Yiwen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5685491/publications.pdf Version: 2024-02-01

YIMEN LI

#	Article	IF	CITATIONS
1	Size Regulation of Polydopamine Nanoparticles by Boronic Acid and Lewis Base. Macromolecular Rapid Communications, 2023, 44, e2100916.	3.9	39
2	Carrier-Free Deferoxamine Nanoparticles against Iron Overload in Brain. CCS Chemistry, 2023, 5, 257-270.	7.8	14
3	Bioinspired Integration of Naturally Occurring Molecules towards Universal and Smart Antibacterial Coatings. Advanced Functional Materials, 2022, 32, 2108749.	14.9	71
4	Fabrication of Functional Polycatechol Nanoparticles. ACS Macro Letters, 2022, 11, 251-256.	4.8	31
5	Electrochemical Ring-Opening Dicarboxylation of Strained Carbon–Carbon Single Bonds with CO ₂ : Facile Synthesis of Diacids and Derivatization into Polyesters. Journal of the American Chemical Society, 2022, 144, 2062-2068.	13.7	75
6	Layerâ€byâ€Layer Assembled Smart Antibacterial Coatings via Musselâ€Inspired Polymerization and Dynamic Covalent Chemistry. Advanced Healthcare Materials, 2022, 11, e2200112.	7.6	33
7	Polyphenolic sunscreens for photoprotection. Green Chemistry, 2022, 24, 3605-3622.	9.0	44
8	Versatile polyphenolic platforms in regulating cell biology. Chemical Society Reviews, 2022, 51, 4175-4198.	38.1	76
9	Boosting the Optical Absorption of Melanin-like Polymers. Macromolecules, 2022, 55, 3493-3501.	4.8	33
10	Propolis inspired sunscreens for efficient UV-protection and skin barrier maintenance. Nano Research, 2022, 15, 8237-8246.	10.4	19
11	Polyphenol scaffolds in tissue engineering. Materials Horizons, 2021, 8, 145-167.	12.2	203
12	Tea stain-inspired solar energy harvesting polyphenolic nanocoatings with tunable absorption spectra. Nano Research, 2021, 14, 969-975.	10.4	46
13	Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohydrate Polymers, 2021, 254, 117404.	10.2	36
14	Smart supramolecular nanofibers and nanoribbons from uniform amphiphilic azobenzene oligomers. Chemical Communications, 2021, 57, 2192-2195.	4.1	6
15	Morphological modulation of azobenzene-containing tubular polymersomes. Polymer Chemistry, 2021, 12, 3052-3059.	3.9	11
16	A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. ACS Applied Materials & Interfaces, 2021, 13, 7617-7624.	8.0	172
17	Efficient Iron and ROS Nanoscavengers for Brain Protection after Intracerebral Hemorrhage. ACS Applied Materials & Interfaces, 2021, 13, 9729-9738.	8.0	31
18	Boosting solar steam generation by photothermal enhanced polydopamine/wood composites. Polymer, 2021, 217, 123464.	3.8	132

#	Article	IF	CITATIONS
19	Polycatechol Mediated Small Interfering RNA Delivery for the Treatment of Ulcerative Colitis. Advanced Functional Materials, 2021, 31, 2101646.	14.9	30
20	Emergence of melanin-inspired supercapacitors. Nano Today, 2021, 37, 101075.	11.9	121
21	Metal-phenolic network green flame retardants. Polymer, 2021, 221, 123627.	3.8	40
22	Reduced polydopamine nanoparticles incorporated oxidized dextran/chitosan hybrid hydrogels with enhanced antioxidative and antibacterial properties for accelerated wound healing. Carbohydrate Polymers, 2021, 257, 117598.	10.2	95
23	Flexible Polydopamine Bioelectronics. Advanced Functional Materials, 2021, 31, 2103391.	14.9	102
24	Aminoglycosideâ€Based Biomaterials: From Material Design to Antibacterial and Gene Delivery Applications. Advanced Functional Materials, 2021, 31, 2103718.	14.9	28
25	Green Nanoparticle Scavengers against Oxidative Stress. ACS Applied Materials & Interfaces, 2021, 13, 39126-39134.	8.0	30
