. Catalysis Letters, 1993, 22, 67-91.	1.4	79
848	Accelerated degradation of a chlorinated rubber paint system applied over rusted steel. Progress in Organic Coatings, 1993, 21, 315-325.	1.9	14
849	Influence of preparation method on the characteristics of nickel/sepiolite catalysts. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3651.	1.7	35
850	Structural and catalytic properties of several potassium-doped nickel/α-alumina solids. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3981-3986.	1.7	20
851	Surface characterization and hydrogenation properties of several nickel/α-alumina catalysts. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3507-3512.	1.7	23
852	The surface composition and chemical state of copper in supported Cu catalysts and their relevance to several reactions in C1chemistry. Journal of Physics Condensed Matter, 1993, 5, A229-A230.	0.7	0
853	The Role of No2 in the Selective Catalytic Reduction of NOx. Studies in Surface Science and Catalysis, 1993, 75, 2681-2684.	1.5	0
854	Hydroformylation of Ethylene Over Silica-Supported Pt/Sn Catalysts. Studies in Surface Science and Catalysis, 1993, 75, 2363-2366.	1.5	3
855	Mechanistic Aspects of The Selective Oxidation of Methane to C1-Oxygenates Over MoO3/SiO2 Catalysts in A Single Catalytic Step. Studies in Surface Science and Catalysis, 1993, 75, 1131-1144.	1.5	8
856	Effect of Calcination on V-O-Ti-P Catalysts. Studies in Surface Science and Catalysis, 1993, 75, 2717-2720.	1.5	2
857	Nature Of Surface Sites In The Selective Oxide Hydrogenation Of Propane Over V-Mg-O Catalysts. Studies in Surface Science and Catalysis, 1992, , 203-212.	1.5	33
858	High Performance Of Vanadia Catalysts Supported On Tio2–Coated Silica For Selective Oxidation Of Ethanol. Studies in Surface Science and Catalysis, 1992, 72, 147-154.	1.5	12
859	Effects of prereduction at moderate temperatures on Rh/CeO2 on the interactions of D2, H2 and CO with Rh/CeO2. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 3233.	1.7	38
860	COMBINED EFFECT OF FLUORINE AND ZINC INCORPORATION ON THE HDS ACTIVITY OF Co-Mo CATALYSTS. Petroleum Science and Technology, 1992, 10, 215-221.	0.2	1
861	Surface properties of molybdenum-impregnated ZSM-5 catalysts. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 385.	1.7	39
862	Hydrogenation of Carbon Oxides over Perovskite-Type Oxides. Catalysis Reviews - Science and Engineering, 1992, 34, 321-336.	5.7	15
863	Naturally-Occurring Silicates as Carriers for Copper Catalysts Used in Methanol Conversion. Clays and Clay Minerals, 1992, 40, 167-174.	0.6	18
864	Joint use of XPS and Auger techniques for the identification of chemical state of copper in spent catalysts. Surface and Interface Analysis, 1992, 19, 548-552.	0.8	8

#	Article	IF	CITATIONS
865	Direct conversion of methane to C1 oxygenates over MoO3î—,USY zeolites. Zeolites, 1992, 12, 882-888.	0.9	28
866	Relationship between reduced nickel and activity for benzene hydrogenation on Ni-USY zeolite catalysts. Applied Catalysis A: General, 1992, 87, 145-156.	2,2	48
867	Catalytic activity of layered \hat{l}_{\pm} -(tin or zirconium) phosphates and chromia-pillared derivatives for isopropyl alcohol decomposition. Applied Catalysis A: General, 1992, 92, 81-92.	2.2	24
868	Characterization and catalytic properties of several potassium-doped iron-nickel catalysts. Applied Catalysis A: General, 1992, 92, 131-141.	2.2	18
869	Activity and structural changes of alumina-supported CuO and CuCr2O4 catalysts during carbon monoxide oxidation in the presence of water. Applied Catalysis A: General, 1992, 91, 43-55.	2.2	21
870	Supported Pt/Sn complexes as catalysts in the hydroformylation of olefins. Journal of Molecular Catalysis, 1992, 74, 401-408.	1.2	12
