
Bo-Ru Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5686906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion. Nano Research, 2022, 15, 2582-2591.	10.4	15
2	Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Research, 2022, 15, 3614-3620.	10.4	17
3	Stretchable, Washable, and Rewritable Electrophoretic Displays with Tough Hydrogel–Elastomer Interface. Advanced Materials Technologies, 2022, 7, 2100961.	5.8	6
4	Self-assembled monolayer modulated Plateau-Rayleigh instability and enhanced chemical stability of silver nanowire for invisibly patterned, stable transparent electrodes. Nano Research, 2022, 15, 4552-4562.	10.4	10
5	Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Materials Horizons, 2022, 9, 1356-1386.	12.2	75
6	13.1: Stability Enhancement of Silver Nanowire Transparent Conductors via Selfâ€Assembled Monolayer. Digest of Technical Papers SID International Symposium, 2021, 52, 86-86.	0.3	0
7	Pâ€15.2: Embedded, Alkanethiolateâ€Capped Silver Nanowires for Highâ€Performance, Chemically Stable Flexible Transparent Electrodes. Digest of Technical Papers SID International Symposium, 2021, 52, 668-668.	0.3	0
8	Pâ€78: Simulatorâ€Based Efficient Panel Design and Image Retrieval for Underâ€Display Cameras. Digest of Technical Papers SID International Symposium, 2021, 52, 1372-1375.	0.3	2
9	Highly Sensitive Capacitive Pressure Sensor Based on a Micropyramid Array for Health and Motion Monitoring. Advanced Electronic Materials, 2021, 7, 2100174.	5.1	89
10	41.1: Invited Paper: Coating and Patterning Techniques of Silver Nanowire for Highâ€Performance Transparent Conductive Electrodes. Digest of Technical Papers SID International Symposium, 2021, 52, 500-500.	0.3	0
11	3.4: Dualâ€Mode Switching Electrophoretic Displays with Thermally Reversible Gelators. Digest of Technical Papers SID International Symposium, 2021, 52, 71-74.	0.3	0
12	16.3: Flexible Liquid Crystal Displays with Fineâ€Width Polymer Walls and Selfâ€Assembled Monolayer Alignment. Digest of Technical Papers SID International Symposium, 2021, 52, 220-223.	0.3	0
13	3.3: Fabricating Selfâ€Powered Eâ€paper on Paper Substrates and Driven by Triboelectric Nanogenerator Module. Digest of Technical Papers SID International Symposium, 2021, 52, 67-70.	0.3	1
14	lonâ€Conductive Hydrogelâ€Based Stretchable, Selfâ€Healing, and Transparent NO ₂ Sensor with High Sensitivity and Selectivity at Room Temperature. Small, 2021, 17, e2104997.	10.0	55
15	Stretchable Transparent Electrode <i>via</i> Wettability Self-Assembly in Mechanically Induced Self-Cracking. ACS Applied Materials & Interfaces, 2021, 13, 52880-52891.	8.0	8
16	Microneedles for transdermal diagnostics: Recent advances and new horizons. Biomaterials, 2020, 232, 119740.	11.4	143
17	Ultrasonically Patterning Silver Nanowire–Acrylate Composite for Highly Sensitive and Transparent Strain Sensors Based on Parallel Cracks. ACS Applied Materials & Interfaces, 2020, 12, 47729-47738.	8.0	41
18	Ultrahigh Sensitivity of Flexible Thermistors Based on 3D Porous Graphene Characterized by Imbedded Microheaters, Advanced Electronic Materials, 2020, 6, 2000451.	5.1	7

BO-RU YANG

#	Article	IF	CITATIONS
19	Optically Programmable Plateau–Rayleigh Instability for High-Resolution and Scalable Morphology Manipulation of Silver Nanowires for Flexible Optoelectronics. ACS Applied Materials & Interfaces, 2020, 12, 53984-53993.	8.0	16
20	49â€1: Fastâ€5witching Electrophoretic Eâ€Paper with Mixture of Liquid Crystal and Eâ€ink for Charging and Rheological Optimizations. Digest of Technical Papers SID International Symposium, 2020, 51, 715-718.	0.3	1
21	Stretchable, Stable, and Room-Temperature Gas Sensors Based on Self-Healing and Transparent Organohydrogels. ACS Applied Materials & Interfaces, 2020, 12, 52070-52081.	8.0	57
22	A Convolutional Neural Network for Ghost Image Recognition and Waveform Design of Electrophoretic Displays. IEEE Transactions on Consumer Electronics, 2020, 66, 356-365.	3.6	11
23	Constructing Electrophoretic Displays on Foldable Paper-Based Electrodes by a Facile Transferring Method. ACS Applied Electronic Materials, 2020, 2, 1335-1342.	4.3	13
24	Controllable formation of periodic wrinkles in Marangoni-driven self-assembled graphene film for sensitive strain detection. Science China Materials, 2020, 63, 1983-1992.	6.3	19
25	Metasurface Color Filters Using Aluminum and Lithium Niobate Configurations. Nanoscale Research Letters, 2020, 15, 77.	5.7	62
26	Self-powered electronic paper with energy supplies and information inputs solely from mechanical motions. Photonics Research, 2020, 8, 1496.	7.0	18
27	Three-Dimensional-Structured Boron- and Nitrogen-Doped Graphene Hydrogel Enabling High-Sensitivity NO ₂ Detection at Room Temperature. ACS Sensors, 2019, 4, 1889-1898.	7.8	58
28	Multifunctional and High-Sensitive Sensor Capable of Detecting Humidity, Temperature, and Flow Stimuli Using an Integrated Microheater. ACS Applied Materials & Interfaces, 2019, 11, 43383-43392.	8.0	64
29	Backflow Effect Enabling Fast Response and Low Driving Voltage of Electrophoretic E-ink Dispersion by Liquid Crystal Additives. Scientific Reports, 2019, 9, 13981.	3.3	7
30	An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Materials Horizons, 2019, 6, 595-603.	12.2	297
31	:Hydrogen Doping Oxide Transistors: Analysis of Ultrahigh Apparent Mobility in Oxide Fieldâ€Effect Transistors (Adv. Sci. 7/2019). Advanced Science, 2019, 6, 1970040.	11.2	6
32	Ultrastretchable and Stable Strain Sensors Based on Antifreezing and Self-Healing Ionic Organohydrogels for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 9405-9414.	8.0	285
33	4.1: <i>Invited Paper:</i> Advanced Electrophoretic Eâ€Paper with Fastâ€Switching and Lowâ€Drivingâ€Voltage Performances. Digest of Technical Papers SID International Symposium, 2019, 50, 47-47.	0.3	0
34	Extremely Deformable, Transparent, and High-Performance Gas Sensor Based on Ionic Conductive Hydrogel. ACS Applied Materials & Interfaces, 2019, 11, 2364-2373.	8.0	180
35	Tape-Based Photodetector: Transfer Process and Persistent Photoconductivity. ACS Applied Materials & Interfaces, 2018, 10, 16596-16604.	8.0	21
36	Enhancing Performance in Thin Tilm Transistors with Vacuum or Solution Processed Amorphous Oxide Semiconductors Towards Display Applications. , 2018, , .		0