26	Phase Behaviors of Multiâ€ŧailed B 2 AB 2 â€Type Regioâ€isomeric Giant Surfactants at the Columnarâ€Spherical Boundary. Chinese Journal of Chemistry, 2021, 39, 3261.	4.9	7
27	l-Arginine/nanofish bone nanocomplex enhances bone regeneration via antioxidant activities and osteoimmunomodulatory properties. Chinese Chemical Letters, 2021, 32, 234-238.	9.0	14
28	Polydopamine antibacterial materials. Materials Horizons, 2021, 8, 1618-1633.	12.2	246
29	Natural polyphenol fluorescent polymer dots. Green Chemistry, 2021, 23, 1834-1839.	9.0	44
30	Stimuli-responsive polydopamine-based smart materials. Chemical Society Reviews, 2021, 50, 8319-8343.	38.1	262
31	Therapeutic Nanoparticles from Grape Seed for Modulating Oxidative Stress. Small, 2021, 17, e2102485.	10.0	57
32	Synthetic melanin facilitates MnO supercapacitors with high specific capacitance and wide operation potential window. Polymer, 2021, 235, 124276.	3.8	43
33	Dynamic Polymer Amphiphiles for Efficient Intracellular and In Vivo Protein Delivery. Advanced Materials, 2021, 33, e2104355.	21.0	46
34	Self-Assembly of Poly(Janus particle)s into Unimolecular and Oligomeric Spherical Micelles. ACS Macro Letters, 2021, 10, 1563-1569.	4.8	17
35	Bioinspired fluorescent dihydroxyindoles oligomers. Chinese Chemical Letters, 2020, 31, 783-786.	9.0	28
36	Recent developments in polydopamine fluorescent nanomaterials. Materials Horizons, 2020, 7, 746-761.	12.2	171

#	Article	IF	CITATIONS
37	Photothermal-enhanced synthetic melanin inks for near-infrared imaging. Polymer, 2020, 186, 122042.	3.8	57
38	Antioxidant shape amphiphiles for accelerated wound healing. Journal of Materials Chemistry B, 2020, 8, 7018-7023.	5.8	40
39	Natural polyphenols in drug delivery systems: Current status and future challenges. Giant, 2020, 3, 100022.	5.1	102
40	Metal ion-promoted fabrication of melanin-like poly(L-DOPA) nanoparticles for photothermal actuation. Science China Chemistry, 2020, 63, 1295-1305.	8.2	50
41	Polydopamine free radical scavengers. Biomaterials Science, 2020, 8, 4940-4950.	5.4	180
42	Regulating the absorption spectrum of polydopamine. Science Advances, 2020, 6, .	10.3	254
43	Ultrasmall Nanoparticle ROS Scavengers Based on Polyhedral Oligomeric Silsesquioxanes. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1149-1156.	3.8	49
44	Bifunctional and Bioreducible Dendrimer Bearing a Fluoroalkyl Tail for Efficient Protein Delivery Both <i>In Vitro</i> and <i>In Vivo</i> . Nano Letters, 2020, 20, 8600-8607.	9.1	51
45	Polydopamine Nanomaterials: Metalâ€Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics (Small 18/2020). Small, 2020, 16, 2070102.	10.0	4
46	Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Therapy, 2020, 27, 383-391.	4.5	27
47	A sensitive and accurate method for simultaneous analysis of algal toxins in freshwater using UPLC-MS/MS and 15N-microcystins as isotopically labelled internal standards. Science of the Total Environment, 2020, 738, 139727.	8.0	15
48	Integrated POSS-dendrimer nanohybrid materials: current status and future perspective. Nanoscale, 2020, 12, 11395-11415.	5.6	55
49	ROS Scavenging Biopolymers for Antiâ€Inflammatory Diseases: Classification and Formulation. Advanced Materials Interfaces, 2020, 7, 2000632.	3.7	92
50	Metal ontaining Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. Small, 2020, 16, e1907042.	10.0	240
51	Reductive dearomative arylcarboxylation of indoles with CO2 via visible-light photoredox catalysis. Nature Communications, 2020, 11, 3263.	12.8	100