871	Support and precursor effects on the preparation of new heterogenized Pt/Sn catalysts for the selective hydroformylation of 1-pentene. Catalysis Letters, 1992, 14, 45-49.	1.4	6
872	Development of molybdena catalysts supported on \$gamma;-alumina extrudates with four different Mo profiles: Preparation, characterization, and catalytic properties. Journal of Catalysis, 1992, 137, 285-305.	3.1	24
873	A mechanistic study of the oxygen insertion into MoO3 crystals as revealed by SIMS and TPSR techniques. Journal of Catalysis, 1992, 137, 429-436.	3.1	11
874	Characterization of catalyst and catchment gauzes used in medium- and low-pressure ammonia oxidation plants. Journal of Materials Science, 1992, 27, 685-691.	1.7	14
875	Dehydrogenation of methanol to methyl formate over supported copper catalysts. Applied Catalysis, 1991, 72, 119-137.	1.1	82
876	The Effect of Chromium on Deactivation of Alumina-Supported Copper Catalysts. Studies in Surface Science and Catalysis, 1991, , 467-473.	1,5	3
877	X-ray photoelectron spectroscopy study of polypyrrole grown at the surface of sulfonated polyethylene films. Langmuir, 1991, 7, 2682-2686.	1.6	12
878	Activity and XRD phase identification of several nickel catalysts for adiponitrile hydrogenation. Journal of Molecular Catalysis, 1991, 68, L17-L20.	1.2	12
879	Structural changes in a Cu/Al2O3 catalyst when used for oxidation of carbon monoxide. Journal of Catalysis, 1991, 129, 297-299.	3.1	17
880	Selective production of methanol from syngas over LaTi1â^'xCuxO3 mixed oxides. Catalysis Letters, 1991, 8, 335-344.	1.4	20
881	Laser Raman and XPS analyses of molybdenum-rare earth oxide catalysts. Surface and Interface Analysis, 1991, 17, 940-946.	0.8	9
882	Processing and properties of superconducting YBa2Cu3O7?x powder by single-step calcining in air. Journal of Materials Science, 1991, 26, 6135-6143.	1.7	5

#	Article	IF	CITATIONS
883	Comparative Study of the Deactivation of Group Viii Metal Catalysts by Thiophene Poisoning in Ethylbenzene Hydrogenation. Studies in Surface Science and Catalysis, 1991, 68, 557-564.	1.5	23
884	Non-Uniform Sintering in Oxyregeneration of Fixed Bed Catalytic Reactors. Studies in Surface Science and Catalysis, 1991, , 629-636.	1.5	0
885	Hydrodesulfurizationâ€Hydrogenation of Niâ€Containing Ultrastable HY Zeolites. Bulletin Des Sociétés Chimiques Belges, 1991, 100, 915-921.	0.0	10
886	Activity and Selectivity Trends of Fâ€Modified NiMo Catalysts in Various Hydrotreating (HDS/HDS, HYD) Reactions. Bulletin Des Sociétés Chimiques Belges, 1991, 100, 945-952.	0.0	15
887	Selective Oxidation of Propylene Over Rare Earth-Molybdate Catalysts. Studies in Surface Science and Catalysis, 1990, , 295-304.	1.5	6
888	Formation of Al2(MoO4)3 and MoO3 phases induced by phosphate in molybdena-phosphorus catalysts. Journal of Catalysis, 1990, 126, 8-12.	3.1	46
889	Preparation and characterization of LaMn1\$minus;xCUxO3+\$lambda; perovskite oxides. Journal of Catalysis, 1990, 124, 41-51.	3.1	100
890	Effect of support on the surface characteristics of supported molybdena catalysts. Journal of Catalysis, 1990, 122, 113-125.	3.1	87
891	Structure and composition of perovskite surface in relation to adsorption and catalytic properties. Catalysis Today, 1990, 8, 153-174.	2.2	148
892	Radial distribution of heterogenized hydroformylation Rh complexes in phosphinated polystyrene beads. Surface and Interface Analysis, 1990, 15, 279-285.	0.8	10
893	Effect of fluorine on hydrogenation of cyclohexene on sulfided Ni (or Co)Mo/Al2O3 catalysts. Applied Catalysis, 1990, 57, 223-240.	1.1	56
894	Exceptional susceptibility of ceria-supported rhodium catalyst to inhibitory SMSI effects including acetone hydrogenation. Journal of Molecular Catalysis, 1990, 57, 379-396.	1.2	60
