Zhi-Xiang Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/568720/publications.pdf

Version: 2024-02-01

275 papers 28,860 citations

79 h-index

6592

162 g-index

281 all docs

281 docs citations

times ranked

281

20474 citing authors

#	Article	IF	CITATIONS
1	Single-bond-linked oligomeric donors for high performance organic solar cells. Chinese Chemical Letters, 2023, 34, 107321.	4.8	3
2	18.55% Efficiency Polymer Solar Cells Based on a Small Molecule Acceptor with Alkylthienyl Outer Side Chains and a Low-Cost Polymer Donor PTQ10. CCS Chemistry, 2023, 5, 841-850.	4.6	45
3	Simple Nonfusedâ€Ring Electron Acceptors with Noncovalently Conformational Locks for Lowâ€Cost and Highâ€Performance Organic Solar Cells Enabled by Endâ€Group Engineering. Advanced Functional Materials, 2022, 32, 2108861.	7.8	84
4	Precise Control of Crystal Orientation of Conjugated Molecule Enables Anisotropic Charge Transport Properties. Advanced Functional Materials, 2022, 32, 2110080.	7.8	7
5	High Miscibility Compatible with Ordered Molecular Packing Enables an Excellent Efficiency of 16.2% in Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Materials, 2022, 34, e2106316.	11.1	74
6	Polymerized Smallâ€Molecule Acceptor as an Interface Modulator to Increase the Performance of Allâ€Smallâ€Molecule Solar Cells. Advanced Energy Materials, 2022, 12, 2102394.	10.2	15
7	Low nonradiative energy losses within 0.2 eV in efficient non-fullerene all-small-molecule organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2800-2806.	2.7	9
8	Efficient charge generation and low open circuit voltage loss enable a PCE of 10.3% in small molecule donor and polymer acceptor organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2639-2647.	2.7	2
9	Building Supramolecular Chirality in Bulk Heterojunctions Enables Amplified Dissymmetry Current for High-Performing Circularly Polarized Light Detection. , 2022, 4, 401-409.		22
10	PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes. Nano Energy, 2022, 95, 107009.	8.2	27
11	Robust Anionâ€Shielding Metalâ€Organic Frameworks Based Composite Interlayers To Achieve Uniform Li Deposition for Stable Liâ€Metal Anode. ChemElectroChem, 2022, 9, .	1.7	3
12	Exciton Binding Energies in Organic Photovoltaic Materials: A Theoretical Perspective. Journal of Physical Chemistry C, 2022, 126, 14-21.	1.5	16
13	Aryl-substituted-indanone end-capped nonfullerene acceptors for organic solar cells with a low nonradiative loss. Chemical Communications, 2022, 58, 4877-4880.	2.2	8
14	Trifluoro alkyl side chains in the non-fullerene acceptors to optimize the phase miscibility and vertical distribution of organic solar cells. Journal of Materials Chemistry A, 2022, 10, 8837-8845.	5.2	12
15	The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A–DA′D–A type acceptors. Energy and Environmental Science, 2022, 15, 2011-2020.	15.6	73
16	Alignment of Organic Conjugated Molecules for Highâ€Performance Device Applications. Macromolecular Rapid Communications, 2022, 43, e2100931.	2.0	8
17	Theoryâ€Guided Material Design Enabling Highâ€Performance Multifunctional Semitransparent Organic Photovoltaics without Optical Modulations. Advanced Materials, 2022, 34, e2200337.	11.1	42
18	Utilizing Ternary Strategy to Reduce the Influence of Polymer Batchâ€ŧoâ€Batch Variation in Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	9

#	Article	IF	Citations
19	The Role of Entropy Gains in the Exciton Separation in Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2100903.	2.0	4
20	Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells. Science China Chemistry, 2022, 65, 926-933.	4.2	22
21	Entangled structure morphology by polymer guest enabling mechanically robust organic solar cells with efficiencies of over 16.5%. Matter, 2022, 5, 1877-1889.	5.0	38
22	Simultaneously Decreasing the Bandgap and V _{oc} Loss in Efficient Ternary Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	33
23	Asymmetric Substitution of Endâ€Groups Triggers 16.34% Efficiency for Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Materials, 2022, 34, .	11.1	59
24	Regulating phase separation and molecular stacking by introducing siloxane to small-molecule donors enables high efficiency all-small-molecule organic solar cells. Energy and Environmental Science, 2022, 15, 2937-2947.	15.6	33
25	Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Advanced Materials, 2022, 34, .	11.1	384
26	Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nature Communications, $2022,13,.$	5.8	113
27	Research progress of large-area organic solar cells. Scientia Sinica Chimica, 2022, 52, 2001-2026.	0.2	1
28	"Nâ€∢i>Ï€àêN―Type Oligomeric Acceptor Achieves an OPV Efficiency of 18.19% with Low Energy Loss a Excellent Stability. Advanced Science, 2022, 9, .	nd 5.6	67
29	Investigation of charge transfer between donor and acceptor for small-molecule organic solar cells by scanning tunneling microscopy and ultrafast transient absorption spectroscopy. Nano Research, 2022, 15, 8019-8027.	5.8	3
30	100 cm2 Organic Photovoltaic Cells with 23% Efficiency under Indoor Illumination. Chinese Journal of Polymer Science (English Edition), 2022, 40, 979-988.	2.0	18
31	Chiral Nonâ∈Fullerene Acceptor Enriched Bulk Heterojunctions Enable Highâ∈Performance Nearâ∈Infrared Circularly Polarized Light Detection. Small, 2022, 18, .	5.2	12
32	Revealing aggregation of non-fullerene acceptors in intermixed phase by ultraviolet-visible absorption spectroscopy. Cell Reports Physical Science, 2022, 3, 100983.	2.8	6
33	Combining chlorination and sulfuration strategies for high-performance all-small-molecule organic solar cells. Journal of Energy Chemistry, 2021, 52, 228-233.	7.1	23
34	Constructing high efficiency non-fullerene all-small-molecule ternary organic solar cells by employing structurally similar acceptors. Materials Chemistry Frontiers, 2021, 5, 1405-1409.	3.2	13
35	Progress and prospects of thick-film organic solar cells. Journal of Materials Chemistry A, 2021, 9, 3125-3150.	5.2	53
36	Molecular dispersion enhances photovoltaic efficiency and thermal stability in quasi-bilayer organic solar cells. Science China Chemistry, 2021, 64, 116-126.	4.2	34

