Joyce Besheer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/568463/publications.pdf Version: 2024-02-01

LOVCE RESHEED

#	Article	IF	CITATIONS
1	Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nature Protocols, 2006, 1, 1306-1311.	12.0	1,007
2	The mGluR5 antagonist MPEP selectively inhibits the onset and maintenance of ethanol self-administration in C57BL/6J mice. Psychopharmacology, 2006, 183, 429-438.	3.1	135
3	Abstinence following Alcohol Drinking Produces Depression-Like Behavior and Reduced Hippocampal Neurogenesis in Mice. Neuropsychopharmacology, 2009, 34, 1209-1222.	5.4	126
4	Cue-induced reinstatement of alcohol-seeking behavior is associated with increased ERK1/2 phosphorylation in specific limbic brain regions: Blockade by the mGluR5 antagonist MPEP. Neuropharmacology, 2008, 55, 546-554.	4.1	112
5	Metabotropic Glutamate Receptor 5 Activity in the Nucleus Accumbens Is Required for the Maintenance of Ethanol Self-Administration in a Rat Genetic Model of High Alcohol Intake. Biological Psychiatry, 2010, 67, 812-822.	1.3	110
6	Regulation of Motivation to Selfâ€Administer Ethanol by mGluR5 in Alcoholâ€Preferring (P) Rats. Alcoholism: Clinical and Experimental Research, 2008, 32, 209-221.	2.4	92
7	Dopamine antagonism in a novel-object recognition and a novel-object place conditioning preparation with rats. Behavioural Brain Research, 1999, 103, 35-44.	2.2	82
8	Nicotine as a signal for the presence or absence of sucrose reward: a Pavlovian drug appetitive conditioning preparation in rats. Psychopharmacology, 2004, 172, 108-117.	3.1	81
9	Novel-object place conditioning: behavioral and dopaminergic processes in expression of novelty reward. Behavioural Brain Research, 2002, 129, 41-50.	2.2	78
10	Suppression of Heavy Drinking and Alcohol Seeking by a Selective ALDHâ€2 Inhibitor. Alcoholism: Clinical and Experimental Research, 2009, 33, 1935-1944.	2.4	78
11	Nicotine-conditioned locomotor activity in rats: dopaminergic and GABAergic influences on conditioned expression. Pharmacology Biochemistry and Behavior, 2001, 68, 135-145.	2.9	75
12	GABAB receptor agonists reduce operant ethanol self-administration and enhance ethanol sedation in C57BL/6J mice. Psychopharmacology, 2004, 174, 358-66.	3.1	73
13	Sex differences in alcohol self-administration and relapse-like behavior in Long-Evans rats. Pharmacology Biochemistry and Behavior, 2017, 156, 1-9.	2.9	65
14	Functional role for cortical-striatal circuitry in modulating alcohol self-administration. Neuropharmacology, 2018, 130, 42-53.	4.1	65
15	Novelty reward as a measure of anhedonia. Neuroscience and Biobehavioral Reviews, 2005, 29, 707-714.	6.1	61
16	Interoceptive Effects of Alcohol Require mGlu5 Receptor Activity in the Nucleus Accumbens. Journal of Neuroscience, 2009, 29, 9582-9591.	3.6	61
17	Increased operant responding for ethanol in male C57BL/6J mice: specific regulation by the ERK1/2, but not JNK, MAP kinase pathway. Psychopharmacology, 2009, 204, 135-147.	3.1	60
18	Silencing the insular-striatal circuit decreases alcohol self-administration and increases sensitivity to alcohol. Behavioural Brain Research, 2018, 348, 74-81.	2.2	59