52	Flexible and Robust Polyaniline Composites for Highly Efficient and Durable Solar Desalination. ACS Applied Energy Materials, 2020, 3, 2634-2642.	5.1	73
53	Quantification of cylindrospermopsin, anatoxin-a and homoanatoxin-a in cyanobacterial bloom freshwater using direct injection/SPE coupled with UPLC-MS/MS. Science of the Total Environment, 2020, 731, 139014.	8.0	13
54	Smart azobenzene-containing tubular polymersomes: fabrication and multiple morphological tuning. Chemical Communications, 2020, 56, 6237-6240.	4.1	21

#	Article	IF	CITATIONS
55	Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry. Current Medicinal Chemistry, 2020, 27, 3924-3943.	2.4	7
56	Structural and Functional Tailoring of Melanin-Like Polydopamine Radical Scavengers. CCS Chemistry, 2020, 2, 128-138.	7.8	99
57	Natural Polyphenol Inspired Polycatechols for Efficient siRNA Delivery. CCS Chemistry, 2020, 2, 146-157.	7.8	71
58	S,S-Tetrazine-Based Hydrogels with Visible Light Cleavable Properties for On-Demand Anticancer Drug Delivery. Research, 2020, 2020, 6563091.	5.7	12
59	Smart Hydrogels with Antibacterial Properties Built from All Natural Building Blocks. Chemistry of Materials, 2019, 31, 7678-7685.	6.7	97
60	Synthetic Biopigment Supercapacitors. ACS Applied Materials & amp; Interfaces, 2019, 11, 30360-30367.	8.0	50
61	Transition Kinetics of Self-Assembled Supramolecular Dodecagonal Quasicrystal and Frank–Kasper σ Phases in AB _{<i>n</i>} Dendron-Like Giant Molecules. ACS Macro Letters, 2019, 8, 875-881.	4.8	39
62	Size control synthesis of melanin-like polydopamine nanoparticles by tuning radicals. Polymer Chemistry, 2019, 10, 4194-4200.	3.9	81
63	Tailoring Synthetic Melanin Nanoparticles for Enhanced Photothermal Therapy. ACS Applied Materials & Interfaces, 2019, 11, 42671-42679.	8.0	105
64	Sequence isomeric giant surfactants with distinct self-assembly behaviors in solution. Chemical Communications, 2019, 55, 636-639.	4.1	18
65	Functional Peptides and Small Molecules in Medicinal Chemistry-Part I. Current Topics in Medicinal Chemistry, 2019, 19, 2-3.	2.1	1
66	Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: Smoke suppression and thermal stability of flexible polyurethane foams. Polymer, 2019, 170, 65-75.	3.8	51
67	Functional Peptides and Small Molecules in Medicinal Chemistry-Part II. Current Topics in Medicinal Chemistry, 2019, 19, 186-186.	2.1	0
68	Synthetic Melanin Hybrid Patchy Nanoparticle Photocatalysts. Journal of Physical Chemistry C, 2019, 123, 5345-5352.	3.1	34
69	Recent Progress of Crosslinking Strategies for Polymeric Micelles with Enhanced Drug Delivery in Cancer Therapy. Current Medicinal Chemistry, 2019, 26, 2356-2376.	2.4	37
70	Froth flotation giant surfactants. Polymer, 2019, 162, 58-62.	3.8	19
71	"Click―chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. Journal of Controlled Release, 2018, 273, 160-179	9.9	172
72	Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy. Accounts of Chemical Research, 2018, 51, 3-11.	15.6	78

#	Article	IF	CITATIONS
73	Foe to Friend: Supramolecular Nanomedicines Consisting of Natural Polyphenols and Bortezomib. Nano Letters, 2018, 18, 7045-7051.	9.1	109
74	Multilevel Manipulation of Supramolecular Structures of Giant Molecules via Macromolecular Composition and Sequence. ACS Macro Letters, 2018, 7, 635-640.	4.8	31
75	Multifunctional melanin-like nanoparticles for bone-targeted chemo-photothermal therapy of malignant bone tumors and osteolysis. Biomaterials, 2018, 183, 10-19.	11.4	105