#	Article	IF	CITATIONS
37	Optimizing the energy levels and crystallinity of 2,2′-bithiophene-3,3′-dicarboximide-based polymer donors for high-performance non-fullerene organic solar cells. Journal of Materials Chemistry C, 2021, 9, 7575-7582.	2.7	9
38	17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy and Environmental Science, 2021, 14, 5903-5910.	15.6	116
39	Research Progress of Small Molecule Donors with High Crystallinity in All Small Molecule Organic Solar Cells. Acta Chimica Sinica, 2021, 79, 284.	0.5	11
40	Introducing methoxy or fluorine substitutions on the conjugated side chain to reduce the voltage loss of organic solar cells. Journal of Materials Chemistry C, 2021, 9, 11163-11171.	2.7	10
41	A universal method for constructing high efficiency organic solar cells with stacked structures. Energy and Environmental Science, 2021, 14, 2314-2321.	15.6	75
42	Top and bottom electrode optimization enabled high-performance flexible and semi-transparent organic solar cells. Materials Chemistry Frontiers, 2021, 5, 4310-4316.	3.2	7
43	Optimizing the Charge Carrier and Light Management of Nonfullerene Acceptors for Efficient Organic Solar Cells with Small Nonradiative Energy Losses. Solar Rrl, 2021, 5, 2100008.	3.1	20
44	Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. National Science Review, 2021, 8, nwab031.	4.6	70
45	Enhancing the performances of all-small-molecule ternary organic solar cells via achieving optimized morphology and 3D charge pathways. Chinese Chemical Letters, 2021, 32, 2904-2908.	4.8	10
46	Enhancing Photovoltaic Performances of Naphthaleneâ€Based Unfusedâ€Ring Electron Acceptors upon Regioisomerization. Solar Rrl, 2021, 5, 2100094.	3.1	21
47	A New Conjugated Polymer that Enables the Integration of Photovoltaic and Lightâ€Emitting Functions in One Device. Advanced Materials, 2021, 33, e2101090.	11.1	129
48	An Efficiency of 16.46% and a <i>T</i> ₈₀ Lifetime of Over 4000 h for the PM6:Y6 Inverted Organic Solar Cells Enabled by Surface Acid Treatment of the Zinc Oxide Electron Transporting Layer. ACS Applied Materials & Diterfaces, 2021, 13, 17869-17881.	4.0	80
49	Ï€-Extended Nonfullerene Acceptors for Efficient Organic Solar Cells with a High Open-Circuit Voltage of 0.94 V and a Low Energy Loss of 0.49 eV. ACS Applied Materials & Interfaces, 2021, 13, 22531-22539.	4.0	22
50	Probing molecular orientation at bulk heterojunctions by polarization-selective transient absorption spectroscopy. Science China Chemistry, 2021, 64, 1569-1576.	4.2	2
51	Creating Side Transport Pathways in Organic Solar Cells by Introducing Delayed Fluorescence Molecules. Chemistry of Materials, 2021, 33, 4578-4585.	3.2	11
52	Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Lowâ€Drivingâ€Force Organic Solar Cells. Angewandte Chemie, 2021, 133, 15476-15481.	1.6	22
53	The substituents on the intermediate electron-deficient groups in small molecular acceptors result appropriate morphologies for organic solar cells. Organic Electronics, 2021, 93, 106133.	1.4	8
54	<i>In Situ</i> Generated Mixed Ion/Electron-Conducting Scaffold with Uniform Li Deposition for Flexible Li Metal Anodes. ACS Applied Energy Materials, 2021, 4, 6106-6115.	2.5	11

#	Article	IF	CITATIONS
55	Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Lowâ€Drivingâ€Force Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 15348-15353.	7.2	121
56	Conjugated microporous polymers for energy storage: Recent progress and challenges. Nano Energy, 2021, 85, 105958.	8.2	110
57	Regioregular narrow bandgap copolymer with strong aggregation ability for high-performance semitransparent photovoltaics. Nano Energy, 2021, 86, 106098.	8.2	31
58	Singleâ€Junction Organic Photovoltaic Cell with 19% Efficiency. Advanced Materials, 2021, 33, e2102420.	11.1	1,072
59	Volatilizable Solid Additiveâ€Assisted Treatment Enables Organic Solar Cells with Efficiency over 18.8% and Fill Factor Exceeding 80%. Advanced Materials, 2021, 33, e2105301.	11.1	222
60	Selfâ€Powered Organic Photodetectors with High Detectivity for Near Infrared Light Detection Enabled by Dark Current Reduction. Advanced Functional Materials, 2021, 31, 2106326.	7.8	70
61	18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. Nano Today, 2021, 41, 101289.	6.2	47
62	Dual-regulation of ions/electrons in a 3D Cu–Cu _x O host to guide uniform lithium growth for high-performance lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 10393-10403.	5.2	20
63	Mixed Solvent as a Critical Factor in Optimizing Phase Separation of All Small Molecule Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 11769-11776.	2.5	2
64	Sulfur Compensation: A Promising Strategy against Capacity Decay in Li–S Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58771-58780.	4.0	9
65	Regulating the phase separation of ternary organic solar cells via 3D architectured AIE molecules. Nano Energy, 2020, 68, 104271.	8.2	47
66	Orientationally engineered 2D/3D perovskite for high efficiency solar cells. Sustainable Energy and Fuels, 2020, 4, 324-330.	2.5	35
67	Control of Nanomorphology in Fullerene-Free Organic Solar Cells by Lewis Acid Doping with Enhanced Photovoltaic Efficiency. ACS Applied Materials & Samp; Interfaces, 2020, 12, 667-677.	4.0	24
68	Scalable Production of Wearable Solidâ€State Liâ€Ion Capacitors from Nâ€Doped Hierarchical Carbon. Advanced Materials, 2020, 32, e2005531.	11.1	57
69	Long-term stable and highly efficient perovskite solar cells with a formamidinium chloride (FACI) additive. Journal of Materials Chemistry A, 2020, 8, 17756-17764.	5.2	38
70	Effective Modulation of Exciton Binding Energies in Polymorphs of a Small-Molecule Acceptor for Organic Photovoltaics. Journal of Physical Chemistry Letters, 2020, 11, 10227-10232.	2.1	25
71	The Crystallinity Control of Polymer Donor Materials for High-Performance Organic Solar Cells. Frontiers in Chemistry, 2020, 8, 603134.	1.8	16
72	Enhancing the photovoltaic performance of heteroheptacene-based nonfullerene acceptors through the synergistic effect of side-chain engineering and fluorination. Journal of Materials Chemistry A, 2020, 8, 24543-24552.	5.2	19