#	Article	IF	CITATIONS
19	Comparison of ethanol locomotor sensitization in adolescent and adult DBA/2J mice. Psychopharmacology, 2008, 197, 361-370.	3.1	58
20	Pharmacological and Anatomical Evidence for an Interaction Between mGluR5- and GABAA α1-Containing Receptors in the Discriminative Stimulus Effects of Ethanol. Neuropsychopharmacology, 2005, 30, 747-757.	5.4	57
21	Maternal Oral Intake Mouse Model for Fetal Alcohol Spectrum Disorders: Ocular Defects as a Measure of Effect. Alcoholism: Clinical and Experimental Research, 2006, 30, 1791-1798.	2.4	53
22	mGlu5 receptors are involved in the discriminative stimulus effects of self-administered ethanol in rats. European Journal of Pharmacology, 2006, 551, 71-75.	3.5	49
23	Pregnenolone and Ganaxolone Reduce Operant Ethanol Selfâ€Administration in Alcoholâ€Preferring P Rats. Alcoholism: Clinical and Experimental Research, 2010, 34, 2044-2052.	2.4	49
24	The role of environmental familiarization in novel-object preference. Behavioural Processes, 2000, 50, 19-29.	1.1	47
25	Potentiation of amygdala AMPA receptor activity selectively promotes escalated alcohol selfâ€administration in a CaMKIIâ€dependent manner. Addiction Biology, 2017, 22, 652-664.	2.6	47
26	Effects of mGlu1-receptor blockade on ethanol self-administration in inbred alcohol-preferring rats. Alcohol, 2008, 42, 13-20.	1.7	44
27	5-HT3A Receptor Subunit is Required for 5-HT3 Antagonist-Induced Reductions in Alcohol Drinking. Neuropsychopharmacology, 2004, 29, 1807-1813.	5.4	43
28	Enhanced <scp>AMPA</scp> receptor activity increases operant alcohol selfâ€administration and cueâ€induced reinstatement. Addiction Biology, 2013, 18, 54-65.	2.6	43
29	Histone deacetylases mediate GABAA receptor expression, physiology, and behavioral maladaptations in rat models of alcohol dependence. Neuropsychopharmacology, 2018, 43, 1518-1529.	5.4	42
30	Coregulation of Ethanol Discrimination by the Nucleus Accumbens and Amygdala. Alcoholism: Clinical and Experimental Research, 2003, 27, 450-456.	2.4	41
31	Activation of Group II Metabotropic Glutamate Receptors Inhibits the Discriminative Stimulus Effects of Alcohol via Selective Activity Within the Amygdala. Neuropsychopharmacology, 2011, 36, 2328-2338.	5.4	40
32	Functional role for suppression of the insular–striatal circuit in modulating interoceptive effects of alcohol. Addiction Biology, 2018, 23, 1020-1031.	2.6	40
33	Dopaminergic and cholinergic antagonism in a novel-object detection task with rats. Behavioural Brain Research, 2001, 126, 211-217.	2.2	39
34	Modulation of sensitivity to alcohol by cortical and thalamic brain regions. European Journal of Neuroscience, 2016, 44, 2569-2580.	2.6	39
35	Chronic inflammatory pain drives alcohol drinking in a sex-dependent manner for C57BL/6J mice. Alcohol, 2019, 77, 135-145.	1.7	37
36	Glutamate plasticity woven through the progression to alcohol use disorder: a multi-circuit perspective. F1000Research, 2017, 6, 298.	1.6	34

#	Article	IF	CITATIONS
37	Impact of nicotine withdrawal on novelty reward and related behaviors Behavioral Neuroscience, 2003, 117, 327-340.	1.2	33
38	The Tollâ€Like Receptor 3 Agonist Poly(I:C) Induces Rapid and Lasting Changes in Gene Expression Related to Glutamatergic Function and Increases Ethanol Selfâ€Administration in Rats. Alcoholism: Clinical and Experimental Research, 2019, 43, 48-60.	2.4	33
39	Interoception and Learning: Import to Understanding and Treating Diseases and Psychopathologies. ACS Chemical Neuroscience, 2014, 5, 624-631.	3.5	32
40	Stress-Induced Alterations of Norepinephrine Release in the Bed Nucleus of the Stria Terminalis of Mice. ACS Chemical Neuroscience, 2019, 10, 1908-1914.	3.5	32
41	The effects of repeated corticosterone exposure on the interoceptive effects of alcohol in rats. Psychopharmacology, 2012, 220, 809-822.	3.1	28
42	Discovery of a Potent, Selective, and Brain-Penetrant Small Molecule that Activates the Orphan Receptor GPR88 and Reduces Alcohol Intake. Journal of Medicinal Chemistry, 2018, 61, 6748-6758.	6.4	28
43	Acute Ethanol Administration Rapidly Increases Phosphorylation of Conventional Protein Kinase C in Specific Mammalian Brain Regions in Vivo. Alcoholism: Clinical and Experimental Research, 2007, 31, 1259-1267.	2.4	27
44	Increased sensitivity to alcohol induced changes in ERK Map kinase phosphorylation and memory disruption in adolescent as compared to adult C57BL/6J mice. Behavioural Brain Research, 2012, 230, 158-166.	2.2	27
45	Increased alcohol self-administration following exposure to the predator odor TMT in active coping female rats. Behavioural Brain Research, 2021, 402, 113068.	2.2	27
46	GABAA receptor regulation of voluntary ethanol drinking requires PKCε. Synapse, 2006, 60, 411-419.	1.2	26
47	Overexpression of the Steroidogenic Enzyme Cytochrome P450 Side Chain Cleavage in the Ventral Tegmental Area Increases 3î±,51±-THP and Reduces Long-Term Operant Ethanol Self-Administration. Journal of Neuroscience, 2014, 34, 5824-5834.	3.6	26
48	Individual differences in rat locomotor activity are diminished by nicotine through stimulation of central nicotinic acetylcholine receptors. Physiology and Behavior, 2001, 72, 237-244.	2.1	25
49	Stress Hormone Exposure Reduces mGluR5 Expression in the Nucleus Accumbens: Functional Implications for Interoceptive Sensitivity to Alcohol. Neuropsychopharmacology, 2014, 39, 2376-2386.	5.4	23
50	The role of varenicline on alcohol-primed self-administration and seeking behavior in rats. Psychopharmacology, 2015, 232, 2443-2454.	3.1	21
51	Preclinical Evaluation of Riluzole: Assessments of Ethanol Selfâ€Administration and Ethanol Withdrawal Symptoms. Alcoholism: Clinical and Experimental Research, 2009, 33, 1460-1468.	2.4	20
52	Intra-amygdala inhibition of ERK1/2 potentiates the discriminative stimulus effects of alcohol. Behavioural Brain Research, 2012, 228, 398-405.	2.2	20
53	Transient increase in alcohol self-administration following a period of chronic exposure to corticosterone. Neuropharmacology, 2013, 72, 139-147.	4.1	20
54	The mineralocorticoid receptor antagonist spironolactone reduces alcohol self-administration in female and male rats. Pharmacology Biochemistry and Behavior, 2018, 175, 10-18.	2.9	20