76	Cooperation of Amphiphilicity and Smectic Order in Regulating the Self-Assembly of Cholesterol-Functionalized Brush-Like Block Copolymers. Langmuir, 2018, 34, 11034-11041.	3.5	11
77	Skin Pigmentationâ€Inspired Polydopamine Sunscreens. Advanced Functional Materials, 2018, 28, 1802127.	14.9	122
78	Synthetic Melanin E-Ink. ACS Applied Materials & amp; Interfaces, 2017, 9, 16553-16560.	8.0	39
79	Mimicking Melanosomes: Polydopamine Nanoparticles as Artificial Microparasols. ACS Central Science, 2017, 3, 564-569.	11.3	118
80	Tunable, Metal-Loaded Polydopamine Nanoparticles Analyzed by Magnetometry. Chemistry of Materials, 2017, 29, 8195-8201.	6.7	80
81	High Relaxivity Gadoliniumâ€₽olydopamine Nanoparticles. Small, 2017, 13, 1701830.	10.0	48
82	Sequenceâ€Mandated, Distinct Assembly of Giant Molecules. Angewandte Chemie - International Edition, 2017, 56, 15014-15019.	13.8	57
83	Sequenceâ€Mandated, Distinct Assembly of Giant Molecules. Angewandte Chemie, 2017, 129, 15210-15215.	2.0	9
84	Bioinspired bright noniridescent photonic melanin supraballs. Science Advances, 2017, 3, e1701151.	10.3	177
85	Green Tea Makes Polyphenol Nanoparticles with Radical cavenging Activities. Macromolecular Rapid Communications, 2017, 38, 1700446.	3.9	70
86	Hierarchical Self-Organization of AB _{<i>n</i>} Dendron-like Molecules into a Supramolecular Lattice Sequence. ACS Central Science, 2017, 3, 860-867.	11.3	69
87	Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis. Biomaterials, 2017, 145, 138-153.	11.4	67
88	Polyhedral oligomeric silsesquioxane meets "click―chemistry: Rational design and facile preparation of functional hybrid materials. Polymer, 2017, 125, 303-329.	3.8	123
89	Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials, 2017, 141, 116-124.	11.4	143
90	Recent Advances in Synthesis and Identification of Cyclic Peptides for Bioapplications. Current Topics in Medicinal Chemistry, 2017, 17, 2302-2318.	2.1	28

#	Article	IF	CITATIONS
91	Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles. Chemistry of Materials, 2016, 28, 5516-5521.	6.7	101
92	Polycatechol Nanoparticle MRI Contrast Agents. Small, 2016, 12, 668-677.	10.0	64
93	Self-assembly of amphiphilic macrocycles containing polymeric liquid crystal grafts in solution. Polymer Chemistry, 2016, 7, 2785-2789.	3.9	13
94	Structure and Function of Iron-Loaded Synthetic Melanin. ACS Nano, 2016, 10, 10186-10194.	14.6	127
95	Rational controlled morphological transitions in the self-assembled multi-headed giant surfactants in solution. Chemical Communications, 2016, 52, 8687-8690.	4.1	34
96	Janus POSS Based on Mixed [2:6] Octakisâ€Adduct Regioisomers. Chemistry - A European Journal, 2016, 22, 6397-6403.	3.3	35
97	Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks. ACS Central Science, 2016, 2, 48-54.	11.3	76
98	Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening. Materials Science and Engineering C, 2016, 61, 526-533.	7.3	21
99	Enzymeâ€Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. Advanced Materials, 2015, 27, 5547-5552.	21.0	229
100	Photoresponsive Amphiphilic Macrocycles Containing Main-Chain Azobenzene Polymers. Macromolecular Rapid Communications, 2015, 36, 1341-1347.	3.9	24
101	Modular construction of macrocycle-based topological polymers via high-efficient thiol chemistry. Polymer Chemistry, 2015, 6, 2879-2891.	3.9	12
102	Pathway toward Large Two-Dimensional Hexagonally Patterned Colloidal Nanosheets in Solution. Journal of the American Chemical Society, 2015, 137, 1392-1395.	13.7	68
