
Domenico Accili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5685660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TOX4, an insulin receptor-independent regulator of hepatic glucose production, is activated in diabetic liver. Cell Metabolism, 2022, 34, 158-170.e5.	16.2	13
2	Notch-mediated Ephrin signaling disrupts islet architecture and \hat{I}^2 cell function. JCI Insight, 2022, 7, .	5.0	5
3	FOXO1 Is Present in Stomach Epithelium and Determines Gastric Cell Distribution. , 2022, 1, 733-745.		2
4	Can COVID-19 cause diabetes?. Nature Metabolism, 2021, 3, 123-125.	11.9	91
5	Post-acute COVID-19 syndrome. Nature Medicine, 2021, 27, 601-615.	30.7	3,051
6	FOXO1 inhibition synergizes with FGF21 to normalize glucose control in diabetic mice. Molecular Metabolism, 2021, 49, 101187.	6.5	16
7	Insulin resistance in cardiovascular disease, uremia, and peritoneal dialysis. Trends in Endocrinology and Metabolism, 2021, 32, 721-730.	7.1	27
8	Antagonistic epistasis of Hnf4α and FoxO1 metabolic networks through enhancer interactions in β-cell function. Molecular Metabolism, 2021, 53, 101256.	6.5	5
9	An integrative transcriptional logic model of hepatic insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
10	Aldo-ketoreductase 1c19 ablation does not affect insulin secretion in murine islets. PLoS ONE, 2021, 16, e0260526.	2.5	1
11	BACH2 inhibition reverses \hat{l}^2 cell failure in type 2 diabetes models. Journal of Clinical Investigation, 2021, 131, .	8.2	43
12	Whither Type 1 Diabetes?. New England Journal of Medicine, 2020, 383, 2078-2079.	27.0	12
13	The PDK1-FoxO1 signaling in adipocytes controls systemic insulin sensitivity through the 5-lipoxygenase–leukotriene B ₄ axis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11674-11684.	7.1	23
14	PPARÎ ³ Deacetylation Confers the Antiatherogenic Effect and Improves Endothelial Function in Diabetes Treatment. Diabetes, 2020, 69, 1793-1803.	0.6	19
15	Insulin- and Lipopolysaccharide-Mediated Signaling in Adipose Tissue Macrophages Regulates Postprandial Glycemia through Akt-mTOR Activation. Molecular Cell, 2020, 79, 43-53.e4.	9.7	29
16	Cyb5r3 links FoxO1-dependent mitochondrial dysfunction with β-cell failure. Molecular Metabolism, 2020, 34, 97-111.	6.5	30
17	Extrapulmonary manifestations of COVID-19. Nature Medicine, 2020, 26, 1017-1032.	30.7	2,300
18	Altered Central Nutrient Sensing in Male Mice Lacking Insulin Receptors in Glut4-expressing Neurons. Endocrinology, 2019, 160, 2038-2048.	2.8	9

2

#	Article	IF	CITATIONS
19	Identification of <i>C2CD4A</i> as a human diabetes susceptibility gene with a role in β cell insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20033-20042.	7.1	38
20	Reprogramming Cells to Make Insulin. Journal of the Endocrine Society, 2019, 3, 1214-1226.	0.2	19
21	A fluorescent reporter assay of differential gene expression response to insulin in hepatocytes. American Journal of Physiology - Cell Physiology, 2019, 317, C143-C151.	4.6	2
22	Identification of Insulin-Responsive Transcription Factors That Regulate Glucose Production by Hepatocytes. Diabetes, 2019, 68, 1156-1167.	0.6	18
23	Induction of α cell–restricted Gc in dedifferentiating β cells contributes to stress-induced β cell dysfunction. JCI Insight, 2019, 4, .	5.0	24
24	Distinct roles of systemic and local actions of insulin on pancreatic β-cells. Metabolism: Clinical and Experimental, 2018, 82, 100-110.	3.4	7
25	Biochemical and cellular properties of insulin receptor signalling. Nature Reviews Molecular Cell Biology, 2018, 19, 31-44.	37.0	486
26	microRNA-205-5p is a modulator of insulin sensitivity that inhibits FOXO function. Molecular Metabolism, 2018, 17, 49-60.	6.5	29
