Nelson Christensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5683747/publications.pdf

Version: 2024-02-01

384 papers 73,358 citations

100 h-index 266 g-index

396 all docs 396 docs citations

396 times ranked 18981 citing authors

#	Article	IF	CITATIONS
1	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. Physical Review D, 2022, 105 , .	4.7	31
2	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	4.0	20
3	Ability of LISA to detect a gravitational-wave background of cosmological origin: The cosmic string case. Physical Review D, 2022, 105, .	4.7	26
4	Gravitational-wave geodesy: Defining false alarm probabilities with respect to correlated noise. Physical Review D, 2022, 105, .	4.7	2
5	Parameter estimation with gravitational waves. Reviews of Modern Physics, 2022, 94, .	45.6	30
6	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
7	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	4.7	21
8	Searches for Modulated î³-Ray Precursors to Compact Binary Mergers in Fermi-GBM Data. Astrophysical Journal, 2022, 930, 45.	4.5	4
9	Comparing inclination-dependent analyses of kilonova transients. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3057-3065.	4.4	34
10	Simultaneous estimation of astrophysical and cosmological stochastic gravitational-wave backgrounds with terrestrial detectors. Physical Review D, 2021, 103, .	4.7	33
11	Higher-order Hermite-Gauss modes for gravitational waves detection. Physical Review D, 2021, 103, .	4.7	16
12	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
13	Inference of protoneutron star properties from gravitational-wave data in core-collapse supernovae. Physical Review D, 2021, 103, .	4.7	25
14	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	4.7	43
15	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	4.0	128
16	Spectral separation of the stochastic gravitational-wave background for LISA: Observing both cosmological and astrophysical backgrounds. Physical Review D, 2021, 103, .	4.7	37
17	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	8.3	32
18	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514

#	Article	IF	CITATIONS
19	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
20	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	4.7	338
21	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
22	Predicting electromagnetic counterparts using low-latency gravitational-wave data products. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4235-4248.	4.4	9
23	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11 , .	8.9	1,097
24	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgoâ \in^{TM} s third observing run. Physical Review D, 2021, 104, .	4.7	192
25	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	4.7	62
26	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
27	Search for Long-duration Gravitational-wave Signals Associated with Magnetar Giant Flares. Astrophysical Journal, 2021, 918, 80.	4.5	4
28	Spectral separation of the stochastic gravitational-wave background for <i>LISA</i> in the context of a modulated Galactic foreground. Monthly Notices of the Royal Astronomical Society, 2021, 508, 803-826.	4.4	28
29	Identification of a Local Sample of Gamma-Ray Bursts Consistent with a Magnetar Giant Flare Origin. Astrophysical Journal Letters, 2021, 907, L28.	8.3	33
30	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	4.7	42
31	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	4.5	39
32	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537–6910. Astrophysical Journal, 2021, 922, 71.	4.5	29
33	Long-duration transient gravitational-wave search pipeline. Physical Review D, 2021, 104, .	4.7	4
34	Impact of Schumann resonances on the Einstein Telescope and projections for the magnetic coupling function. Physical Review D, 2021, 104, .	4.7	10
35	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
36	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9

#	Article	IF	Citations
37	The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3904-3927.	4.4	53
38	GRANDMA observations of advanced LIGO's and advanced Virgo's third observational campaign. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5518-5539.	4.4	63
39	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
40	Using machine learning for transient classification in searches for gravitational-wave counterparts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1320-1331.	4.4	10
41	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
42	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext>  </mml:mtext> ABS™</mml:mrow></mml:math> . Physical Review	ml :ma text>	< n 8 13116:msub>
43	Letters, 2020, 125, 101102. Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	7.8	35
44	Computational techniques for parameter estimation of gravitational wave signals. Wiley Interdisciplinary Reviews: Computational Statistics, 2020, , e1532.	3.9	3
45	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
46	Measuring the Hubble constant with a sample of kilonovae. Nature Communications, 2020, 11, 4129.	12.8	35
47	Lasers and Optics for the Laser Interferometer Space Antenna (LISA). EPJ Web of Conferences, 2020, 243, 08001.	0.3	0
48	Identifying and addressing nonstationary LISA noise. Physical Review D, 2020, 102, .	4.7	20
49	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
50	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^¼Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
51	Numerical solutions for phase noise due to pointing jitter with the LISA telescope. Journal of Physics Communications, 2020, 4, 045005.	1.2	3
52	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
53	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
54	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.4	9