103	Cyclic azobenzene-containing amphiphilic diblock copolymers: solution self-assembly and unusual photo-responsive behaviors. Polymer Chemistry, 2015, 6, 3009-3013.	3.9	14
104	Ion-modulated flow behavior of layer-by-layer fabricated polymer thin films. RSC Advances, 2015, 5, 64192-64195.	3.6	3
105	Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science, 2015, 348, 424-428.	12.6	338
106	Bio-Inspired Structural Colors Produced <i>via</i> Self-Assembly of Synthetic Melanin Nanoparticles. ACS Nano, 2015, 9, 5454-5460.	14.6	244
107	Biomacrocyclic side-chain liquid crystalline polymers bearing cholesterol mesogens: facile synthesis and topological effect study. Polymer Chemistry, 2015, 6, 6885-6893.	3.9	14
108	Stimuli-Responsive Materials: Enzyme-Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction (Adv. Mater. 37/2015). Advanced Materials, 2015, 27, 5446-5446.	21.0	3

#	Article	IF	CITATIONS
109	Enzyme-regulated topology of a cyclic peptide brush polymer for tuning assembly. Chemical Communications, 2015, 51, 17108-17111.	4.1	17
110	Precision synthesis of macrocyclic giant surfactants tethered with two different polyhedral oligomeric silsesquioxanes at distinct ring locations via four consecutive "click―reactions. Polymer Chemistry, 2015, 6, 827-837.	3.9	19
111	Giant surfactants based on molecular nanoparticles: Precise synthesis and solution selfâ€assembly. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1309-1325.	2.1	69
112	Molecular Nanoparticles Are Unique Elements for Macromolecular Science: From "Nanoatoms―to Giant Molecules. Macromolecules, 2014, 47, 1221-1239.	4.8	308
113	"Clicking―fluorinated polyhedral oligomeric silsesquioxane onto polymers: a modular approach toward shape amphiphiles with fluorous molecular clusters. Polymer Chemistry, 2014, 5, 3588.	3.9	35
114	Tuning "thiol-ene―reactions toward controlled symmetry breaking in polyhedral oligomeric silsesquioxanes. Chemical Science, 2014, 5, 1046-1053.	7.4	61
115	Macromolecular structure evolution toward giant molecules of complex structure: tandem synthesis of asymmetric giant gemini surfactants. Polymer Chemistry, 2014, 5, 3697.	3.9	36
116	Thiol-Michael "click―chemistry: another efficient tool for head functionalization of giant surfactants. Polymer Chemistry, 2014, 5, 6151-6162.	3.9	33
117	Sequential Triple "Click―Approach toward Polyhedral Oligomeric Silsesquioxane-Based Multiheaded and Multitailed Giant Surfactants. ACS Macro Letters, 2013, 2, 645-650.	4.8	52
118	Cascading One-Pot Synthesis of Single-Tailed and Asymmetric Multitailed Giant Surfactants. ACS Macro Letters, 2013, 2, 1026-1032.	4.8	41
119	Giant gemini surfactants based on polystyrene–hydrophilic polyhedral oligomeric silsesquioxane shape amphiphiles: sequential "click―chemistry and solution self-assembly. Chemical Science, 2013, 4, 1345.	7.4	111
120	Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering. Proceedings of the United States of America, 2013, 110, 10078-10083.	7.1	202
121	Synthesis of fullerene-containing poly(ethylene oxide)- <i>block</i> -polystyrene as model shape amphiphiles with variable composition, diverse architecture, and high fullerene functionality. Polymer Chemistry, 2012, 3, 124-134.	3.9	44
122	Breaking Symmetry toward Nonspherical Janus Particles Based on Polyhedral Oligomeric Silsesquioxanes: Molecular Design, "Click―Synthesis, and Hierarchical Structure. Journal of the American Chemical Society, 2011, 133, 10712-10715.	13.7	148