Patrick L J M Zeeuwen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5687512/publications.pdf

Version: 2024-02-01

71102 7,941 106 41 citations h-index papers

86 g-index 107 107 107 10721 docs citations times ranked citing authors all docs

51608

#	Article	IF	CITATIONS
1	Identification of Keratinocyte Mitogens: Implications for Hyperproliferation in Psoriasis and Atopic Dermatitis. JID Innovations, 2022, 2, 100066.	2.4	13
2	CRISPR-Cas9â€'Based Genomic Engineering in Keratinocytes: From Technology to Application. JID Innovations, 2022, 2, 100082.	2.4	4
3	Antimicrobial Late Cornified Envelope Proteins: The Psoriasis Risk Factor Deletion of LCE3B/C Genes Affects Microbiota Composition. Journal of Investigative Dermatology, 2022, 142, 1947-1955.e6.	0.7	5
4	INFLUENCE OF FLG LOSS-OF-FUNCTION MUTATIONS IN HOST–MICROBE INTERACTIONS DURING ATOPIC SKIN INFLAMMATION. Journal of Dermatological Science, 2022, , .	1.9	0
5	Terminal keratinocyte differentiation in vitro is associated with a stable DNA methylome. Experimental Dermatology, 2021, 30, 1023-1032.	2.9	8
6	Vesicular hand eczema transcriptome analysis provides insights into its pathophysiology. Experimental Dermatology, 2021, 30, 1775-1786.	2.9	11
7	Skin microbiome and antimicrobial peptides. Experimental Dermatology, 2021, 30, 1362-1365.	2.9	2
8	Targeting the Cutaneous Microbiota in Atopic Dermatitis by Coal Tar via AHR-Dependent Induction of Antimicrobial Peptides. Journal of Investigative Dermatology, 2020, 140, 415-424.e10.	0.7	57
9	Skin microbiota in health and disease: From sequencing to biology. Journal of Dermatology, 2020, 47, 1110-1118.	1.2	20
10	Know your enemy: Unexpected, pervasive and persistent viral and bacterial contamination of primary cell cultures. Experimental Dermatology, 2020, 29, 672-676.	2.9	3
11	Microbe-host interplay in atopic dermatitis and psoriasis. Nature Communications, 2019, 10, 4703.	12.8	217
12	214 TARgeting the cutaneous microbiota in atopic dermatitis by coal tar via AHR-dependent induction of antimicrobial peptides. Journal of Investigative Dermatology, 2019, 139, S251.	0.7	3
13	STAT1 gain-of-function compromises skin host defense in the context of IFN- \hat{I}^3 signaling. Journal of Allergy and Clinical Immunology, 2019, 143, 1626-1629.e5.	2.9	6
14	Stable pantothenamide bioisosteres: novel antibiotics for Gram-positive bacteria. Journal of Antibiotics, 2019, 72, 682-692.	2.0	11
15	A generic workflow for Single Locus Sequence Typing (SLST) design and subspecies characterization of microbiota. Scientific Reports, 2019, 9, 19834.	3.3	12
16	Deficiency of the human cysteine protease inhibitor cystatin M/E causes hypotrichosis and dry skin. Genetics in Medicine, 2019, 21, 1559-1567.	2.4	7
17	3D skin models for 3R research: The potential of 3D reconstructed skin models to study skin barrier function. Experimental Dermatology, 2018, 27, 501-511.	2.9	133
18	The skin barrier: Epidermis vs environment. Experimental Dermatology, 2018, 27, 805-806.	2.9	46