#	Article	IF	Citations
55	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
56	ELGARâ€"a European Laboratory for Gravitation and Atom-interferometric Research. Classical and Quantum Gravity, 2020, 37, 225017.	4.0	63
57	Detecting a stochastic gravitational-wave background in the presence of correlated magnetic noise. Physical Review D, 2020, 102, .	4.7	28
58	Standardizing kilonovae and their use as standard candles to measure the Hubble constant. Physical Review Research, 2020, 2, .	3.6	35
59	Stray light estimates due to micrometeoroid damage in space optics, application to the LISA telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2020, 6, .	1.8	5
60	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
61	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
62	Search for advanced LIGO single interferometer compact binary coalescence signals in coincidence with Gamma-ray events in Fermi-GBM. Classical and Quantum Gravity, 2020, 37, 175001.	4.0	6
63	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
64	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
65	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102
66	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
67	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
68	Optimizing multitelescope observations of gravitational-wave counterparts. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5775-5783.	4.4	35
69	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
70	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
71	Fermi-GBM Follow-up of LIGO-Virgo Binary Black Hole Mergers: Detection Prospects. Astrophysical Journal, 2019, 882, 53.	4. 5	7
72	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119

#	Article	IF	Citations
73	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
74	LISA telescope: phase noise due to pointing jitter. Classical and Quantum Gravity, 2019, 36, 205003.	4.0	8
75	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
76	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X , 2019, 9, .	8.9	2,022
77	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
78	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
79	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
80	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
81	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
82	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
83	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
84	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
85	Stepping-stone sampling algorithm for calculating the evidence of gravitational wave models. Physical Review D, 2019, 99, .	4.7	10
86	Constraining the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -Modeâ€" <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.	7.8	36
87	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
88	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
89	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
90	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46

#	Article	IF	CITATIONS
91	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
92	Stochastic gravitational wave backgrounds. Reports on Progress in Physics, 2019, 82, 016903.	20.1	176
93	Bayesian nonparametric spectral density estimation using B-spline priors. Statistics and Computing, 2019, 29, 67-78.	1.5	29
94	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
95	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
96	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
97	On the Interpretation of the Fermi-GBM Transient Observed in Coincidence with LIGO Gravitational-wave Event GW150914. Astrophysical Journal Letters, 2018, 853, L9.	8.3	30
98	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
99	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
100	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Physical Review D, 2018, 97, .	4.7	104
101	Fermi GBM Observations of GRB 150101B: A Second Nearby Event with a Short Hard Spike and a Soft Tail. Astrophysical Journal Letters, 2018, 863, L34.	8.3	28
102	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
103	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
104	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
105	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
106	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
107	Optimizing signal recycling for detecting a stochastic gravitational-wave background. Classical and Quantum Gravity, 2018, 35, 125002.	4.0	1
108	Gravitational Wave Detection., 2018,, 432-444.		1

#	Article	IF	Citations
109	Optimizing searches for electromagnetic counterparts of gravitational wave triggers. Monthly Notices of the Royal Astronomical Society, 2018, 478, 692-702.	4.4	51
110	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
111	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
112	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , $2018, 21, 1.$		2
113	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
114	SEARCHING THE GAMMA-RAY SKY FOR COUNTERPARTS TO GRAVITATIONAL WAVE SOURCES: FERMI GAMMA-RAY BURST MONITORÂAND LARGE AREA TELESCOPE OBSERVATIONS OF LVT151012 AND GW151226. Astrophysical Journal, 2017, 835, 82.	4.5	32
115	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
116	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
117	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	4.7	72
118	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
119	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
120	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
121	Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors. Classical and Quantum Gravity, 2017, 34, 074002.	4.0	25
122	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
123	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
124	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
125	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
126	An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophysical Journal Letters, 2017, 848, L14.	8.3	1,038