BO-RU YANG

#	Article	IF	CITATIONS
37	Bed-Exit Prediction Based on 3D Convolutional Neural Network. , 2018, , .		3
38	Physical activation of innate immunity by spiky particles. Nature Nanotechnology, 2018, 13, 1078-1086.	31.5	158
39	Comprehensive Stability Improvement of Silver Nanowire Networks via Self-Assembled Mercapto Inhibitors. ACS Applied Materials & Interfaces, 2018, 10, 37699-37708.	8.0	64
40	Electrostatic assembly of ultraviolet-curable cellulose-coated silver nanowires as transparent electrodes for nanogenerator. Applied Physics Express, 2018, 11, 075002.	2.4	10
41	Nanospikes-mediated Anomalous Dispersities of Hydropobic Micro-objects and their Application for Oil Emulsion Cleaning. Scientific Reports, 2018, 8, 12600.	3.3	6
42	Hollow Nanoneedle-Electroporation System To Extract Intracellular Protein Repetitively and Nondestructively. ACS Sensors, 2018, 3, 1675-1682.	7.8	38
43	Fabrication of Embedded Silver Nanowires on Arbitrary Substrates with Enhanced Stability via Chemisorbed Alkanethiolate. ACS Applied Materials & Interfaces, 2017, 9, 15130-15138.	8.0	40
44	Chitosan-assisted buffer layer incorporated with hydroxypropyl methylcellulose-coated silver nanowires for paper-based sensors. Applied Physics Express, 2017, 10, 065002.	2.4	6
45	38â€3: Fullâ€Color Flexible Electrophoretic Eâ€Paper with Interfacial Engineering and Transferring Process. Digest of Technical Papers SID International Symposium, 2017, 48, 542-544.	0.3	7
46	Transfer printing for fabrication of flexible RGB color eâ€paper. Journal of the Society for Information Display, 2017, 25, 384-390.	2.1	16
47	Simple silver nanowire patterning using a DUV lamp direct write with sol–gel IZO capping. RSC Advances, 2017, 7, 33091-33097.	3.6	4
48	Integrating Poly-Silicon and InGaZnO Thin-Film Transistors for CMOS Inverters. IEEE Transactions on Electron Devices, 2017, 64, 3668-3671.	3.0	43
49	Slippery surface based on lubricant infused hierarchical silicon nanowire film. RSC Advances, 2017, 7, 55812-55818.	3.6	9
50	TiO ₂ nanowire-templated hierarchical nanowire network as water-repelling coating. Royal Society Open Science, 2017, 4, 171431.	2.4	6
51	P-19: Dual Active Layer Structure of Nitrogen Doped Amorphous InSnZnO Thin-Film Transistors for Negative Gate Bias Stability Improvement. Digest of Technical Papers SID International Symposium, 2016, 47, 1186-1188.	0.3	2
52	Coating, patterning, and transferring processes of silver nanowire for flexible display and sensing applications. Journal of the Society for Information Display, 2016, 24, 234-240.	2.1	14
53	25-2:Distinguished Paper: Coating, Patterning, and Transferring Processes of Silver Nanowire for Flexible Display and Sensing Applications. Digest of Technical Papers SID International Symposium, 2016, 47, 311-314.	0.3	0
54	Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale, 2016, 8, 5507-5515.	5.6	51

#	Article	IF	CITATIONS
55	Pâ€150L: <i>Lateâ€News Poster</i> : Exploration of Coating and Alignment Methods for Making Highâ€Performance Transparent Conductive Films with Silver Nanowire Networks. Digest of Technical Papers SID International Symposium, 2015, 46, 1748-1749.	0.3	0