#	Article	IF	CITATIONS
19	Psoriasis-Associated Late Cornified Envelope (LCE) Proteins Have AntibacterialÂActivity. Journal of Investigative Dermatology, 2017, 137, 2380-2388.	0.7	53
20	Cathepsin B as a potential cystatin M/E target in the mouse hair follicle. FASEB Journal, 2017, 31, 4286-4294.	0.5	6
21	Epidermal equivalents of filaggrin null keratinocytes do not show impaired skin barrier function. Journal of Allergy and Clinical Immunology, 2017, 139, 1979-1981.e13.	2.9	38
22	Immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models. Scientific Reports, 2017, 7, 11838.	3.3	130
23	The Effects of Human Beta-Defensins on Skin Cells in vitro. Dermatology, 2017, 233, 155-163.	2.1	18
24	Gram-positive anaerobe cocci are underrepresented in the microbiome of filaggrin-deficient human skin. Journal of Allergy and Clinical Immunology, 2017, 139, 1368-1371.	2.9	57
25	Polymorphisms in <i>CD84</i> , <i>IL12B</i> and <i>TNFAIP3</i> are associated with response to biologics in patients with psoriasis. British Journal of Dermatology, 2017, 176, 1288-1296.	1.5	42
26	Reply to Meisel etÂal Journal of Investigative Dermatology, 2017, 137, 961-962.	0.7	43
27	An In vitro Model for Bacterial Growth on Human Stratum Corneum. Acta Dermato-Venereologica, 2016, 96, 873-879.	1.3	22
28	Late cornified envelope (LCE) proteins: distinct expression patterns of LCE2 and LCE3 members suggest nonredundant roles in human epidermis and other epithelia. British Journal of Dermatology, 2016, 174, 795-802.	1.5	18
29	Mastâ€cell interleukinâ€1β, neutrophil interleukinâ€17 and epidermal antimicrobial proteins in the neutrophilic urticarial dermatosis in Schnitzler's syndrome. British Journal of Dermatology, 2015, 173, 448-456.	1.5	35
30	Perfusion Intensity Correlates with Expression Levels of Psoriasis-Related Genes and Proteins. Skin Pharmacology and Physiology, 2015, 28, 296-306.	2.5	6
31	Myeloid lineage–restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. Journal of Allergy and Clinical Immunology, 2015, 135, 561-564.e4.	2.9	115
32	Genotypeâ€"Phenotype Correlations in a Prospective Cohort Study of Paediatric Plaque Psoriasis: Lack of Correlation Between HLA-C*06 and Family History of Psoriasis. Acta Dermato-Venereologica, 2014, 94, 667-671.	1.3	12
33	Analysis of protein-protein interaction between late cornified envelope proteins and corneodesmosin. Experimental Dermatology, 2014, 23, 769-771.	2.9	7
34	The effect of adalimumab on key drivers in the pathogenesis of psoriasis. British Journal of Dermatology, 2014, 170, 571-580.	1.5	20
35	Skin Microbiome Imbalance in Patients with STAT1/STAT3 Defects Impairs Innate Host Defense Responses. Journal of Innate Immunity, 2014, 6, 253-262.	3.8	83
36	Absent in Melanoma 2 is predominantly present in primary melanoma and primary squamous cell carcinoma, but largely absent in metastases of both tumors. Journal of the American Academy of Dermatology, 2014, 71, 1012-1015.	1.2	12