27	Insulin Action Research and the Future of Diabetes Treatment: The 2017 Banting Medal for Scientific Achievement Lecture. Diabetes, 2018, 67, 1701-1709.	0.6	36
28	Metformin and AMP Kinase Activation Increase Expression of the Sterol Transporters ABCG5/8 (ATP-Binding Cassette Transporter G5/G8) With Potential Antiatherogenic Consequences. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1493-1503.	2.4	31
29	Pair Feeding, but Not Insulin, Phloridzin, or Rosiglitazone Treatment, Curtails Markers of β-Cell Dedifferentiation in <i>db/db</i> Mice. Diabetes, 2017, 66, 2092-2101.	0.6	59
30	Alain Ktorza, PhD. Diabetes, Obesity and Metabolism, 2017, 19, 3-3.	4.4	0
31	Selective Inhibition of FOXO1 Activator/Repressor Balance Modulates Hepatic Glucose Handling. Cell, 2017, 171, 824-835.e18.	28.9	160
32	Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Endothelial Cells Accelerates Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1328-1337.	2.4	92
33	Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic Î ² cells in diabetic mice. Nature Communications, 2016, 7, 12631.	12.8	138
34	FoxO1 Deacetylation Decreases Fatty Acid Oxidation in β-Cells and Sustains Insulin Secretion in Diabetes. Journal of Biological Chemistry, 2016, 291, 10162-10172.	3.4	49
35	Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance. Diabetes, 2016, 65, 1577-1589.	0.6	46
36	Altered Plasma Profile of Antioxidant Proteins as an Early Correlate of Pancreatic β Cell Dysfunction. Journal of Biological Chemistry, 2016, 291, 9648-9656.	3.4	16

#	Article	IF	CITATIONS
37	Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1044-1054.	3.6	438
38	Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. Journal of Clinical Investigation, 2016, 126, 3433-3446.	8.2	132
39	Hypoglycemia Secondary to Sulfonylurea Ingestion in a Patient with End Stage Renal Disease: Results from a 72-Hour Fast. Case Reports in Endocrinology, 2015, 2015, 1-4.	0.4	2
40	Legacy Effect of Foxo1 in Pancreatic Endocrine Progenitors on Adult β-Cell Mass and Function. Diabetes, 2015, 64, 2868-2879.	0.6	39
41	Pathogenesis of Selective Insulin Resistance in Isolated Hepatocytes. Journal of Biological Chemistry, 2015, 290, 13972-13980.	3.4	63
42	A Mutant Allele Encoding DNA Binding–Deficient FoxO1 Differentially Regulates Hepatic Glucose and Lipid Metabolism. Diabetes, 2015, 64, 1951-1965.	0.6	28
43	Gpr17 in AgRP Neurons Regulates Feeding and Sensitivity to Insulin and Leptin. Diabetes, 2015, 64, 3670-3679.	0.6	33
44	Hepatic SirT1-Dependent Gain of Function of Stearoyl-CoA Desaturase-1 Conveys Dysmetabolic and Tumor Progression Functions. Cell Reports, 2015, 11, 1797-1808.	6.4	21
45	Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Molecular Metabolism, 2015, 4, 378-391.	6.5	129
46	Ceci n'est pas Science. Cell Metabolism, 2015, 21, 503-504.	16.2	0
47	The new biology of diabetes. Diabetologia, 2015, 58, 2459-2468.	6.3	80
48	Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons. Diabetes, 2015, 64, 405-417.	0.6	28
49	Glut4 expression defines an insulin-sensitive hypothalamic neuronal population. Molecular Metabolism, 2014, 3, 452-459.	6.5	27
50	Preserved Energy Balance in Mice Lacking FoxO1 in Neurons of Nkx2.1 Lineage Reveals Functional Heterogeneity of FoxO1 Signaling Within the Hypothalamus. Diabetes, 2014, 63, 1572-1582.	0.6	13
51	Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nature Communications, 2014, 5, 5190.	12.8	148
52	Metabolic Inflexibility Impairs Insulin Secretion and Results In MODY-like Diabetes in Triple FoxO-Deficient Mice. Cell Metabolism, 2014, 20, 593-602.	16.2	86