#	Article	IF	CITATIONS
73	Flexible Short-Wave Infrared Image Sensors Enabled by High-Performance Polymeric Photodetectors. Macromolecules, 2020, 53, 10636-10643.	2.2	42
74	Moving Alkylâ€Chain Branching Point Induced a Hierarchical Morphology for Efficient Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2005426.	7.8	54
75	The post-treatment effects on open circuit voltages and device performances in a high efficiency all-small-molecule organic solar cell. Journal of Materials Chemistry C, 2020, 8, 15385-15392.	2.7	18
76	Simultaneous Performance and Stability Improvement of Ternary Polymer Solar Cells Enabled by Modulating the Molecular Packing of Acceptors. Solar Rrl, 2020, 4, 2000374.	3.1	15
77	Synergistic Optimization Enables Largeâ€Area Flexible Organic Solar Cells to Maintain over 98% PCE of the Smallâ€Area Rigid Devices. Advanced Materials, 2020, 32, e2005153.	11.1	89
78	Modulation of Donor Alkyl Terminal Chains with the Shifting Branching Point Leads to the Optimized Morphology and Efficient All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25100-25107.	4.0	40
79	Ideal alloys of two donor isomers with non-covalently conformational locking for ternary organic solar cells. Journal of Materials Chemistry C, 2020, 8, 7519-7526.	2.7	11
80	Semitransparent Flexible Organic Solar Cells. Chemical Research in Chinese Universities, 2020, 36, 343-350.	1.3	18
81	Surface controlled pseudo-capacitive reactions enabling ultra-fast charging and long-life organic lithium ion batteries. Sustainable Energy and Fuels, 2020, 4, 4179-4185.	2.5	30
82	Red-emissive poly(phenylene vinylene)-derivated semiconductors with well-balanced ambipolar electrical transporting properties. Journal of Materials Chemistry C, 2020, 8, 10868-10879.	2.7	18
83	A High Energy Density Self-supported and Bendable Organic Electrode for Redox Supercapacitors with a Wide Voltage Window. Chinese Journal of Polymer Science (English Edition), 2020, 38, 522-530.	2.0	12
84	Ternary Organic Solar Cells Based on Two Nonâ€fullerene Acceptors with Complimentary Absorption and Balanced Crystallinity. Chinese Journal of Chemistry, 2020, 38, 935-940.	2.6	21
85	Singleâ€Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials, 2020, 32, e1908205.	11.1	1,407
86	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
87	The interfacial degradation mechanism of polymer:fullerene bis-adduct solar cells and their stability improvement. Materials Advances, 2020, 1, 1307-1317.	2.6	9
88	Influence of Covalent and Noncovalent Backbone Rigidification Strategies on the Aggregation Structures of a Wide-Band-Gap Polymer for Photovoltaic Cells. Chemistry of Materials, 2020, 32, 1993-2003.	3.2	36
89	Nitrogenâ€doped nanoarrayâ€modified 3D hierarchical graphene as a cofunction host for highâ€performance flexible Liâ€6 battery. EcoMat, 2020, 2, e12010.	6.8	50
90	Highâ€Efficient Charge Generation in Singleâ€Donorâ€Componentâ€Based pâ€iâ€n Structure Organic Solar Cells Solar Rrl, 2020, 4, 1900580.	5. 3.1	14