#	Article	IF	Citations
127	Multi-messenger Observations of a Binary Neutron Star Merger < sup>* < /sup>. Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
128	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
129	Fermi Observations of the LIGO Event GW170104. Astrophysical Journal Letters, 2017, 846, L5.	8.3	15
130	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
131	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
132	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
133	Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background. Physical Review Letters, 2017, 118, 151105.	7.8	106
134	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
135	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
136	Polarization-Based Tests of Gravity with the Stochastic Gravitational-Wave Background. Physical Review X , 2017, 7 , .	8.9	65
137	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
138	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
139	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
140	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
141	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
142	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
143	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
144	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968

#	Article	IF	CITATIONS
145	Strategies and goals for stochastic gravitational wave background searches with Advanced LIGO and Advanced Virgo. , 2017 , , .		1
146	Gravitational waves: A statistical autopsy of a black hole merger. Significance, 2016, 13, 20-25.	0.4	6
147	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
148	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
149	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
150	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
151	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
152	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
153	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
154	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
155	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
156	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
157	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
158	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
159	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
160	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
161	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
162	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14

#	Article	IF	CITATIONS
163	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
164	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
165	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
166	FERMI GBM OBSERVATIONS OF LIGO GRAVITATIONAL-WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 826, L6.	8.3	246
167	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
168	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
169	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
170	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
171	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
172	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
173	Proposed search for the detection of gravitational waves from eccentric binary black holes. Physical Review D, 2016, 93, .	4.7	47
174	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
175	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , $2016, 19, 1$.		1
176	Detecting very long-lived gravitational-wave transients lasting hours to weeks. Physical Review D, 2015, 91, .	4.7	24
177	Prospects for searches for long-duration gravitational-waves without time slides. Physical Review D, 2015, 92, .	4.7	8
178	Mock data and science challenge for detecting an astrophysical stochastic gravitational-wave background with Advanced LIGO and Advanced Virgo. Physical Review D, 2015, 92, .	4.7	36
179	Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis. Physical Review D, 2015, 92, .	4.7	23
180	All-sky, narrowband, gravitational-wave radiometry with folded data. Physical Review D, 2015, 91, .	4.7	10

#	Article	IF	Citations
181	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
182	Improved constraint on the primordial gravitational-wave density using recent cosmological data and its impact on cosmic string models. Classical and Quantum Gravity, 2015, 32, 045003.	4.0	31
183	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39
184	HIGH-ENERGY ELECTROMAGNETIC OFFLINE FOLLOW-UP OF LIGO-VIRGO GRAVITATIONAL-WAVE BINARY COALESCENCE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2015, 217, 8.	7.7	55
185	Detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors. Physical Review D, 2015, 91, .	4.7	31
186	Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Physical Review D, 2015, 91, .	4.7	674
187	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
188	Gravitational waves: search results, data analysis and parameter estimation. General Relativity and Gravitation, 2015, 47, 11.	2.0	4
189	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
190	The Nobel pulsar. Science, 2015, 348, 766-766.	12.6	1
191	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
192	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
193	Wiener filtering with a seismic underground array at the Sanford Underground Research Facility. Classical and Quantum Gravity, 2014, 31, 215003.	4.0	23
194	Method for estimation of gravitational-wave transient model parameters in frequency–time maps. Classical and Quantum Gravity, 2014, 31, 165012.	4.0	10
195	Bayesian parameter estimation of core collapse supernovae using gravitational wave simulations. Inverse Problems, 2014, 30, 114008.	2.0	20
196	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
197	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60
198	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68