#	Article	IF	CITATIONS
37	Discovery of Small Molecule Vanin Inhibitors: New Tools To Study Metabolism and Disease. ACS Chemical Biology, 2013, 8, 530-534.	3.4	43
38	Towards a role of interleukin-32 in atherosclerosis. Cytokine, 2013, 64, 433-440.	3.2	39
39	Microbiome and skin diseases. Current Opinion in Allergy and Clinical Immunology, 2013, 13, 514-520.	2.3	138
40	Combination of Pantothenamides with Vanin Inhibitors as a Novel Antibiotic Strategy against Gram-Positive Bacteria. Antimicrobial Agents and Chemotherapy, 2013, 57, 4794-4800.	3.2	32
41	Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis. Journal of Clinical Investigation, 2013, 123, 917-27.	8.2	256
42	Koebner Phenomenon in Psoriasis Is Not Associated with Deletion of Late Cornified Envelope Genes LCE3B and LCE3C. Journal of Investigative Dermatology, 2012, 132, 475-476.	0.7	7
43	Rho Kinase Inhibitor Y-27632 Prolongs the Life Span of Adult Human Keratinocytes, Enhances Skin Equivalent Development, and Facilitates Lentiviral Transduction. Tissue Engineering - Part A, 2012, 18, 1827-1836.	3.1	32
44	Pattern recognition receptors in infectious skin diseases. Microbes and Infection, 2012, 14, 881-893.	1.9	23
45	Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biology, 2012, 13, R101.	9.6	201
46	Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair. British Journal of Dermatology, 2012, 166, 1245-1254.	1.5	63
47	Genetics of Psoriasis: Evidence for Epistatic Interaction between Skin Barrier Abnormalities and Immune Deviation. Journal of Investigative Dermatology, 2012, 132, 2320-2331.	0.7	88
48	Cystatin <scp>M/E</scp> knockdown by lentiviral delivery of sh <scp>RNA</scp> impairs epidermal morphogenesis of human skin equivalents. Experimental Dermatology, 2012, 21, 889-891.	2.9	9
49	Strong induction of <scp>AIM</scp> 2 expression in human epidermis in acute and chronic inflammatory skin conditions. Experimental Dermatology, 2012, 21, 961-964.	2.9	71
50	Paediatric-onset psoriasis is associated with <i>>ERAP1</i> i>and <i>IL23R</i> loci, <i>LCE3C_LCE3B</i> deletion and <i>HLA-C*06</i> British Journal of Dermatology, 2012, 167, 922-925.	1.5	31
51	Keratolysis exfoliativa (dyshidrosis lamellosa sicca): a distinct peeling entity. British Journal of Dermatology, 2012, 167, 1076-1084.	1.5	13
52	Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nature Genetics, 2012, 44, 1341-1348.	21.4	848
53	Pattern Recognition Receptors in Immune Disorders Affecting the Skin. Journal of Innate Immunity, 2012, 4, 225-240.	3.8	13
54	Construction of a Microstructured Collagen Membrane Mimicking the Papillary Dermis Architecture and Guiding Keratinocyte Morphology and Gene Expression. Macromolecular Bioscience, 2012, 12, 675-691.	4.1	25

#	Article	IF	CITATIONS
55	Psoriasis Risk Genes of the Late Cornified Envelope-3 Group Are Distinctly Expressed Compared with Genes of Other LCE Groups. American Journal of Pathology, 2011, 178, 1470-1477.	3.8	90
56	Type 2 Helper T-Cell Cytokines Induce Morphologic and Molecular Characteristics of Atopic Dermatitis in Human Skin Equivalent. American Journal of Pathology, 2011, 178, 2091-2099.	3.8	61
57	Epidermal Expression of Host Response Genes upon Skin Barrier Disruption in Normal Skin and Uninvolved Skin of Psoriasis and Atopic Dermatitis Patients. Journal of Investigative Dermatology, 2011, 131, 263-266.	0.7	37
58	Meta-Analysis Confirms the LCE3C_LCE3B Deletion as a Risk Factor for Psoriasis in Several Ethnic Groups and Finds Interaction with HLA-Cw6. Journal of Investigative Dermatology, 2011, 131, 1105-1109.	0.7	89
59	Molecular diagnostics of psoriasis, atopic dermatitis, allergic contact dermatitis and irritant contact dermatitis. British Journal of Dermatology, 2010, 162, 568-578.	1.5	80
60	A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nature Genetics, 2010, 42, 985-990.	21.4	918
61	The cystatin M/Eâ€cathepsin L balance is essential for tissue homeostasis in epidermis, hair follicles, and cornea. FASEB Journal, 2010, 24, 3744-3755.	0.5	37
62	Deletion of Late Cornified Envelope 3B and 3C Genes Is Not Associated with Atopic Dermatitis. Journal of Investigative Dermatology, 2010, 130, 2057-2061.	0.7	25
63	Replication of LCE3C–LCE3B CNV as a Risk Factor for Psoriasis and Analysis of Interaction with Other Genetic Risk Factors. Journal of Investigative Dermatology, 2010, 130, 979-984.	0.7	61
64	A Comprehensive Analysis of Pattern Recognition Receptors in Normal and Inflamed Human Epidermis: Upregulation of Dectin-1 in Psoriasis. Journal of Investigative Dermatology, 2010, 130, 2611-2620.	0.7	68
65	The cystatin M / E-controlled pathway of skin barrier formation: expression of its key components in psoriasis and atopic dermatitis. British Journal of Dermatology, 2009, 161, 253-264.	1.5	32
66	Colocalization of Cystatin M/E and its Target Proteases Suggests a Role in Terminal Differentiation of Human Hair Follicle and Nail. Journal of Investigative Dermatology, 2009, 129, 1232-1242.	0.7	21
67	The Biology of Cystatin M/E and its Cognate Target Proteases. Journal of Investigative Dermatology, 2009, 129, 1327-1338.	0.7	57
68	Expression of the Vanin Gene Family in Normal and Inflamed Human Skin: Induction by Proinflammatory Cytokines. Journal of Investigative Dermatology, 2009, 129, 2167-2174.	0.7	68
69	Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nature Genetics, 2009, 41, 211-215.	21.4	482
70	\hat{l}^2 -Defensin-2 Protein Is a Serum Biomarker for Disease Activity in Psoriasis and Reaches Biologically Relevant Concentrations in Lesional Skin. PLoS ONE, 2009, 4, e4725.	2.5	151
71	Psoriasis is associated with increased \hat{l}^2 -defensin genomic copy number. Nature Genetics, 2008, 40, 23-25.	21.4	587
72	CD26/dipeptidyl-peptidase IV in psoriatic skin: upregulation and topographical changes. British Journal of Dermatology, 2008, 158, 1264-1272.	1.5	41