#	Article	IF	CITATIONS
91	Efficient Two-Dimensional Tin Halide Perovskite Light-Emitting Diodes via a Spacer Cation Substitution Strategy. Journal of Physical Chemistry Letters, 2020, 11, 1120-1127.	2.1	97
92	Effect of Side-Chain Variation on Single-Crystalline Structures for Revealing the Structure–Property Relationships of Organic Solar Cells. Organic Materials, 2020, 02, 026-032.	1.0	1
93	A privileged ternary blend enabling non-fullerene organic photovoltaics with over 14% efficiency. Journal of Materials Chemistry C, 2020, 8, 15135-15141.	2.7	4
94	Achieving Small Exciton Binding Energies in Small Molecule Acceptors for Organic Solar Cells: Effect of Molecular Packing. Journal of Physical Chemistry Letters, 2019, 10, 4888-4894.	2.1	60
95	Molecular Engineering of Dâ^π–A Copolymers Based on 4,8-Bis(4-chlorothiophen-2-yl)benzo[1,2- <i>b</i> :4,5- <i>b</i> i>′]dithiophene (BDT-T-Cl) for High-Performance Fullerene-Free Organic Solar Cells. Macromolecules, 2019, 52, 6227-6233.	2.2	83
96	Effects of energy-level offset between a donor and acceptor on the photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 18889-18897.	5.2	87
97	A Bifunctional and Freeâ€Standing Organic Composite Film with High Flexibility and Good Tensile Strength for Tribological and Electrochemical Applications. Advanced Materials Technologies, 2019, 4, 1900617.	3.0	21
98	Facile-Effective Hole-Transporting Materials Based on Dibenzo[<i>a</i> , <i>c</i>)carbazole: The Key Role of Linkage Position to Photovoltaic Performance of Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2514-2521.	8.8	59
99	Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure. Journal of Materials Chemistry A, 2019, 7, 3570-3576.	5.2	58
100	Reduced graphene oxide-induced crystallization of CuPc interfacial layer for high performance of perovskite photodetectors. RSC Advances, 2019, 9, 3800-3808.	1.7	14
101	A-Ï€-D-Ï€-A small-molecule donors with different end alkyl chains obtain different morphologies in organic solar cells. Chinese Chemical Letters, 2019, 30, 906-910.	4.8	8
102	Spontaneous open-circuit voltage gain of fully fabricated organic solar cells caused by elimination of interfacial energy disorder. Energy and Environmental Science, 2019, 12, 2518-2528.	15.6	57
103	Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515.	5.8	1,431
104	Nanowire Array-Coated Flexible Substrate to Accommodate Lithium Plating for Stable Lithium-Metal Anodes and Flexible Lithium–Organic Batteries. ACS Applied Materials & Diterfaces, 2019, 11, 20873-20880.	4.0	23
105	Cableâ€Shaped Lithium–Sulfur Batteries Based on Nitrogenâ€Doped Carbon/Carbon Nanotube Composite Yarns. Macromolecular Materials and Engineering, 2019, 304, 1900201.	1.7	5
106	Benzotriazole-Based Acceptor and Donors, Coupled with Chlorination, Achieve a High $\langle i \rangle V \langle i \rangle \langle sub \rangle OC \langle sub \rangle$ of 1.24 V and an Efficiency of 10.5% in Fullerene-Free Organic Solar Cells. Chemistry of Materials, 2019, 31, 3941-3947.	3.2	236
107	Significant influence of halogenation on the energy levels and molecular configurations of polymers in DTBDT-based polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 1244-1252.	3.2	15
108	Constructing Highâ€Performance Allâ€Smallâ€Molecule Ternary Solar Cells with the Same Third Component but Different Mechanisms for Fullerene and Nonâ€fullerene Systems. Advanced Energy Materials, 2019, 9, 1900190.	10.2	37

#	Article	IF	CITATIONS
109	Efficient Polymer Solar Cells With High Fill Factor Enabled by A Furo[3,4]pyrroleâ€4,6â€dioneâ€Based Copolymer. Solar Rrl, 2019, 3, 1900012.	3.1	17
110	Highly efficient flexible MAPbI ₃ solar cells with a fullerene derivative-modified SnO ₂ layer as the electron transport layer. Journal of Materials Chemistry A, 2019, 7, 6659-6664.	5.2	77
111	Chalcogen-substitution modulated supramolecular chirality and gas sensing properties in perylenediimides. Chemical Communications, 2019, 55, 4379-4382.	2.2	20
112	Regulating Bulkâ€Heterojunction Molecular Orientations through Surface Free Energy Control of Holeâ€Transporting Layers for Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1806921.	11.1	86
113	Surface modification of ZnO electron transport layers with glycine for efficient inverted non-fullerene polymer solar cells. Organic Electronics, 2019, 70, 25-31.	1.4	41
114	Fluorination-substitution effect on all-small-molecule organic solar cells. Science China Chemistry, 2019, 62, 837-844.	4.2	32
115	Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability. Nano Energy, 2019, 58, 706-714.	8.2	52
116	Correlations between Performance of Organic Solar Cells and Filmâ€Depthâ€Dependent Optical and Electronic Variations. Advanced Optical Materials, 2019, 7, 1900152.	3.6	43
117	Achieving Over 15% Efficiency in Organic Photovoltaic Cells via Copolymer Design. Advanced Materials, 2019, 31, e1808356.	11.1	388
118	Recent Progress in Polymeric Carbonylâ€Based Electrode Materials for Lithium and Sodium Ion Batteries. Macromolecular Rapid Communications, 2019, 40, e1800565.	2.0	88
119	Simultaneous performance and stability improvement of polymer:fullerene solar cells by doping with piperazine. Journal of Materials Chemistry A, 2019, 7, 7099-7108.	5.2	20
120	All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nature Communications, 2019, 10, 5393.	5.8	273
121	A Sequential Slotâ€Die Coated Ternary System Enables Efficient Flexible Organic Solar Cells. Solar Rrl, 2019, 3, 1800333.	3.1	37
122	Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed Organic Complementary Logic via a Twoâ€Step Ci£¿H Activation Strategy. Advanced Materials, 2019, 31, e1806010.	11.1	63
123	Largeâ€Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods. Advanced Materials, 2019, 31, e1805089.	11.1	246
124	Liquidâ€Crystalline Small Molecules for Nonfullerene Solar Cells with High Fill Factors and Power Conversion Efficiencies. Advanced Energy Materials, 2019, 9, 1803175.	10.2	55
125	A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9, 743.	5.8	635
126	Two-dimensional benzo[1,2- <i>b</i> :4,5- <i>b</i> aꀲ]difuran-based wide bandgap conjugated polymers for efficient fullerene-free polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4023-4031.	5.2	37

