
Zbigniew K Krowicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5687157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microinjection of Glycine into the Hypothalamic Paraventricular Nucleus Produces Diuresis, Natriuresis, and Inhibition of Central Sympathetic Outflow. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 247-255.	2.5	18
2	Tonic Nociceptinergic Inputs to Neurons in the Hypothalamic Paraventricular Nucleus Contribute to Sympathetic Vasomotor Tone and Water and Electrolyte Homeostasis in Conscious Rats. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 446-453.	2.5	18
3	Orexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function. American Journal of Physiology - Renal Physiology, 2002, 283, G465-G472.	3.4	68
4	Orexin-A in the dorsal motor nucleus of the vagus potently increases gastric motor function via orexin 1 receptor in rats. Gastroenterology, 2001, 120, A113.	1.3	1
5	Orphanin FQ/nociceptin and [Phe ¹ Î [.] (CH ₂ â€NH)Gly ²] nociceptin(1â€13)â€NH ₂ stimulate gastric motor function in anaesthetized rats. British Journal of Pharmacology, 2000, 130, 1639-1645.	5.4	19
6	Vagally-regulated gastric motor activity: evidence for kainate and NMDA receptor mediation. European Journal of Pharmacology, 1999, 368, 173-182.	3.5	33
7	Δ9-Tetrahydrocannabinol inhibits gastric motility in the rat through cannabinoid CB1 receptors. European Journal of Pharmacology, 1999, 371, 187-196.	3.5	79
8	Role of GABAAreceptors in rat hindbrain nuclei controlling gastric motor function. Neurogastroenterology and Motility, 1998, 10, 305-313.	3.0	93
9	Evidence for a dual mechanism of gastric motor responses to intravenously administered endothelin-1 in anesthetized rats. Journal of Physiology (Paris), 1997, 91, 203-207.	2.1	3
10	Cyclooxygenase inhibition in the dorsal vagal complex of the rat evokes increases in gastric motor function. Journal of Physiology (Paris), 1997, 91, 209-213.	2.1	3
11	Distribution of nitric oxide synthase in rat dorsal vagal complex and effects of microinjection of nitric oxide compounds upon gastric motor function. Journal of Comparative Neurology, 1997, 377, 49-69.	1.6	122
12	The inhibitory effect of substance P on gastric motor function in the nucleus raphe obscurus is mediated via nitric oxide in the dorsal vagal complex. Journal of the Autonomic Nervous System, 1996, 58, 177-180.	1.9	13
13	Contribution of acetylcholine, vasoactive intestinal polypeptide and nitric oxide to CNSâ€evoked vagal gastric relaxation in the rat. Neurogastroenterology and Motility, 1996, 8, 307-317.	3.0	14
14	Opposite Gastric Motor Effects of PACAP38 and VIP When Microinjected into the Nucleus Raphe Obscurus of Ratsa. Annals of the New York Academy of Sciences, 1996, 805, 655-660.	3.8	6
15	Substance P and serotonin independently affect intragastric pressure when microinjected into the nucleus raphe obscurus of the rat. Journal of the Autonomic Nervous System, 1995, 51, 175-179.	1.9	5
16	Pancreatic polypeptide, microinjected into the dorsal vagal complex, potentiates glucose-stimulated insulin secretion in the rat. Regulatory Peptides, 1995, 60, 185-192.	1.9	9
17	Cimetidine does not change the effect of Tyr-MIF-1 (TYR-PRO-LEU-GLY-NH2) on the opiate form of footshock-induced analgesia. Life Sciences, 1991, 49, 1163-1168.	4.3	7
18	Dopamine receptor antagonists block the effect of Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) on the opiate form of footshock-induced analgesia. Neuropeptides, 1991, 19, 281-285.	2.2	9

#	Article	IF	CITATIONS
19	Effects of Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) on GH, LH, prolactin, FSH, and TSH secretion in rats with and without morphine. Neuropeptides, 1991, 18, 41-47.	2.2	4