#	Article	IF	CITATIONS
73	Drosomycin-Like Defensin, a Human Homologue of <i>Drosophila melanogaster </i> Prosomycin with Antifungal Activity. Antimicrobial Agents and Chemotherapy, 2008, 52, 1407-1412.	3.2	32
74	Genetically Programmed Differences in Epidermal Host Defense between Psoriasis and Atopic Dermatitis Patients. PLoS ONE, 2008, 3, e2301.	2.5	40
75	Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats. Nucleic Acids Research, 2007, 35, e19-e19.	14.5	128
76	Colocalization of Cystatin M/E and Cathepsin V in Lamellar Granules and Corneodesmosomes Suggests a Functional Role in Epidermal Differentiation. Journal of Investigative Dermatology, 2007, 127, 120-128.	0.7	40
77	Increased Expression of Carbonic Anhydrase II (CA II) in Lesional Skin of Atopic Dermatitis: Regulation by Th2 Cytokines. Journal of Investigative Dermatology, 2007, 127, 1786-1789.	0.7	28
78	Silencing of cystatin M in metastatic oral cancer cell line MDA-686Ln by siRNA increases cysteine proteinases and legumain activities, cell proliferation and in vitro invasion. Life Sciences, 2006, 78, 898-907.	4.3	29
79	A molecular signature of epithelial host defense: comparative gene expression analysis of cultured bronchial epithelial cells and keratinocytes. BMC Genomics, 2006, 7, 9.	2.8	12
80	Cystatin M/E Is a High Affinity Inhibitor of Cathepsin V and Cathepsin L by a Reactive Site That Is Distinct from the Legumain-binding Site. Journal of Biological Chemistry, 2006, 281, 15893-15899.	3.4	99
81	Host defense effector molecules in mucosal secretions. FEMS Immunology and Medical Microbiology, 2005, 45, 151-158.	2.7	42
82	Phenotypical and Functional Differences in Germinative Subpopulations Derived from Normal and Psoriatic Epidermis. Journal of Investigative Dermatology, 2005, 124, 373-383.	0.7	45
83	High Expression Levels of Keratinocyte Antimicrobial Proteins in Psoriasis Compared with Atopic Dermatitis. Journal of Investigative Dermatology, 2005, 125, 1163-1173.	0.7	262
84	Evidence that unrestricted legumain activity is involved in disturbed epidermal cornification in cystatin M/E deficient mice. Human Molecular Genetics, 2004, 13, 1069-1079.	2.9	45
85	Epidermal differentiation: The role of proteases and their inhibitors. European Journal of Cell Biology, 2004, 83, 761-773.	3.6	110
86	Transcriptional Regulation of the Elafin Gene in Human Keratinocytes. Journal of Investigative Dermatology, 2003, 120, 301-307.	0.7	23
87	The Human Cystatin M/E Gene (CST6): Exclusion Candidate Gene For Harlequin Ichthyosis. Journal of Investigative Dermatology, 2003, 121, 65-68.	0.7	16
88	A null mutation in the cystatin M/E gene of ichq mice causes juvenile lethality and defects in epidermal cornification. Human Molecular Genetics, 2002, 11, 2867-2875.	2.9	64
89	A Partial Transcriptome of Human Epidermis. Genomics, 2002, 79, 671-678.	2.9	36
90	Cystatin M / E expression in inflammatory and neoplastic skin disorders. British Journal of Dermatology, 2002, 147, 87-94.	1.5	38