#	Article	IF	Citations
127	Improve the Performance of the Allâ€Smallâ€Molecule Nonfullerene Organic Solar Cells through Enhancing the Crystallinity of Acceptors. Advanced Energy Materials, 2018, 8, 1702377.	10.2	87
128	From Alloy-Like to Cascade Blended Structure: Designing High-Performance All-Small-Molecule Ternary Solar Cells. Journal of the American Chemical Society, 2018, 140, 1549-1556.	6.6	145
129	A Simple but Efficient Small Molecule with a High Open Circuit Voltage of 1.07â€V in Solutionâ€Processable Organic Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 558-562.	1.3	3
130	Nitrogen-Doped Porous Carbons Derived from Polypyrrole-Based Aerogels for Gas Uptake and Supercapacitors. ACS Applied Nano Materials, 2018, 1, 609-616.	2.4	46
131	Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells. ACS Applied Materials & Solar Cells.	4.0	12
132	Wide-Bandgap Conjugated Polymers Based on Alkylthiofuran-Substituted Benzo $[1,2-\langle i \rangle b < i > i < j > i < j < j < j < j < j < j < j < j < j <$	2.2	23
133	Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12913-12920.	4.0	21
134	A hierarchical porous N-doped carbon electrode with superior rate performance and cycling stability for flexible supercapacitors. Materials Chemistry Frontiers, 2018, 2, 986-992.	3.2	30
135	Modulating Molecular Orientation Enables Efficient Nonfullerene Small-Molecule Organic Solar Cells. Chemistry of Materials, 2018, 30, 2129-2134.	3.2	157
136	A Carbonyl Compoundâ€Based Flexible Cathode with Superior Rate Performance and Cyclic Stability for Flexible Lithiumâ€Ion Batteries. Advanced Materials, 2018, 30, 1703868.	11.1	128
137	Highâ€Performance As ast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency. Advanced Materials, 2018, 30, 1704546.	11.1	233
138	Simultaneously Achieved High Openâ€Circuit Voltage and Efficient Charge Generation by Fineâ€Tuning Chargeâ€Transfer Driving Force in Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1704507.	7.8	180
139	A novel small molecule based on naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophene benefits both fullerene and non-fullerene solar cells. Materials Chemistry Frontiers, 2018, 2, 143-148.	3.2	14
140	Selfâ€Assembled 3D Helical Hollow Superstructures with Enhanced Microwave Absorption Properties. Macromolecular Rapid Communications, 2018, 39, 1700591.	2.0	34
141	Conducting Polymer Nanostructures and their Derivatives for Flexible Supercapacitors. Israel Journal of Chemistry, 2018, 58, 1299-1314.	1.0	40
142	A carbon foam-supported high sulfur loading composite as a self-supported cathode for flexible lithium–sulfur batteries. Nanoscale, 2018, 10, 21790-21797.	2.8	21
143	Fluorination Induced Donor to Acceptor Transformation in A1–D–A2–D–A1-Type Photovoltaic Small Molecules. Frontiers in Chemistry, 2018, 6, 384.	1.8	4
144	Suppressing charge recombination in small-molecule ternary organic solar cells by modulating donor–acceptor interfacial arrangements. Physical Chemistry Chemical Physics, 2018, 20, 24570-24576.	1.3	13

#	Article	IF	CITATIONS
145	Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules. Nature Communications, 2018, 9, 3808.	5.8	34
146	A Fused Ring Electron Acceptor with Decacyclic Core Enables over 13.5% Efficiency for Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1802050.	10.2	97
147	Exciton Binding Energies of Nonfullerene Small Molecule Acceptors: Implication for Exciton Dissociation Driving Forces in Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 22309-22316.	1.5	93
148	Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials. Science China Chemistry, 2018, 61, 1328-1337.	4.2	177
149	Flexible VO <i>_x</i> Nanosphere@SWCNT Hybrid Films with Dualâ€Confinement Function of Polysulfides for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1800766.	1.9	14
150	A Highly Efficient Nonâ€Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fineâ€Tuned Holeâ€Transporting Layer. Advanced Materials, 2018, 30, e1801801.	11.1	360
151	The Introduction of Fluorine and Sulfur Atoms into Benzotriazoleâ€Based pâ€Type Polymers to Match with a Benzotriazoleâ€Containing nâ€Type Small Molecule: "The Sameâ€Acceptorâ€Strategy―to Realize Hig Openâ€Circuit Voltage. Advanced Energy Materials, 2018, 8, 1801582.	h10.2	122
152	An Asymmetrical Polymer Based on Thieno $[2,3-\langle i\rangle f\langle i\rangle]$ benzofuran for Efficient Fullerene-Free Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 1888-1892.	2.5	18
153	Modulation of the Molecular Orientation at the Bulk Heterojunction Interface via Tuning the Small Molecular Donor–Nonfullerene Acceptor Interactions. ACS Applied Materials & Diterfaces, 2018, 10, 31526-31534.	4.0	26
154	Aromatic end-capped acceptor effects on molecular stacking and the photovoltaic performance of solution-processable small molecules. Journal of Materials Chemistry A, 2018, 6, 22077-22085.	5.2	19
155	Controllable Supramolecular Chiral Twisted Nanoribbons from Achiral Conjugated Oligoaniline Derivatives. Journal of the American Chemical Society, 2018, 140, 9417-9425.	6.6	62
156	High open-circuit voltage ternary organic solar cells based on ICBA as acceptor and absorption-complementary donors. Materials Chemistry Frontiers, 2017, 1, 1223-1228.	3.2	18
157	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 2694-2698.	7.2	232
158	Combining Energy Transfer and Optimized Morphology for Highly Efficient Ternary Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602552.	10.2	97
159	Singleâ€Junction Binaryâ€Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Advanced Materials, 2017, 29, 1700144.	11.1	629
160	Vertical few-layer graphene/metalized Si-nanocone arrays as 3D electrodes for solid-state supercapacitors with large areal capacitance and superior rate capability. Applied Surface Science, 2017, 404, 238-245.	3.1	23
161	Enhancing Performance of Largeâ€Area Organic Solar Cells with Thick Film via Ternary Strategy. Small, 2017, 13, 1700388.	5.2	113
162	Evolution of morphology and open-circuit voltage in alloy-energy transfer coexisting ternary organic solar cells. Journal of Materials Chemistry A, 2017, 5, 9859-9866.	5.2	30