#	Article	IF	CITATIONS
199	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
200	Instrumental vetoes for transient gravitational-wave triggers using noise-coupling models: The bilinear-coupling veto. Physical Review D, 2014, 89, .	4.7	15
201	Reconstructing the sky location of gravitational-wave detected compact binary systems: Methodology for testing and comparison. Physical Review D, 2014, 89, .	4.7	50
202	Detecting compact binary coalescences with seedless clustering. Physical Review D, 2014, 90, .	4.7	12
203	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
204	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
205	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
206	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
207	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
208	Search for Gravitational Waves Associated with <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi></mml:math> -ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.	7.8	32
209	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
210	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
211	Education and public outreach on gravitational-wave astronomy. General Relativity and Gravitation, 2014, 46, 1.	2.0	1
212	Correlated noise in networks of gravitational-wave detectors: Subtraction and mitigation. Physical Review D, 2014, 90, .	4.7	52
213	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
214	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
215	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
216	A Student's Guide to Einstein's Major PapersA Student's Guide to Einstein's Major Papers, Robert Kennedy, Oxford U. Press, New York, 2012. \$45.00 (296 pp.). ISBN 978-0-19-969403-7. Physics Today, 2013, 66, 52-53.	E. 0.3	0

#	Article	IF	CITATIONS
217	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
218	Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications. Physical Review D, 2013, 87, .	4.7	69
219	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
220	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
221	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
222	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
223	Bayesian inference on EMRI signals using low frequency approximations. Classical and Quantum Gravity, 2012, 29, 145014.	4.0	7
224	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	3
225	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	5.1	75
226	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
227	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60
228	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	4.7	107
229	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	4.7	48
230	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	4.7	43
231	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	4.7	185
232	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, .	4.7	2
233	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	4.7	66
234	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	4.7	0

#	Article	IF	CITATIONS
235	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	2
236	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	1.2	257
237	Teaching general relativity to undergraduates. Physics Today, 2012, 65, 41-47.	0.3	14
238	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
239	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	4.7	54
240	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, $2011, 83, \ldots$	4.7	85
241	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
242	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
243	Modelling coloured residual noise in gravitational-wave signal processing. Classical and Quantum Gravity, 2011, 28, 015010.	4.0	37
244	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	4.7	0
245	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
246	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
247	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
248	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	1.6	120
249	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
250	Methods for reducing false alarms in searches for compact binary coalescences in LIGO data. Classical and Quantum Gravity, 2010, 27, 165023.	4.0	46
251	Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota. Classical and Quantum Gravity, 2010, 27, 225011.	4.0	26
252	LIGO S6 detector characterization studies. Classical and Quantum Gravity, 2010, 27, 194010.	4.0	42

#	Article	IF	CITATIONS
253	The effects of LIGO detector noise on a 15-dimensional Markov-chain Monte Carlo analysis of gravitational-wave signals. Classical and Quantum Gravity, 2010, 27, 114009.	4.0	24
254	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	4.7	111
255	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	4.7	107
256	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
257	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
258	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
259	Bayesian reconstruction of gravitational wave burst signals from simulations of rotating stellar core collapse and bounce. Physical Review D, 2009, 80, .	4.7	56
260	Degeneracies in sky localization determination from a spinning coalescing binary through gravitational wave observations: a Markov-chain Monte Carlo analysis for two detectors. Classical and Quantum Gravity, 2009, 26, 114007.	4.0	47
261	Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project. Classical and Quantum Gravity, 2009, 26, 165008.	4.0	110
262	Parameter estimation for signals from compact binary inspirals injected into LIGO data. Classical and Quantum Gravity, 2009, 26, 204010.	4.0	36
263	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	4.0	16
264	Status of NINJA: the Numerical INJection Analysis project. Classical and Quantum Gravity, 2009, 26, 114008.	4.0	39
265	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	2.9	123
266	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
267	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	4.7	83
268	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	4.7	79
269	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	20.1	971
270	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	4.7	78

#	Article	IF	CITATIONS
271	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	4.7	45
272	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	105
273	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	4.7	120
274	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	4.7	38
275	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	32
276	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	4.5	45
277	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	4.7	0
278	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
279	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	4.7	60
280	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	4.7	110
281	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	4.7	54
282	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	2.0	7
283	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	4.0	28
284	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
285	The LSC glitch group: monitoring noise transients during the fifth LIGO science run. Classical and Quantum Gravity, 2008, 25, 184004.	4.0	79
286	Searching for gravitational waves from Cassiopeia A with LIGO. Classical and Quantum Gravity, 2008, 25, 235011.	4.0	75
287	Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo. Classical and Quantum Gravity, 2008, 25, 184011.	4.0	95
288	Detailed comparison of LIGO and Virgo inspiral pipelines in preparation for a joint search. Classical and Quantum Gravity, 2008, 25, 045001.	4.0	23