#	Article	IF	Citations
91	Serial Analysis of Gene Expression in Differentiated Cultures of Human Epidermal Keratinocytes. Journal of Investigative Dermatology, 2001, 116, 12-22.	0.7	28
92	Cystatin M/E Expression is Restricted to Differentiated Epidermal Keratinocytes and Sweat Glands: a New Skin-Specific Proteinase Inhibitor that is a Target for Cross-Linking by Transglutaminase. Journal of Investigative Dermatology, 2001, 116, 693-701.	0.7	94
93	Epidermal cell kinetics by combining in situ hybridization and immunohistochemistry. The Histochemical Journal, 1998, 30, 869-877.	0.6	13
94	Induction of SLPI (ALP/HUSI-I) in Epidermal Keratinocytes. Journal of Investigative Dermatology, 1998, 111, 996-1002.	0.7	99
95	SKALP/elafin gene polymorphisms are not associated with pustular forms of psoriasis. Clinical Genetics, 1998, 54, 96-101.	2.0	5
96	Identification and Sequence Analysis of Two New Members of the SKALP/elafin and SPAI-2 Gene Family. Journal of Biological Chemistry, 1997, 272, 20471-20478.	3.4	45
97	Skin-derived antileukoproteinase (SKALP) is decreased in pustular forms of psoriasis. A clue to the pathogenesis of pustule formation?. Archives of Dermatological Research, 1996, 288, 641-647.	1.9	15
98	Induction of normal and psoriatic phenotypes in submerged keratinocyte cultures., 1996, 168, 442-452.		62
99	Induction of normal and psoriatic phenotypes in submerged keratinocyte cultures. Journal of Cellular Physiology, 1996, 168, 442-452.	4.1	3
100	Constitutive and inducible expression of SKALP/elafin provides anti-elastase defense in human epithelia Journal of Clinical Investigation, 1996, 98, 1389-1399.	8.2	134
101	Skin-derived antileukoproteinase (SKALP) is decreased in pustular forms of psoriasis. A clue to the pathogenesis of pustule formation?. Archives of Dermatological Research, 1996, 288, 641-647.	1.9	3
102	Molecular cloning of a mouse epithelial protein-tyrosine phosphatase with similarities to submembranous proteins. Journal of Cellular Biochemistry, 1995, 59, 418-430.	2.6	52
103	A novel receptor-type protein tyrosine phosphatase with a single catalytic domain is specifically expressed in mouse brain. Biochemical Journal, 1995, 305, 499-504.	3.7	52
104	Assignment of the human gene encoding the epidermal serine proteinase inhibitor SKALP (PI3) to chromosome region 20q12→q13. Cytogenetic and Genome Research, 1994, 66, 129-131.	1.1	30
105	Ichthyosis Bullosa of Siemens Is Caused by Mutations in the Keratin 2e Gene. Journal of Investigative Dermatology, 1994, 103, 286-289.	0.7	94
106	Identification and typing of members of the protein-tyrosine phosphatase gene family expressed in mouse brain. Molecular Biology Reports, 1992, 16, 241-248.	2.3	11