53	FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nature Communications, 2014, 5, 4242.	12.8	99
54	Blunted Refeeding Response and Increased Locomotor Activity in Mice Lacking FoxO1 in Synapsin- <i>Cre</i> –Expressing Neurons. Diabetes, 2013, 62, 3373-3383.	0.6	21

#	Article	IF	CITATIONS
55	Human Insulin Resistance Is Associated With Increased Plasma Levels of 12α-Hydroxylated Bile Acids. Diabetes, 2013, 62, 4184-4191.	0.6	337
56	Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nature Medicine, 2013, 19, 1054-1060.	30.7	126
57	Liver Sinusoidal Endothelial Cells Link Hyperinsulinemia to Hepatic Insulin Resistance. Diabetes, 2013, 62, 1478-1489.	0.6	29
58	Expanded Granulocyte/Monocyte Compartment in Myeloid-Specific Triple FoxO Knockout Increases Oxidative Stress and Accelerates Atherosclerosis in Mice. Circulation Research, 2013, 112, 992-1003.	4.5	60
59	Increased Atherosclerosis and Endothelial Dysfunction in Mice Bearing Constitutively Deacetylated Alleles of Foxo1 Gene. Journal of Biological Chemistry, 2012, 287, 13944-13951.	3.4	37
60	Brown Remodeling of White Adipose Tissue by SirT1-Dependent Deacetylation of PparÎ ³ . Cell, 2012, 150, 620-632.	28.9	664
61	Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure. Cell, 2012, 150, 1223-1234.	28.9	1,185
62	Structure-based prediction of protein–protein interactions on a genome-wide scale. Nature, 2012, 490, 556-560.	27.8	652
63	FGF21 and the Second Coming of PPARÎ ³ . Cell, 2012, 148, 397-398.	28.9	19
64	FoxO1 Target Gpr17 Activates AgRP Neurons to Regulate Food Intake. Cell, 2012, 149, 1314-1326.	28.9	164
65	Impaired Generation of 12-Hydroxylated Bile Acids Links Hepatic Insulin Signaling with Dyslipidemia. Cell Metabolism, 2012, 15, 65-74.	16.2	103
66	FoxOs Integrate Pleiotropic Actions of Insulin in Vascular Endothelium to Protect Mice from Atherosclerosis. Cell Metabolism, 2012, 15, 372-381.	16.2	155
67	Calcium Signaling through CaMKII Regulates Hepatic Glucose Production in Fasting and Obesity. Cell Metabolism, 2012, 15, 739-751.	16.2	181
68	Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nature Genetics, 2012, 44, 406-412.	21.4	150
69	InsR/FoxO1 Signaling Curtails Hypothalamic POMC Neuron Number. PLoS ONE, 2012, 7, e31487.	2.5	16
70	Hepatic FoxO1 Integrates Glucose Utilization and Lipid Synthesis through Regulation of Chrebp O-Glycosylation. PLoS ONE, 2012, 7, e47231.	2.5	62
71	Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nature Medicine, 2011, 17, 961-967.	30.7	165
72	How Does Type 1 Diabetes Develop?. Diabetes, 2011, 60, 1370-1379.	0.6	199

#	Article	IF	CITATIONS
73	Hormonal Regulation of Hepatic Glucose Production in Health and Disease. Cell Metabolism, 2011, 14, 9-19.	16.2	360
74	Dissociation of the Glucose and Lipid Regulatory Functions of FoxO1 by Targeted Knockin of Acetylation-Defective Alleles in Mice. Cell Metabolism, 2011, 14, 587-597.	16.2	60
75	Proatherogenic Abnormalities of Lipid Metabolism in SirT1 Transgenic Mice Are Mediated through Creb Deacetylation. Cell Metabolism, 2011, 14, 758-767.	16.2	106
76	Selective Insulin Sensitizers. Science, 2011, 331, 1529-1531.	12.6	16
77	Homozygosity for an Allele Encoding Deacetylated FoxO1 Protects Macrophages From Cholesterol-Induced Inflammation Without Increasing Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2920-2928.	2.4	16
78	Reconstitution of Insulin Action in Muscle, White Adipose Tissue, and Brain of Insulin Receptor Knock-out Mice Fails to Rescue Diabetes. Journal of Biological Chemistry, 2011, 286, 9797-9804.	3.4	17
79	Diabetes in Mice With Selective Impairment of Insulin Action in Glut4-Expressing Tissues. Diabetes, 2011, 60, 700-709.	0.6	48