#	Article	IF	CITATIONS
163	Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption. Materials and Design, 2017, 129, 164-172.	3.3	105
164	Polymer/Small Molecule/Fullerene Based Ternary Solar Cells. Advanced Energy Materials, 2017, 7, 1602540.	10.2	111
165	Combining Electrode Flexibility and Waveâ€Like Device Architecture for Highly Flexible Liâ€lon Batteries. Advanced Materials Technologies, 2017, 2, 1700032.	3.0	29
166	Twisted terrylene dyes: synthesis and application in organic solar cells. Organic Chemistry Frontiers, 2017, 4, 811-816.	2.3	21
167	Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chinese Journal of Polymer Science (English Edition), 2017, 35, 261-268.	2.0	27
168	Achievement of High <i>V</i> _{oc} of 1.02 V for P3HTâ€Based Organic Solar Cell Using a Benzotriazoleâ€Containing Nonâ€Fullerene Acceptor. Advanced Energy Materials, 2017, 7, 1602269.	10.2	191
169	Asymmetric thiophene/pyridine flanked diketopyrrolopyrrole polymers for high performance polymer ambipolar field-effect transistors and solar cells. Journal of Materials Chemistry C, 2017, 5, 566-572.	2.7	51
170	A–π–D–π–A Electronâ€Donating Small Molecules for Solutionâ€Processed Organic Solar Cells: A Review Macromolecular Rapid Communications, 2017, 38, 1700470.	^{/.} 2.0	70
171	Nonâ€Fullerene Acceptors With A ₂ = A ₁ â€Dâ€A ₁ â€%= A <s Containing Benzothiadiazole and Thiazolidineâ€2,4â€Dione for Highâ€Performance P3HTâ€Based Organic Solar Cells. Solar Rrl, 2017, 1, 1700166.</s 		b> Skeletor 43
172	Enhancing the Photovoltaic Performance via Vertical Phase Distribution Optimization in Small Molecule:PC ₇₁ BM Blends. Advanced Energy Materials, 2017, 7, 1701548.	10.2	57
173	D-A structural protean small molecule donor materials for solution-processed organic solar cells. Chinese Chemical Letters, 2017, 28, 2065-2077.	4.8	19
174	A Hierarchically Porous Hypercrosslinked and Novel Quinone based Stable Organic Polymer Electrode for Lithium-Ion Batteries. Electrochimica Acta, 2017, 255, 145-152.	2.6	39
175	Poly(3,4-ethylenedioxythiophene)-coated sulfur for flexible and binder-free cathodes of lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 17647-17652.	5.2	26
176	Mechanical Analyses and Structural Design Requirements for Flexible Energy Storage Devices. Advanced Energy Materials, 2017, 7, 1700535.	10.2	170
177	Versatile asymmetric thiophene/benzothiophene flanked diketopyrrolopyrrole polymers with ambipolar properties for OFETs and OSCs. Polymer Chemistry, 2017, 8, 5603-5610.	1.9	33
178	Metal–Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43171-43178.	4.0	66
179	Toward Over 15% Power Conversion Efficiency for Organic Solar Cells: Current Status and Perspectives. Small Methods, 2017, 1, 1700258.	4.6	130
180	Poly(3-hexylthiophene)-based non-fullerene solar cells achieve high photovoltaic performance with small energy loss. Journal of Materials Chemistry A, 2017, 5, 16573-16579.	5.2	37

#	Article	IF	Citations
181	The effect of tuning chemical structure on the openâ€circuit voltage and photovoltaic performance of narrow bandâ€gap polymers. Journal of Polymer Science Part A, 2017, 55, 699-706.	2.5	2
182	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	11.1	360
183	Improving the Performances of Random Copolymer Based Organic Solar Cells by Adjusting the Film Features of Active Layers Using Mixed Solvents. Polymers, 2016, 8, 4.	2.0	10
184	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.	11.1	155
185	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Coâ€Assembly with Achiral Molecules. Angewandte Chemie - International Edition, 2016, 55, 2411-2415.	7.2	140
186	Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nature Communications, 2016, 7, 13740.	5.8	549
187	Naphthodithiophene-based donor materials for solution processed organic solar cells. Chinese Chemical Letters, 2016, 27, 1271-1276.	4.8	14
188	Over 11% Efficiency in Tandem Polymer Solar Cells Featured by a Lowâ€Bandâ€Gap Polymer with Fineâ€Tuned Properties. Advanced Materials, 2016, 28, 5133-5138.	11.1	144
189	Acceptor Endâ€Capped Oligomeric Conjugated Molecules with Broadened Absorption and Enhanced Extinction Coefficients for Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2016, 28, 5980-5985.	11.1	87
190	Optimized "Alloyâ€Parallel―Morphology of Ternary Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502456.	10.2	79
191	Allâ€Polymer Solar Cells Based on Absorptionâ€Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Advanced Materials, 2016, 28, 1884-1890.	11.1	670
192	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Coâ€Assembly with Achiral Molecules. Angewandte Chemie, 2016, 128, 2457-2461.	1.6	39
193	Naphtho[1,2- <i>>b</i> :5,6- <i>b</i> ′]dithiophene-Based Small Molecules for Thick-Film Organic Solar Cells with High Fill Factors. Chemistry of Materials, 2016, 28, 943-950.	3.2	50
194	A graphene supported polyimide nanocomposite as a high performance organic cathode material for lithium ion batteries. RSC Advances, 2016, 6, 33287-33294.	1.7	46
195	All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. Journal of Materials Chemistry A, 2016, 4, 6056-6063.	5.2	49
196	PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure. Journal of Materials Chemistry A, 2016, 4, 1708-1713.	5.2	75
197	A conformational locking strategy in linked-acceptor type polymers for organic solar cells. Polymer Chemistry, 2016, 7, 1323-1329.	1.9	37
198	Understanding the Impact of Hierarchical Nanostructure in Ternary Organic Solar Cells. Advanced Science, 2015, 2, 1500250.	5.6	43