895	Activity and surface characteristics of several alkali-doped iron catalysts for nttrile hydrogenation. Journal of Molecular Catalysis, 1990, 61, 197-205.	1.2	14
896	Synthesis and characterization of LaTi1â^'xCuxO3 compounds. Journal of Solid State Chemistry, 1990, 89, 299-307.	1.4	17
897	Characterization and reactivity of sulfided NiNaY zeolite catalysts for thiophene conversion. Zeolites, 1990, 10, 95-100.	0.9	32
898	Chapter 1 Surface Spectroscopic Techniques. Studies in Surface Science and Catalysis, 1990, 57, A1-A78.	1.5	1
899	Chapter 1 Chemisorption of Probe Molecules. Studies in Surface Science and Catalysis, 1990, 57, B1-B66.	1.5	3
900	Chapter 2 Infrared Spectroscopy. Studies in Surface Science and Catalysis, 1990, 57, B67-B143.	1.5	14

#	Article	IF	CITATIONS
901	Automated equipment for carefully controlled thermal decomposition of solids. Measurement Science and Technology, 1990, 1, 523-526.	1.4	1
902	Genesis of zinc–cobalt promoted hydrotreating catalysts: adsorption isotherms of Zn and/or Co on Al2O3. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2765-2773.	1.7	14
903	Selective oxidation of propene over supported vanadium oxide catalysts. Applied Catalysis, 1990, 61, 235-251.	1.1	59
904	Structure of unpromoted and alkali-metal promoted MnOx-based catalystsfor oxidative coupling of methane. Applied Catalysis, 1990, 61, 311-328.	1.1	13
905	Iron-based ammonia synthesis catalysts prepared via non-oxidic precursors. Applied Catalysis, 1990, 59, 249-265.	1.1	2
906	Oxidative coupling of methane over supported oxides promoted with alkali metals. Reaction Kinetics and Catalysis Letters, 1989, 39, 175-179.	0.6	4
907	Effect of oxide promoters on the surface characteristics of carbon-supported Co and Ru catalysts. Applied Surface Science, 1989, 40, 239-247.	3.1	16
908	Hept-1-ene hydroformylation on phosphinated polystyrene-anchored rhodium complexes. Journal of Molecular Catalysis, 1989, 53, 359-369.	1.2	16
909	XPS and TPD probe techniques for the study of LaNiO3 perovskite oxide. Thermochimica Acta, 1989, 147, 361-375.	1.2	45
910	XPS study of the dependence on stoichiometry and interaction with water of copper and oxygen valence states in the YBa2Cu3O7â^'x compound. Journal of Solid State Chemistry, 1989, 81, 240-249.	1.4	34
911	Morphological and chemical changes in palladium alloy gauzes used for platinum recovery in high-pressure ammonia oxidation plants. Surface and Interface Analysis, 1989, 14, 529-536.	0.8	9
912	Structure and Reactivity of Perovskite-Type Oxides. Advances in Catalysis, 1989, , 237-328.	0.1	358
913	Surface changes of alumina induced by phosphoric acid impregnation. Applied Catalysis, 1989, 56, 197-206.	1.1	37
914	Effect of Phosphorus on Molybdenum-Based Hydrotreating Catalysts. Applied Catalysis, 1989, 48, 341-352.	1.1	70
915	Effect of Phosphorus on Molybdenum-Based Hydrotreating Catalysts. Applied Catalysis, 1989, 48, 353-363.	1.1	69
916	Adsorption of group VIII metal cyanide complexes on acid-modified \hat{l}^3 -alumina. Applied Catalysis, 1989, 49, 259-271.	1.1	4
917	Synthesis and characterization of several La3+ and Sr2+ vanadates, active as methanol oxidation catalysts. Reactivity of Solids, 1989, 7, 131-141.	0.3	1
918	Growth of Polypyrrole at the surface of sulphonated Polyethylene. Synthetic Metals, 1989, 28, 77-81.	2.1	16

#	Article	IF	Citations
919	Addendum to Structure and Reactivity of Perovskite-Type Oxides. Advances in Catalysis, 1989, , 385-386.	0.1	9
920	An XPS and reduction study of PrCoO3. Journal of Materials Science, 1988, 23, 1018-1023.	1.7	30
921	Surface behaviour of magnesium chloride-coated iron ore sinter. Journal of Materials Science, 1988, 23, 1151-1158.	1.7	4
922	An analytical SEM and XPS study of platinum-rhodium gauzes used in high pressure ammonia burners. Surface and Interface Analysis, 1988, 13, 25-32.	0.8	69