#	Article	IF	CITATIONS
289	A comparison of methods for gravitational wave burst searches from LIGO and Virgo. Classical and Quantum Gravity, 2008, 25, 045002.	4.0	12
290	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
291	Report on the second Mock LISA data challenge. Classical and Quantum Gravity, 2008, 25, 114037.	4.0	44
292	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	4.0	16
293	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	4.7	O
294	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
295	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	4.7	126
296	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
297	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	2.0	5
298	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	4.5	143
299	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	4.5	160
300	Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries. Astrophysical Journal, 2008, 688, L61-L64.	4.5	89
301	VIRGO COMMISSIONING PROGRESS. , 2008, , .		0
302	RESULTS FROM LIGO OBSERVATIONS: STOCHASTIC BACKGROUND AND CONTINUOUS WAVE SIGNALS. , 2008, , .		0
303	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1
304	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	4.0	10
305	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	4.0	19
306	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	4.0	13

#	Article	IF	Citations
307	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	4.0	9
308	Inference on inspiral signals using LISA MLDC data. Classical and Quantum Gravity, 2007, 24, S521-S527.	4.0	13
309	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	4.0	4
310	Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets. Classical and Quantum Gravity, 2007, 24, S541-S549.	4.0	15
311	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	4.0	78
312	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	4.0	56
313	Report on the first round of the Mock LISA Data Challenges. Classical and Quantum Gravity, 2007, 24, 5529-S539.	4.0	33
314	Coherent Bayesian analysis of inspiral signals. Classical and Quantum Gravity, 2007, 24, S607-S615.	4.0	17
315	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	4.0	9
316	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	4.7	121
317	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. DPRVDAQ0556-282176, 022001 (2007)]. Physical Review D, 2007, 76, .	4.7	0
318	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	4.7	35
319	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	4.5	120
320	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
321	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
322	Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors. Physical Review D, 2007, 75, .	4.7	55
323	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	4.7	128
324	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	4.7	90

#	Article	IF	CITATIONS
325	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1806</mml:mn><mml:mo>â^'</mml:mo><mml:mn>20</mml:mn></mml:math> hyper of 27 December 2004 using LIGO. Physical Review D, 2007, 76, .	flare	51
326	Search for gravitational waves from binary black hole inspirals in LIGO data. Physical Review D, 2006, 73, .	4.7	75
327	Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries. Physical Review D, 2006, 73, .	4.7	40
328	Benefits of joint LIGO - Virgo coincidence searches for burst and inspiral signals. Journal of Physics: Conference Series, 2006, 32, 212-222.	0.4	10
329	Search for gravitational-wave bursts in LIGO's third science run. Classical and Quantum Gravity, 2006, 23, S29-S39.	4.0	40
330	Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data. Classical and Quantum Gravity, 2006, 23, 4895-4906.	4.0	54
331	LISA source confusion: identification and characterization of signals. Classical and Quantum Gravity, 2005, 22, S901-S911.	4.0	18
332	A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data. Classical and Quantum Gravity, 2005, 22, S1293-S1301.	4.0	15
333	A time-domain MCMC search and upper limit technique for gravitational waves of uncertain frequency from a targeted neutron star. Classical and Quantum Gravity, 2005, 22, S995-S1001.	4.0	5
334	Veto studies for LIGO inspiral triggers. Classical and Quantum Gravity, 2005, 22, S1059-S1068.	4.0	14
335	A first comparison between LIGO and Virgo inspiral search pipelines. Classical and Quantum Gravity, 2005, 22, S1149-S1158.	4.0	7
336	Bayesian modeling of source confusion in LISA data. Physical Review D, 2005, 72, .	4.7	51
337	Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data. Physical Review Letters, 2005, 94, 181103.	7.8	130
338	Upper Limits on a Stochastic Background of Gravitational Waves. Physical Review Letters, 2005, 95, 221101.	7.8	89
339	Upper limits on gravitational wave bursts in LIGO's second science run. Physical Review D, 2005, 72, .	4.7	57
340	Search for gravitational waves from primordial black hole binary coalescences in the galactic halo. Physical Review D, 2005, 72, .	4.7	79
341	Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. Physical Review D, 2005, 72, .	4.7	74
342	Search for gravitational waves from galactic and extra-galactic binary neutron stars. Physical Review D, 2005, 72, .	4.7	109