#	Article	IF	Citations
199	Modulating the Helicity of Sugarâ€Substituted Perylene Diimide Selfâ€assemblies by Solvent Polarilities. Chinese Journal of Chemistry, 2015, 33, 95-100.	2.6	6
200	Oligomeric Donor Material for Highâ€Efficiency Organic Solar Cells: Breaking Down a Polymer. Advanced Materials, 2015, 27, 4229-4233.	11.1	74
201	Largeâ€Area Polyimide/SWCNT Nanocable Cathode for Flexible Lithiumâ€lon Batteries. Advanced Materials, 2015, 27, 6504-6510.	11.1	150
202	Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance. Advanced Materials, 2015, 27, 7451-7457.	11.1	386
203	Conjugated Polymer–Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 8176-8183.	6.6	518
204	Nitrogen-Doped Graphene Aerogels as Efficient Supercapacitor Electrodes and Gas Adsorbents. ACS Applied Materials & Diterfaces, 2015, 7, 1431-1438.	4.0	364
205	Effects of end-capped acceptors subject to subtle structural changes on solution-processable small molecules for organic solar cells. Physical Chemistry Chemical Physics, 2015, 17, 8894-8900.	1.3	21
206	Linkedâ€Acceptor Type Conjugated Polymer for High Performance Organic Photovoltaics with an Openâ€Circuit Voltage Exceeding 1 V. Advanced Science, 2015, 2, 1500021.	5.6	20
207	Enhancing the performance of polymer solar cells using CuPc nanocrystals as additives. Nanotechnology, 2015, 26, 204001.	1.3	6
208	In situ anchoring uniform MnO ₂ nanosheets on three-dimensional macroporous graphene thin-films for supercapacitor electrodes. RSC Advances, 2015, 5, 90307-90312.	1.7	22
209	Synergistic Effect of Polymer and Small Molecules for Highâ€Performance Ternary Organic Solar Cells. Advanced Materials, 2015, 27, 1071-1076.	11.1	192
210	Naphtho[1,2-b:5,6-b′]dithiophene Based Two-Dimensional Conjugated Polymers for Highly Efficient Thick-Film Inverted Polymer Solar Cells. Chemistry of Materials, 2014, 26, 6947-6954.	3.2	45
211	Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small, 2014, 10, 14-31.	5.2	685
212	Nanoscale structural and electronic evolution for increased efficiency in polymer solar cells monitored by electric scanning probe microscopy. Science Bulletin, 2014, 59, 360-368.	1.7	2
213	Threadâ€ike Supercapacitors Based on Oneâ€Step Spun Nanocomposite Yarns. Small, 2014, 10, 3187-3193.	5.2	146
214	Highâ€Performance Allâ€Carbon Yarn Microâ€Supercapacitor for an Integrated Energy System. Advanced Materials, 2014, 26, 4100-4106.	11.1	223
215	Flexible and Binderâ€Free Organic Cathode for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 3338-3343.	11.1	200
216	Modulating supramolecular helicity and electrical conductivity of perylene dyes through an achiral alkyl chain. Chemical Communications, 2014, 50, 8343.	2.2	36

#	Article	IF	CITATIONS
217	Biomimetic Superhelical Conducting Microfibers with Homochirality for Enantioselective Sensing. Journal of the American Chemical Society, 2014, 136, 578-581.	6.6	74
218	Helical supramolecular aggregates of sugar-based perylene dyes: the effect of core-substituted groups. Soft Matter, 2014, 10, 7920-7924.	1.2	11
219	Effects of Shortened Alkyl Chains on Solutionâ€Processable Small Molecules with Oxoâ€Alkylated Nitrile Endâ€Capped Acceptors for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400538.	10.2	79
220	Probing the Sensory Property of Perylenediimide Derivatives in Hydrazine Gas: Core-Substituted Aromatic Group Effect. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9307-9313.	4.0	38
221	A flexible electrode based on a three-dimensional graphene network-supported polyimide for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 10842-10846.	5.2	120
222	Small molecules incorporating regioregular oligothiophenes and fluorinated benzothiadiazole groups for solution-processed organic solar cells. Journal of Materials Chemistry C, 2014, 2, 5842-5849.	2.7	19
223	Gamma-Irradiated Carbon Nanotube Yarn As Substrate for High-Performance Fiber Supercapacitors. ACS Applied Materials & Diterfaces, 2014, 6, 2553-2560.	4.0	61
224	Core-Spun Carbon Nanotube Yarn Supercapacitors for Wearable Electronic Textiles. ACS Nano, 2014, 8, 4571-4579.	7.3	228
225	Supramolecular Helices: Chirality Transfer from Conjugated Molecules to Structures. Advanced Materials, 2013, 25, 6039-6049.	11.1	158
226	A facile strategy to enhance absorption coefficient and photovoltaic performance of two-dimensional benzo $[1,2-b:4,5-b\hat{a}\in^2]$ dithiophene and thieno $[3,4-c]$ pyrrole-4,6-dione polymers via subtle chemical structure variations. Organic Electronics, 2013, 14, 2652-2661.	1.4	35
227	A material combination principle for highly efficient polymer solar cells investigated by mesoscopic phase heterogeneity. Nanoscale, 2013, 5, 11649.	2.8	11
228	Hierarchical Porous Graphene/Polyaniline Composite Film with Superior Rate Performance for Flexible Supercapacitors. Advanced Materials, 2013, 25, 6985-6990.	11.1	472
229	A facile strategy to enhance the fill factor of ternary blend solar cells by increasing charge carrier mobility. New Journal of Chemistry, 2013, 37, 1728.	1.4	18
230	Highâ€Performance Twoâ€Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays. Advanced Materials, 2013, 25, 1494-1498.	11.1	555
231	An organic cathode material based on a polyimide/CNT nanocomposite for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 6366.	5.2	197
232	Flexible high performance wet-spun graphene fiber supercapacitors. RSC Advances, 2013, 3, 23957.	1.7	152
233	Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy and Environmental Science, 2012, 5, 8384.	15.6	352
234	Self-assembly of conjugated polymers for anisotropic nanostructures. Science China Chemistry, 2012, 55, 2283-2291.	4.2	10