923	Surface behaviour of reduced LaCoO3 as studied by TPD of CO, CO2 and H2 probes and by XPS. Applied Surface Science, 1988, 31, 301-316.	3.1	97
924	Surface properties of Co-precipitated VTiO catalysts and their relation to the selective oxidation of isobutene. Applied Catalysis, 1988, 37, 323-338.	1.1	83
925	CoMo HDS Catalysts: Simulated Deactivation and Regeneration. Role of Various Regeneration Parameters. Studies in Surface Science and Catalysis, 1987, 34, 59-80.	1.5	10
926	Influence of the Activation Procedure on the Nature and Concentration of the Active Phase in HDS Catalysts. Studies in Surface Science and Catalysis, 1987, , 605-618.	1.5	8
927	Study of Ceria Surfaces by Magnetic Resonances*. Zeitschrift Fur Physikalische Chemie, 1987, 152, 149-158.	1.4	15
928	Influence of the operative conditions on the preparation of pelleted Mo/Al2O3 catalysts. Applied Catalysis, 1987, 33, 231-244.	1.1	7
929	Changes induced by calcination temperature in hydrodesulfurization activity of NiCo-Mo/Al2O3 catalysts. Applied Catalysis, 1987, 30, 185-188.	1.1	13
930	Simulated regeneration of an industrial CoMo/ \hat{l}^3 -Al2O3 catalyst. Influence of the regeneration temperature. Applied Catalysis, 1987, 34, 89-107.	1.1	25
931	Surface synergisms between copper and its oxides. Applied Catalysis, 1987, 35, 381-399.	1.1	18
932	A study of the role of bismuth in molybdenum-praseodymium-based catalysts. Journal of the Less Common Metals, 1987, 135, 95-104.	0.9	10
933	Migration of molybdenum into intracrystalline cavities in molybdate-impregnated NaY zeolite. Journal of Catalysis, 1987, 108, 334-345.	3.1	57
934	Temperature-programmed desorption study of the interactions of H2, CO and CO2 with LaMnO3. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 3149.	1.0	21
935	Control of Concentration Profiles by Rational Preparation of Pelleted Hydrode-Sulfurization Catalysts. Studies in Surface Science and Catalysis, 1987, , 591-603.	1.5	5
936	Non-stoichiometric surface behaviour of LaMO3 oxides as evidenced by XPS. Applied Surface Science, 1987, 27, 453-457.	3.1	160

#	Article	IF	Citations
937	A study of NO and CO interactions with LaMnO3. Journal of Colloid and Interface Science, 1987, 119, 100-107.	5.0	28
938	Induced changes in ceria by thermal treatments under vacuum or hydrogen. Journal of Solid State Chemistry, 1987, 66, 154-162.	1.4	237
939	Partial oxidation of propene on Mo\$z.sbnd;Pr\$z.sbnd;O catalysts. Journal of Catalysis, 1987, 107, 325-337.	3.1	8
940	Hydrodesulphurization and Hydrodenitrogenation Over Promotedâ€Molybdenum Sepiolite Catalysts. Bulletin Des Sociétés Chimiques Belges, 1987, 96, 891-900.	0.0	8
941	Chemisorption of Probe Molecules on Metal Oxides. Catalysis Reviews - Science and Engineering, 1986, 28, 265-333.	5.7	39
942	Simulated deactivation and regeneration of an industrial CoMo/ \hat{l}^3 -Al2O3 hydrodesulphurization catalyst. Applied Catalysis, 1986, 26, 227-249.	1.1	54
943	Surface structure of ?-Alumina-Supported Ruthenium Catalysts for ammonia synthesis. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1986, 532, 235-240.	0.6	3
944	Surface investigation, by XPS, ISS and IR spectroscopy of adsorbed NO, of the structural changes occurring during the reduction of Co-Mo/ \hat{l}^3 Al2O3 catalysts. Surface and Interface Analysis, 1986, 8, 167-172.	0.8	29
945	Stability and catalytic properties of Mo-containing Y-type zeolite catalysts calcined by an isobaric thermal decomposition procedure. Polyhedron, 1986, 5, 187-190.	1.0	31
946	Relation between hydrodesulfurization activity and the state of promoters in precursor calcined Ni\$z.sbnd;Co\$z.sbnd;Mo/Al2O3 catalysts. Journal of Catalysis, 1986, 97, 219-227.	3.1	30