#	Article	IF	CITATIONS
55	An isotropic EPI database and analytical pipelines for rat brain resting-state fMRI. Neurolmage, 2021, 243, 118541.	4.2	20
56	Considering Drug-Associated Contexts in Substance Use Disorders and Treatment Development. Neurotherapeutics, 2020, 17, 43-54.	4.4	19
57	Gabapentin potentiates sensitivity to the interoceptive effects of alcohol and increases alcohol self-administration in rats. Neuropharmacology, 2016, 101, 216-224.	4.1	16
58	Activation of mGluR2/3 following stress hormone exposure restores sensitivity to alcohol in rats. Alcohol, 2015, 49, 525-532.	1.7	15
59	Exposure to the predator odor <scp>TMT</scp> induces early and late differential gene expression related to stress and excitatory synaptic function throughout the brain in male rats. Genes, Brain and Behavior, 2020, 19, e12684.	2.2	15
60	Central amygdala mineralocorticoid receptors modulate alcohol self-administration. Neuropharmacology, 2020, 181, 108337.	4.1	14
61	The synthetically produced predator odor 2,5-dihydro-2,4,5-trimethylthiazoline increases alcohol self-administration and alters basolateral amygdala response to alcohol in rats. Psychopharmacology, 2021, 238, 67-82.	3.1	14
62	(3α,5α)3-hydroxypregnan-20-one (3α,5α-THP) regulation of hypothalamic and extrahypothalamic corticotropin releasing factor (CRF): Sexual dimorphism and brain region specificity in Sprague Dawley rats. Neuropharmacology, 2021, 186, 108463.	4.1	14
63	Taste quality and extinction of a conditioned taste aversion in rats. Learning and Behavior, 1999, 27, 358-366.	3.4	13
64	Assessment of the interoceptive effects of alcohol in rats using short-term training procedures. Alcohol, 2012, 46, 747-755.	1.7	13
65	The nicotine + alcohol interoceptive drug state: contribution of the components and effects of varenicline in rats. Psychopharmacology, 2016, 233, 3061-3074.	3.1	13
66	Role of <scp>mPFC</scp> and nucleus accumbens circuitry in modulation of a nicotine plus alcohol compound drug state. Addiction Biology, 2020, 25, e12782.	2.6	12
67	Interoception and alcohol: Mechanisms, networks, and implications. Neuropharmacology, 2021, 200, 108807.	4.1	12
68	Timing of conditioned responding in a nicotine locomotor conditioning preparation: manipulations of the temporal arrangement between context cues and drug administration. Behavioural Brain Research, 2005, 159, 135-143.	2.2	11
69	Ethanol-induced alterations of c-Fos immunoreactivity in specific limbic brain regions following ethanol discrimination training. Brain Research, 2008, 1232, 124-131.	2.2	9
70	The effects of predator odor (TMT) exposure and mGlu3 NAM pretreatment on behavioral and NMDA receptor adaptations in the brain. Neuropharmacology, 2022, 207, 108943.	4.1	9
71	The Tollâ€like receptor 7 agonist imiquimod increases ethanol selfâ€administration and induces expression of Tollâ€like receptor related genes. Addiction Biology, 2022, 27, e13176.	2.6	9
72	The effects of carbamazepine on an appetitive-to-aversive transfer task: comparison to untreated and phenytoin. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2001, 25, 551-572.	4.8	8

#	Article	IF	CITATIONS
73	The role of the nucleus reuniens in regulating contextual conditioning with the predator odor TMT in female rats. Psychopharmacology, 2021, 238, 3411-3421.	3.1	8
74	Increased alcohol self-administration following repeated Toll-like receptor 3 agonist treatment in male and female rats. Pharmacology Biochemistry and Behavior, 2022, 216, 173379.	2.9	8
75	Lowâ€dose alcohol: Interoceptive and molecular effects and the role of dentate gyrus in rats. Addiction Biology, 2021, 26, e12965.	2.6	6
76	Effects of nicotine conditioning history on alcohol and methamphetamine self-administration in rats. Pharmacology Biochemistry and Behavior, 2019, 179, 1-8.	2.9	3
77	RTICBM-74 Is a Brain-Penetrant Cannabinoid Receptor Subtype 1 Allosteric Modulator that Reduces Alcohol Intake in Rats. Journal of Pharmacology and Experimental Therapeutics, 2022, 380, 153-161.	2.5	3
78	Cell size in the lateral geniculate nucleus of cats reared with esotropia and sagittal transection of the optic chiasm. Developmental Brain Research, 1997, 100, 127-129.	1.7	0