
Ombretta Foresti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5687411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quality Control of Protein Complex Assembly by a Transmembrane Recognition Factor. Molecular Cell, 2020, 77, 108-119.e9.	9.7	67
2	Biallelic TANGO1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion. ELife, 2020, 9, .	6.0	45
3	Predominant Golgi Residency of the Plant K/HDEL Receptor Is Essential for Its Function in Mediating ER Retention. Plant Cell, 2018, 30, 2174-2196.	6.6	19
4	TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. ELife, 2018, 7, .	6.0	106
5	Analysis of Familial Hemophagocytic Lymphohistiocytosis Type 4 (FHL-4) Mutant Proteins Reveals that S-Acylation Is Required for the Function of Syntaxin 11 in Natural Killer Cells. PLoS ONE, 2014, 9, e98900.	2.5	20
6	Golgi-Dependent Transport of Vacuolar Sorting Receptors Is Regulated by COPII, AP1, and AP4 Protein Complexes in Tobacco A. Plant Cell, 2014, 26, 1308-1329.	6.6	39
7	ER-associated degradation: Protein quality control and beyond. Journal of Cell Biology, 2014, 204, 869-879.	5.2	508
8	Quality control of inner nuclear membrane proteins by the Asi complex. Science, 2014, 346, 751-755.	12.6	171
9	Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. ELife, 2013, 2, e00953.	6.0	167
10	Vacuolar Transport in Tobacco Leaf Epidermis Cells Involves a Single Route for Soluble Cargo and Multiple Routes for Membrane Cargo. Plant Cell, 2011, 23, 3007-3025.	6.6	85
11	A Recycling-Defective Vacuolar Sorting Receptor Reveals an Intermediate Compartment Situated between Prevacuoles and Vacuoles in Tobacco. Plant Cell, 2011, 22, 3992-4008.	6.6	77
12	Intermediate Organelles of the Plant Secretory Pathway: Identity and Function. Traffic, 2008, 9, 1599-1612.	2.7	75
13	The Syntaxins SYP31 and SYP81 Control ER–Golgi Trafficking in the Plant Secretory Pathway. Traffic, 2008, 9, 1629-1652.	2.7	76
14	Tomato spotted wilt virus glycoproteins induce the formation of endoplasmic reticulum- and Golgi-derived pleomorphic membrane structures in plant cells. Journal of General Virology, 2008, 89, 1811-1818.	2.9	54
15	Protein Domains Involved in Assembly in the Endoplasmic Reticulum Promote Vacuolar Delivery when Fused to Secretory GFP, Indicating a Protein Quality Control Pathway for Degradation in the Plant Vacuole. Molecular Plant, 2008, 1, 1067-1076.	8.3	27
16	Overexpression of the Arabidopsis Syntaxin PEP12/SYP21 Inhibits Transport from the Prevacuolar Compartment to the Lytic Vacuole in Vivo. Plant Cell, 2006, 18, 2275-2293.	6.6	97
17	Targeting of the Plant Vacuolar Sorting Receptor BP80 Is Dependent on Multiple Sorting Signals in the Cytosolic Tail. Plant Cell, 2006, 18, 1477-1497.	6.6	86
18	Receptor Salvage from the Prevacuolar Compartment Is Essential for Efficient Vacuolar Protein Targeting. Plant Cell, 2005, 17, 132-148.	6.6	163

#	Article	IF	CITATIONS
19	A Phaseolin Domain Involved Directly in Trimer Assembly Is a Determinant for Binding by the Chaperone BiP. Plant Cell, 2003, 15, 2464-2475.	6.6	40
20	The C-terminal tetrapeptide of phaseolin is sufficient to target green fluorescent protein to the vacuole. Journal of Plant Physiology, 2001, 158, 499-503.	3.5	40