947	Surface synergisms between copper and its oxides I. Isopropanol dehydrogenation over unsupported CuO, Cu2O, and Cu metal. Journal of Catalysis, 1986, 102, 160-171.	3.1	53
948	Structure and reactivity of alumina-supported iron catalysts for ammonia synth. Journal of Catalysis, 1986, 98, 264-276.	3.1	24
949	Characterization of silica-supported uranium-molybdenum oxide catalysts. Surface and Interface Analysis, 1985, 7, 97-104.	0.8	15
950	On the mechanism of cumene dealkylation: the interaction of cumene molecules on silica-alumina surfaces. Journal of Molecular Catalysis, 1985, 30, 361-372.	1.2	6
951	1H-NMR and infrared study of ceria gels prepared by a constant rate decomposition method. Colloids and Surfaces, 1985, 15, 75-87.	0.9	12
952	Dehydration-dehydrogenation of 1- and 2-butanols on lanthanide oxide catalysts. Reaction Kinetics and Catalysis Letters, 1985, 27, 53-57.	0.6	1
953	Preparation and characterization of equilibrium adsorption-prepared molybdena-alumina catalysts. Journal of Catalysis, 1985, 95, 501-511.	3.1	65
954	Determination of the active surface area of vanadia by electrophoretic migration and XPS measurements. Journal of Catalysis, 1985, 95, 520-526.	3.1	64

#	Article	IF	CITATIONS
955	Surface properties of LaNiO3: Kinetic studies of reduction and of oxygen adsorption. Journal of Catalysis, 1985, 93, 83-91.	3.1	84
956	Surface chemistry of cerium oxide prepared by an isobaric thermal procedure. Journal of Colloid and Interface Science, 1985, 107, 60-69.	5.0	25
957	Interactions between water and polystyrene. European Polymer Journal, 1985, 21, 753-756.	2.6	8
958	Physicochemical properties of LaFeO3. Kinetics of reduction and of oxygen adsorption. Journal of the Chemical Society Faraday Transactions I, 1985, 81, 2399.	1.0	29
959	Infrared spectroscopic study of the adsorption of CO, CO2 and NO on fluorinated alumina and supported Molybdenum–Nickel catalysts. Journal of the Chemical Society Faraday Transactions I, 1985, 81, 1203.	1.0	16
960	Surface and catalytic properties of alumina-, silica-, and nay zeolite-supported coMo catalysts. Applied Catalysis, 1985, 18, 357-372.	1.1	30
961	Catalytic implications of the unstable lattice oxygen of praseodymium oxide. Journal of the Less Common Metals, 1985, 107, 331-343.	0.9	8
962	Electron spin resonance of vanadium oxide monolayer catalysts. Colloids and Surfaces, 1984, 11, 31-38.	0.9	3
963	Activation of dinitrogen molecule on the surface of iron (or ruthenium) based catalysts. Reaction Kinetics and Catalysis Letters, 1984, 24, 179-182.	0.6	3
964	Surface properties of LaCrO3Equilibrium and kinetics of O2 adsorption. Journal of Catalysis, 1984, 87, 126-135.	3.1	36
965	Multilayer structure of molybdena/\$gamma;-alumina catalysts prepared using different methods. Journal of Catalysis, 1984, 90, 323-328.	3.1	31
966	Studies of molybdenum sulfide catalysts I. Oxygen chemisorption on unsupported and supported MoS2. Journal of Catalysis, 1984, 89, 111-115.	3.1	10
967	Physicochemical properties of LaMnO3: Reducibility and kinetics of O2 adsorption. Journal of Catalysis, 1984, 89, 209-216.	3.1	40
968	Physicochemical characterization of MoO3-NaY zeolite catalysts. Journal of Catalysis, 1984, 89, 478-488.	3.1	60
969	Preparation and characterization of the catalytically active forms of rare earth oxides. Journal of Colloid and Interface Science, 1984, 100, 303-310.	5.0	17
970	Catalytic Activity for Ammonia Synthesis of Iron Supported Catalysts Prepared from an Acid-modified ?-Al2O3 Method. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1984, 518, 227-233.	0.6	19
971	Influence of the preparation conditions on the surface properties of HDS catalysts. Applied Catalysis, 1984, 10, 333-346.	1.1	22