#	Article	IF	CITATIONS
235	Self-assembly of two-dimensional nanostructures of linear regioregular poly(3-hexylthiophene). RSC Advances, 2012, 2, 338-343.	1.7	34
236	Bridging mesoscopic blend structure and property to macroscopic device performance via in situ optoelectronic characterization. Journal of Materials Chemistry, 2012, 22, 4349.	6.7	10
237	Helical heterojunctions originating from helical inversion of conducting polymer nanofibers. Chemical Communications, 2012, 48, 2843.	2.2	16
238	Improving the performance of polymer solar cells by altering polymer side chains and optimizing film morphologies. Organic Electronics, 2012, 13, 3234-3243.	1.4	19
239	Self-assembly of chiral amphiphiles with π-conjugated tectons. Science Bulletin, 2012, 57, 4246-4256.	1.7	14
240	Selfâ€Assembled Sugarâ€Substituted Perylene Diimide Nanostructures with Homochirality and High Gas Sensitivity. Advanced Functional Materials, 2012, 22, 4149-4158.	7.8	107
241	Modulating helicity through amphiphilicityâ€"tuning supramolecular interactions for the controlled assembly of perylenes. Chemical Communications, 2011, 47, 5554-5556.	2.2	112
242	Ammonia Sensory Properties Based on Single-Crystalline Micro/Nanostructures of Perylenediimide Derivatives: Core-Substituted Effect. Journal of Physical Chemistry C, 2011, 115, 10399-10404.	1.5	67
243	Self-Assembling Branched and Hyperbranched Nanostructures of Poly(3-hexylthiophene) by a Solution Process. Journal of Physical Chemistry C, 2011, 115, 3257-3262.	1.5	18
244	Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. Journal of Materials Chemistry, 2011, 21, 16373.	6.7	202
245	Patterned Growth of Polyaniline Nanowire Arrays on a Flexible Substrate for Highâ€Performance Gas Sensing. Small, 2011, 7, 3287-3291.	5.2	22
246	Selfâ€Assembly of Graphenelike ZnO Superstructured Nanosheets and Their Application in Hybrid Photoconductors. Small, 2011, 7, 3472-3478.	5.2	22
247	Selfâ€Assembled Singleâ€Crystal Polyaniline Microplates and Their Anisotropic Electrical Transport Property. Macromolecular Rapid Communications, 2011, 32, 1640-1644.	2.0	21
248	Patterned Growth of Vertically Aligned Polypyrrole Nanowire Arrays. Macromolecular Rapid Communications, 2011, 32, 1998-2002.	2.0	7
249	Macromol. Rapid Commun. 20/2011. Macromolecular Rapid Communications, 2011, 32, .	2.0	0
250	An Allâ€Solidâ€State Flexible Microâ€supercapacitor on a Chip. Advanced Energy Materials, 2011, 1, 1068-1072.	10.2	344
251	Electromagnetic synergetic actuators based on polypyrrole/Fe3O4 hybrid nanotube arrays. Nano Research, 2010, 3, 670-675.	5.8	27
252	Hierarchical Crystalline Superstructures of Conducting Polymers with Homohelicity. Chemistry - A European Journal, 2010, 16, 8626-8630.	1.7	22

#	Article	IF	Citations
253	Conducting polymer nanostructures and their application in biosensors. Journal of Colloid and Interface Science, 2010, 341, 1-11.	5.0	366
254	Controlled synthesis of conducting polymer nanostructures. , 2010, , .		0
255	Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano, 2010, 4, 5019-5026.	7.3	1,287
256	Conducting polymernanowire arrays with enhanced electrochemical performance. Journal of Materials Chemistry, 2010, 20, 1117-1121.	6.7	189
257	Hexagonal Superlattice of Chiral Conducting Polymers Self-Assembled by Mimicking \hat{l}^2 -Sheet Proteins with Anisotropic Electrical Transport. Journal of the American Chemical Society, 2010, 132, 12006-12012.	6.6	67
258	Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors. Journal of Physical Chemistry C, 2010, 114, 8062-8067.	1.5	497
259	Decorating Polypyrrole Nanotubes with Au Nanoparticles by an In Situ Reduction Process. Macromolecular Rapid Communications, 2009, 30, 936-940.	2.0	66
260	Stepwise Selfâ€Assembly of P3HT/CdSe Hybrid Nanowires with Enhanced Photoconductivity. Macromolecular Rapid Communications, 2009, 30, 1419-1423.	2.0	54
261	Tuning the Supramolecular Chirality of Polyaniline by Methyl Substitution. Angewandte Chemie - International Edition, 2009, 48, 2003-2006.	7.2	64
262	Self-Assembled Organic Functional Nanotubes and Nanorods and Their Sensory Properties. Journal of Physical Chemistry C, 2009, 113, 3929-3933.	1.5	66
263	Helical supramolecular aggregates, mesoscopic organisation and nanofibers of a perylenebisimide–chiral surfactant complex via ionic self-assembly. Journal of Materials Chemistry, 2009, 19, 2356.	6.7	96
264	Aniline Oligomers – Architecture, Function and New Opportunities for Nanostructured Materials. Macromolecular Rapid Communications, 2008, 29, 280-292.	2.0	139
265	Conducting Polypyrrole Conical Nanocontainers: Formation Mechanism and Voltage Switchable Property. Macromolecular Rapid Communications, 2008, 29, 1335-1340.	2.0	25
266	Molecular imprinted polypyrrole nanowires for chiral amino acid recognition. Sensors and Actuators B: Chemical, 2008, 134, 573-578.	4.0	72
267	Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. Journal of Materials Chemistry, 2008, 18, 2276.	6.7	92
268	Monodispersed ZnSe Colloidal Microspheres:  Preparation, Characterization, and Their 2D Arrays. Langmuir, 2007, 23, 9008-9013.	1.6	38
269	Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Materialia, 2005, 53, 1373-1379.	3.8	112
270	Self-Assembly and Electrical Conductivity Transitions in Conjugated Oligoaniline-Surfactant Complexes. Angewandte Chemie - International Edition, 2005, 44, 751-756.	7.2	81

#	Article	IF	CITATIONS
271	Electrical conductivity of hollow polyaniline microspheres synthesized by a self-assembly method. Applied Physics Letters, 2004, 84, 2205-2207.	1.5	28
272	Synthesis and characterization of self-doped poly(aniline-co-aminonaphthalene sulfonic acid) nanotubes. Journal of Applied Polymer Science, 2003, 87, 1297-1301.	1.3	46
273	Formation Mechanism of Self-Assembled Polyaniline Micro/Nanotubes. Langmuir, 2002, 18, 917-921.	1.6	499
274	Nanostructures of Polyaniline Doped with Inorganic Acids. Macromolecules, 2002, 35, 5937-5942.	2.2	594
275	Singleâ€Crystalline Structure Assisted Revealing the Critical Factors for the Properties of Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Energy and Sustainability Research, 0, , 2100099.	2.8	1