80	Hyperinsulinemia leads to uncoupled insulin regulation of the GLUT4 glucose transporter and the FoxO1 transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10162-10167.	7.1	86
81	An unSIRTain role in longevity. Nature Medicine, 2011, 17, 1350-1351.	30.7	10
82	Hepatic FoxO1 Ablation Exacerbates Lipid Abnormalities during Hyperglycemia. Journal of Biological Chemistry, 2010, 285, 26861-26868.	3.4	65
83	Divergent Regulation of Energy Expenditure and Hepatic Glucose Production by Insulin Receptor in Agouti-Related Protein and POMC Neurons. Diabetes, 2010, 59, 337-346.	0.6	130
84	Genetic Analysis of Type-1 Insulin-like Growth Factor Receptor Signaling through Insulin Receptor Substrate-1 and -2 in Pancreatic β Cells. Journal of Biological Chemistry, 2010, 285, 41044-41050.	3.4	18
85	Uncoupling of Acetylation from Phosphorylation Regulates FoxO1 Function Independent of Its Subcellular Localization. Journal of Biological Chemistry, 2010, 285, 27396-27401.	3.4	143
86	FoxOs Function Synergistically to Promote Glucose Production. Journal of Biological Chemistry, 2010, 285, 35245-35248.	3.4	154
87	Foxo1 Links Hyperglycemia to LDL Oxidation and Endothelial Nitric Oxide Synthase Dysfunction in Vascular Endothelial Cells. Diabetes, 2009, 58, 2344-2354.	0.6	85
88	Regulation of Pancreatic Juxtaductal Endocrine Cell Formation by FoxO1. Molecular and Cellular Biology, 2009, 29, 4417-4430.	2.3	53
89	The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nature Medicine, 2009, 15, 1195-1201.	30.7	150
90	Hepatic insulin signaling regulates VLDL secretion and atherogenesis in mice. Journal of Clinical Investigation, 2009, 119, 1029-41.	8.2	65

#	Article	IF	CITATIONS
91	nâ€3 Fatty Acids Decrease LDLâ€Cholesterol Delivery and Lipoprotein Lipase in the Arterial Wall in Insulin Resistant Mice. FASEB Journal, 2009, 23, 343.3.	0.5	0
92	Mechanisms of β cell failure in the pathogenesis of Type 2 diabetes. Drug Development Research, 2008, 69, 111-115.	2.9	4
93	The Double Life of Irs. Cell Metabolism, 2008, 8, 7-9.	16.2	59
94	SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice. Cell Metabolism, 2008, 8, 333-341.	16.2	588
95	Mechanisms of Disease: using genetically altered mice to study concepts of type 2 diabetes. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 164-172.	2.8	46
96	Analysis of compensatory β-cell response in mice with combined mutations of Insr and Irs2. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1694-E1701.	3.5	20
97	Nuclear Forkhead Box O1 Controls and Integrates Key Signaling Pathways in Hepatocytes. Endocrinology, 2007, 148, 2424-2434.	2.8	39
98	Adiponectin Resistance Exacerbates Insulin Resistance in Insulin Receptor Transgenic/Knockout Mice. Diabetes, 2007, 56, 1969-1976.	0.6	81
99	Metabolic Diapause in Pancreatic β-Cells Expressing a Gain-of-function Mutant of the Forkhead Protein Foxo1. Journal of Biological Chemistry, 2007, 282, 287-293.	3.4	89
100	Impaired Regulation of Hepatic Glucose Production in Mice Lacking the Forkhead Transcription Factor Foxo1 in Liver. Cell Metabolism, 2007, 6, 208-216.	16.2	540
101	The Forkhead Transcription Factor FoxO1 Regulates Proliferation and Transdifferentiation of Hepatic Stellate Cells. Gastroenterology, 2007, 132, 1434-1446.	1.3	140
102	A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. Journal of Clinical Investigation, 2007, 117, 2477-2485.	8.2	237
103	Transgenic Models of Impaired Insulin Signaling. , 2007, , 168-184.		Ο
104	Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metabolism, 2006, 3, 257-266.	16.2	256