972	Infrared spectroscopic study of the adsorption of pyridine, carbon monoxide and carbon dioxide on the perovskite-type oxides LaMO3. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 1089.	1.0	43

#	Article	IF	Citations
973	Characterization of Sulfided Niâ€Mo∫î³â€Al ₂ O ₃ Catalysts by O ₂ and NO Chemisorption. Influence of the Method of Preparation. Bulletin Des Sociétés Chimiques Belges, 1984, 93, 719-726.	0.0	22
974	Kinetics of CO adsorption on the perovskite-type oxide LaCrO3. Journal of Colloid and Interface Science, 1983, 96, 107-114.	5.0	8
975	Physicochemical characterization of scandium oxide gels. Journal of Colloid and Interface Science, 1983, 93, 487-497.	5.0	17
976	Infrared spectroscopic study of pyridine adsorption on MoO3·NiO catalysts supported on fluorinated \hat{I}^3 -Al2O3. Journal of the Chemical Society Faraday Transactions I, 1983, 79, 2543.	1.0	19
977	Cu/ Kieselguhr Catalysts For Hydration Of Acrylonitrile. Studies in Surface Science and Catalysis, 1983, 16, 747-755.	1.5	5
978	Structure and activity of silica-supported vanadia catalysts for the oxidation of propylene. Applied Catalysis, 1983, 6, 363-378.	1.1	35
979	Surface Structure and Reactivity of Catalysts for Ammonia Synthesis. Zeitschrift Fur Physikalische Chemie, 1983, 135, 235-250.	1.4	13
980	A gravimetric, esr and oxygen chemisorption study of the effect of nickel on the reduction of molybdenum in NiMo/ \hat{l}^3 -Al2O3 catalysts. Applied Catalysis, 1982, 3, 117-129.	1.1	14
981	Reactions involving electron transfer at semiconductor surfaces. Part 11.â€"Oxygen isotope exchange via photoinitiated R1, R0 and place exchange processes on ZnO and TiO2. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 785.	1.0	23
982	Non-Metallic dispersion. Oxygen chemisorption for determination of the specific surface area of MoO3-based catalysts. Studies in Surface Science and Catalysis, 1982, , 367-372.	1.5	0
983	Surface structure and NiO dispersion for NiO/?-Al2O3 catalysts. Surface and Interface Analysis, 1982, 4, 234-239.	0.8	9
984	Kinetics and Mechanism of CO Oxidation on LaCoO ₃ . Zeitschrift Fur Physikalische Chemie, 1981, 124, 249-257.	1.4	53
985	The Role of the Energetics of Adsorption in Kinetic Studies. Zeitschrift Fur Physikalische Chemie, 1981, 127, 87-98.	1.4	1
986	Active Phase Characterization of Oxychlorination Catalysts. Studies in Surface Science and Catalysis, 1981, 7, 1031-1039.	1.5	14
987	Dehydrogenation versus dehydration of aliphatic alcohols on metal oxides. Faraday Discussions of the Chemical Society, 1981, 72, 283.	2.2	65
988	Dispersion of molybdena and hydrodesulphurization activity of Mo/ \hat{I}^3 -Al2O3, AND Co (or Ni) Mo/ \hat{I}^3 -Al2O3 catalysts. Applied Catalysis, 1981, 1, 59-70.	1.1	34
989	Gas dynamics at low pressures in a vacuum microbalance. Vacuum, 1981, 31, 79-84.	1.6	8
990	Extent of O2 chemisorption at low temperatures on partially reduced molybdena-silica catalysts. Reaction Kinetics and Catalysis Letters, 1981, 18, 495-498.	0.6	8

#	Article	IF	CITATIONS
991	Catalytic and physico-chemical properties of a doped MoO3/SiO2 catalyst used in propylene oxidation. Reaction Kinetics and Catalysis Letters, 1981, 17, 181-186.	0.6	4
992	The Freundlich model of adsorption for calculation of specific surface areas. Journal of Catalysis, 1981, 71, 201-204.	3.1	11
993	The Role of the Energetics of the Adsorption Equilibrium in Kinetic Studies. Zeitschrift Fur Physikalische Chemie, 1980, 120, 243-254.	1.4	5
994	Kinetics of chemisorption of CO2 on scandia: A new rate equation. Journal of Catalysis, 1978, 52, 521-530.	3.1	24
995	CO, O2, and CO2 adsorption on scandium oxide. Journal of Catalysis, 1976, 44, 421-428.	3.1	24
996	Thermal Transpiration of Methane and Ethane at High Temperatures. Zeitschrift Fur Physikalische Chemie, 1976, 100, 43-54.	1.4	3