
Alex P Gould

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5686296/publications.pdf Version: 2024-02-01

ALEY P COULD

#	Article	IF	CITATIONS
1	Functions of Stress-Induced Lipid Droplets in the Nervous System. Frontiers in Cell and Developmental Biology, 2022, 10, 863907.	3.7	14
2	Adipose triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of chronic kidney disease. PLoS Biology, 2021, 19, e3001230.	5.6	26
3	Metabolic decisions in development and disease—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 55-73.	3.8	6
4	Cryogenic OrbiSIMS Localizes Semiâ€Volatile Molecules in Biological Tissues. Angewandte Chemie, 2020, 132, 18351-18357.	2.0	5
5	Cryogenic OrbiSIMS Localizes Semiâ€Volatile Molecules in Biological Tissues. Angewandte Chemie - International Edition, 2020, 59, 18194-18200.	13.8	23
6	Histidine is selectively required for the growth of Mycâ€dependent dedifferentiation tumours in the <i>Drosophila</i> <scp>CNS</scp> . EMBO Journal, 2019, 38, .	7.8	15
7	An Improved Method for Measuring Absolute Metabolite Concentrations in Small Biofluid or Tissue Samples. Journal of Proteome Research, 2019, 18, 1503-1512.	3.7	6
8	Two Negatives Make a Positive for Insulin Secretion and Growth. Developmental Cell, 2019, 48, 11-12.	7.0	0
9	Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila. Nature Communications, 2018, 9, 975.	12.8	76
10	Sex-lethal in neurons controls female body growth in <i>Drosophila</i> . Fly, 2018, 12, 133-141.	1.7	5
11	Stable isotope analysis of dynamic lipidomics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 792-796.	2.4	22
12	Lipid droplet functions beyond energy storage. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1260-1272.	2.4	402
13	Developmental diet impacts on Drosophila lifespan via lipid autotoxins. Mechanisms of Development, 2017, 145, S132.	1.7	1
14	Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nature Communications, 2017, 8, 1384.	12.8	63
15	The sex of specific neurons controls female body growth in Drosophila. PLoS Biology, 2017, 15, e2002252.	5.6	36
16	Drosophila Spidey/Kar Regulates Oenocyte Growth via PI3-Kinase Signaling. PLoS Genetics, 2016, 12, e1006154.	3.5	22
17	Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila. Cell, 2015, 163, 340-353.	28.9	455
18	Hox proteins drive cell segregation and non-autonomous apical remodelling during hindbrain segmentation. Development (Cambridge), 2014, 141, 1492-1502.	2.5	26

Alex P Gould

#	Article	IF	CITATIONS
19	The Development and Functions of Oenocytes. Annual Review of Entomology, 2014, 59, 405-425.	11.8	140
20	Protection of Neuronal Diversity at the Expense of Neuronal Numbers during Nutrient Restriction in the Drosophila Visual System. Cell Reports, 2013, 3, 587-594.	6.4	59
21	Volume Determination with Two Standards Allows Absolute Quantification and Improved Chemometric Analysis of Metabolites by NMR from Submicroliter Samples. Analytical Chemistry, 2013, 85, 12046-12054.	6.5	15
22	Hypoxic Regulation of Hand1 Controls the Fetal-Neonatal Switch in Cardiac Metabolism. PLoS Biology, 2013, 11, e1001666.	5.6	53
23	Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature, 2012, 481, 516-519.	27.8	274
24	Anaplastic Lymphoma Kinase Spares Organ Growth during Nutrient Restriction in Drosophila. Cell, 2011, 146, 435-447.	28.9	211
25	Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature, 2011, 471, 508-512.	27.8	357
26	Regulating neural proliferation in the Drosophila CNS. Current Opinion in Neurobiology, 2010, 20, 50-57.	4.2	102
27	A Drosophila model for primary coenzyme Q deficiency and dietary rescue in the developing nervous system. DMM Disease Models and Mechanisms, 2010, 3, 799-806.	2.4	21
28	Applying an Adaptive Watershed to the Tissue Cell Quantification During T-Cell Migration and Embryonic Development. Methods in Molecular Biology, 2010, 616, 207-228.	0.9	6
29	03-P021 Live imaging of Hox-induced neuroepithelial cell clusters. Mechanisms of Development, 2009, 126, S73.	1.7	0
30	Temporal control of neuronal diversity: common regulatory principles in insects and vertebrates?. Development (Cambridge), 2008, 135, 3481-3489.	2.5	87
31	Temporal Transcription Factors and Their Targets Schedule the End of Neural Proliferation in Drosophila. Cell, 2008, 133, 891-902.	28.9	303
32	Postmitotic Specification of Drosophila Insulinergic Neurons from Pioneer Neurons. PLoS Biology, 2008, 6, e58.	5.6	104
33	A novel family of single VWCâ€domain proteins in invertebrates. FEBS Letters, 2007, 581, 5268-5274.	2.8	37
34	Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature, 2007, 445, 275-280.	27.8	350
35	Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development (Cambridge), 2005, 132, 3835-3845.	2.5	109
36	Direct crossregulation between retinoic acid receptor β and Hox genes during hindbrain segmentation. Development (Cambridge), 2005, 132, 503-513.	2.5	65

Alex P Gould

#	Article	IF	CITATIONS
37	Brainy but not too brainy: starting and stopping neuroblast divisions in Drosophila. Trends in Neurosciences, 2005, 28, 30-36.	8.6	81
38	EGF Receptor Signaling Regulates Pulses of Cell Delamination from the Drosophila Ectoderm. Developmental Cell, 2004, 7, 885-895.	7.0	27
39	A Pulse of the Drosophila Hox Protein Abdominal-A Schedules the End of Neural Proliferation via Neuroblast Apoptosis. Neuron, 2003, 37, 209-219.	8.1	192
40	<i>abdominal A</i> specifies one cell type in <i>Drosophila</i> by regulating one principal target gene. Development (Cambridge), 2002, 129, 2957-2963.	2.5	51
41	Insect oenocytes: a model system for studying cell-fate specification by Hox genes. Journal of Anatomy, 2001, 199, 25-33.	1.5	15
42	Insect oenocytes: a model system for studying cell-fate specification byHoxgenes. Journal of Anatomy, 2001, 199, 25-33.	1.5	20
43	The Role of kreisler in Segmentation during Hindbrain Development. Developmental Biology, 1999, 211, 220-237.	2.0	94
44	Initiation of Rhombomeric Hoxb4 Expression Requires Induction by Somites and a Retinoid Pathway. Neuron, 1998, 21, 39-51.	8.1	260
45	Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO Journal, 1998, 17, 1788-1798.	7.8	145
46	Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns Genes and Development, 1997, 11, 900-913.	5.9	234
47	Functions of mammalian Polycomb group and trithorax group related genes. Current Opinion in Genetics and Development, 1997, 7, 488-494.	3.3	194
48	Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2249-2253.	7.1	118
49	Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1684-1688.	7.1	255
50	Homeobox cooperativity. Trends in Genetics, 1992, 8, 297-300.	6.7	6
51	Targets of homeotic gene control in Drosophila. Nature, 1990, 348, 308-312.	27.8	169
52	Quantification of fetal organ sparing in maternal low-protein dietary models. Wellcome Open Research, 0, 6, 218.	1.8	0
53	Quantification of fetal organ sparing in maternal low-protein dietary models. Wellcome Open Research, 0, 6, 218.	1.8	5