105	Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nature Medicine, 2006, 12, 534-540.	30.7	397
106	Transcription Factor FoxO1 Mediates Glucagon-Like Peptide-1 Effects on Pancreatic Â-Cell Mass. Diabetes, 2006, 55, 1190-1196.	0.6	160
107	Role of the forkhead protein FoxO1 in cell compensation to insulin resistance. Journal of Clinical Investigation, 2006, 116, 775-782.	8.2	114
108	Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. Journal of Clinical Investigation, 2006, 116, 2464-72.	8.2	348

#	Article	IF	CITATIONS
109	Nuclear Trapping of the Forkhead Transcription Factor FoxO1 via Sirt-dependent Deacetylation Promotes Expression of Glucogenetic Genes. Journal of Biological Chemistry, 2005, 280, 20589-20595.	3.4	459
110	All roads lead to FoxO. Cell Metabolism, 2005, 1, 215-216.	16.2	35
111	FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metabolism, 2005, 2, 153-163.	16.2	521
112	Restoration of liver insulin signaling in Insr knockout mice fails to normalize hepatic insulin action. Journal of Clinical Investigation, 2005, 115, 1314-1322.	8.2	93
113	Restoration of liver insulin signaling in Insr knockout mice fails to normalize hepatic insulin action. Journal of Clinical Investigation, 2005, 115, 1314-1322.	8.2	65
114	Mouse Models of Insulin Resistance. Physiological Reviews, 2004, 84, 623-647.	28.8	211
115	Turning up the heat in the fat cell. Nature Medicine, 2004, 10, 1168-1169.	30.7	1
116	New Insights into the Integrated Physiology of Insulin Action. Reviews in Endocrine and Metabolic Disorders, 2004, 5, 143-149.	5.7	27
117	FoxOs at the Crossroads of Cellular Metabolism, Differentiation, and Transformation. Cell, 2004, 117, 421-426.	28.9	1,209
118	Mosaic analysis of insulin receptor function. Journal of Clinical Investigation, 2004, 113, 209-219.	8.2	35
119	Transgenic rescue of insulin receptor–deficient mice. Journal of Clinical Investigation, 2004, 114, 214-223.	8.2	124
120	Transgenic rescue of insulin receptor–deficient mice. Journal of Clinical Investigation, 2004, 114, 214-223.	8.2	70
121	Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature, 2003, 423, 550-555.	27.8	1,312
122	Testis determination requires insulin receptor family function in mice. Nature, 2003, 426, 291-295.	27.8	250
123	Insulin Receptor Knockout Mice. Annual Review of Physiology, 2003, 65, 313-332.	13.1	220
124	The Forkhead Transcription Factor Foxo1 Regulates Adipocyte Differentiation. Developmental Cell, 2003, 4, 119-129.	7.0	662
125	Regulation of insulin-like growth factor–dependent myoblast differentiation by Foxo forkhead transcription factors. Journal of Cell Biology, 2003, 162, 535-541.	5.2	182
126	In Vivo Mutagenesis of the Insulin Receptor. Journal of Biological Chemistry, 2003, 278, 28359-28362.	3.4	23

#	Article	IF	CITATIONS
127	Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E718-E728.	3.5	175
128	Effects of Mutations in the Insulin-like Growth Factor Signaling System on Embryonic Pancreas Development and β-Cell Compensation to Insulin Resistance. Journal of Biological Chemistry, 2002, 277, 36740-36747.	3.4	64
129	Signalling through IGF-I and insulin receptors: where is the specificity?. Growth Hormone and IGF Research, 2002, 12, 84-90.	1.1	150
130	Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nature Genetics, 2002, 32, 245-253.	21.4	597
131	Mouse models of insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E977-E981.	3.5	191
132	Defective insulin secretion in pancreatic \hat{l}^2 cells lacking type 1 IGF receptor. Journal of Clinical Investigation, 2002, 110, 1011-1019.	8.2	149
133	Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor. Journal of Clinical Investigation, 2002, 110, 1011-1019.	8.2	105
134	The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. Journal of Clinical Investigation, 2002, 110, 1839-1847.	8.2	291
135	The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. Journal of Clinical Investigation, 2002, 110, 1839-1847.	8.2	503
136	Tissue-specific insulin resistance in type 2 diabetes: lessons from gene-targeted mice. Annals of Medicine, 2001, 33, 22-27.	3.8	9
137	Insulin Regulation of Gene Expression through the Forkhead Transcription Factor Foxo1 (Fkhr) Requires Kinases Distinct from Aktâ€. Biochemistry, 2001, 40, 11768-11776.	2.5	72
138	Distinct and Overlapping Functions of Insulin and IGF-I Receptors. Endocrine Reviews, 2001, 22, 818-835.	20.1	460
139	Increased IGFR activity and glucose transport in cultured skeletal muscle from insulin receptor null mice. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E16-E24.	3.5	28
140	Glucose homeostasis: lessons from knockout mice. Current Opinion in Endocrinology, Diabetes and Obesity, 2001, 8, 82-87.	0.6	2
141	The Insulin Receptor and Its Cellular Targets ¹ . Journal of Clinical Endocrinology and Metabolism, 2001, 86, 972-979.	3.6	178
142	Preserved Pancreatic β-Cell Development and Function in Mice Lacking the Insulin Receptor-Related Receptor. Molecular and Cellular Biology, 2001, 21, 5624-5630.	2.3	97
143	Genetics of Type 2 Diabetes Insight from Targeted Mouse Mutants. Current Molecular Medicine, 2001, 1, 9-23.	1.3	33
144	A kinase in the life of the \hat{I}^2 cell. Journal of Clinical Investigation, 2001, 108, 1575-1576.	8.2	41

#	Article	IF	CITATIONS
145	The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. Journal of Clinical Investigation, 2001, 108, 1359-1367.	8.2	506
146	Distinct and Overlapping Functions of Insulin and IGF-I Receptors. , 2001, 22, 818-835.		117
147	Insulin Inhibits the Activation of Transcription by a C-terminal Fragment of the Forkhead Transcription Factor FKHR. Journal of Biological Chemistry, 2000, 275, 7289-7295.	3.4	61
148	Differential regulation of gene expression by insulin and IGF-1 receptors correlates with phosphorylation of a single amino acid residue in the forkhead transcription factor FKHR. EMBO Journal, 2000, 19, 989-996.	7.8	273
149	Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. Journal of Clinical Investigation, 2000, 105, 199-205.	8.2	419
150	Insulin Stimulates Phosphorylation of the Forkhead Transcription Factor FKHR on Serine 253 through a Wortmannin-sensitive Pathway. Journal of Biological Chemistry, 1999, 274, 15982-15985.	3.4	417
151	Differential Signaling of Insulin and IGF-1 Receptors to Glycogen Synthesis in Murine Hepatocytes. Biochemistry, 1999, 38, 7517-7523.	2.5	49
152	Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nature Genetics, 1998, 20, 294-298.	21.4	139
153	A Muscle-Specific Insulin Receptor Knockout Exhibits Features of the Metabolic Syndrome of NIDDM without Altering Glucose Tolerance. Molecular Cell, 1998, 2, 559-569.	9.7	1,071
154	Evidence That IRS-2 Phosphorylation Is Required for Insulin Action in Hepatocytes. Journal of Biological Chemistry, 1998, 273, 17491-17497.	3.4	149
155	Growth-Promoting Interaction of IGF-II with the Insulin Receptor during Mouse Embryonic Development. Developmental Biology, 1997, 189, 33-48.	2.0	354
156	Insulin Receptor Knock-Out Mice. Trends in Endocrinology and Metabolism, 1997, 8, 101-104.	7.1	16
157	Development of a Novel Polygenic Model of NIDDM in Mice Heterozygous for IR and IRS-1 Null Alleles. Cell, 1997, 88, 561-572.	28.9	517
158	Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genetics, 1996, 12, 106-109.	21.4	554