#	Article	IF	CITATIONS
343	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Physical Review D, 2005, 72, .	4.7	49
344	First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform. Physical Review D, 2005, 72, .	4.7	75
345	Estimating the parameters of gravitational waves from neutron stars using an adaptive MCMC method. Classical and Quantum Gravity, 2004, 21, S1655-S1665.	4.0	22
346	Measurements of diffusion resonances for the atom optics quantum kicked rotor. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 28-33.	1.4	16
347	A Metropolis–Hastings routine for estimating parameters from compact binary inspiral events with laser interferometric gravitational radiation data. Classical and Quantum Gravity, 2004, 21, 317-330.	4.0	36
348	Vetoes for inspiral triggers in LIGO data. Classical and Quantum Gravity, 2004, 21, S1747-S1755.	4.0	19
349	Searching for gravitational waves from binary inspirals with LIGO. Classical and Quantum Gravity, 2004, 21, S1625-S1633.	4.0	31
350	Upper limits on the strength of periodic gravitational waves from PSR J1939+2134. Classical and Quantum Gravity, 2004, 21, S671-S676.	4.0	4
351	Detecting Gravitational Radiation from Neutron Stars using a Six-Parameter Adaptive MCMC Method. AIP Conference Proceedings, 2004, , .	0.4	5
352	Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data. Physical Review D, 2004, 70, .	4.7	26
353	Analysis of first LIGO science data for stochastic gravitational waves. Physical Review D, 2004, 69, .	4.7	96
354	First upper limits from LIGO on gravitational wave bursts. Physical Review D, 2004, 69, .	4.7	108
355	Setting upper limits on the strength of periodic gravitational waves from PSRJ1939+2134using the first science data from the GEO 600 and LIGO detectors. Physical Review D, 2004, 69, .	4.7	165
356	Analysis of LIGO data for gravitational waves from binary neutron stars. Physical Review D, 2004, 69, .	4.7	145
357	Nuclear transparency in90c.m.°quasielasticA(p,2p)reactions. Physical Review C, 2004, 70, .	2.9	40
358	Detector description and performance for the first coincidence observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 517, 154-179.	1.6	259
359	AP Physics Workshop at Carleton College. Physics Teacher, 2002, 40, 330-332.	0.3	0
360	Potential multiparticle entanglement measure. Physical Review A, 2001, 63, .	2.5	230

#	Article	IF	CITATIONS
361	Fast Bayesian reconstruction of chaotic dynamical systems via extended Kalman filtering. Physical Review E, 2001, 65, 016206.	2.1	25
362	Medical physics: the perfect intermediate level physics class. European Journal of Physics, 2001, 22, 421-427.	0.6	9
363	Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements. Classical and Quantum Gravity, 2001, 18, 2677-2688.	4.0	154
364	The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements. Astrophysical Journal, 2001, 563, L95-L98.	4.5	102
365	Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data. Physical Review D, 2001, 64, .	4.7	53
366	Momentum distributions for the quantuml 'kicked rotor with decoherence. Physical Review E, 2000, 61, 5994-5996.	2.1	12
367	Numerical investigation of the effects of classical phase space structure on a quantum system with decoherence. Physical Review E, 2000, 61, 1299-1311.	2.1	2
368	Bayesian reconstruction of chaotic dynamical systems. Physical Review E, 2000, 62, 3535-3542.	2.1	58
369	Momentum distributions for the quantum \hat{l} -kicked rotor with decoherence. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 605-611.	1.4	17
370	Experimental evidence for the role of cantori as barriers in a quantum system. Physical Review E, 1999, 59, 2846-2852.	2.1	25
371	The large momentum transfer reaction 12C(p,2p + n) as a new method for measuring short range NN correlations in nuclei. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 453, 211-216.	4.1	33
372	Measurement of quasi-elastic C(p,2p) scattering at high momentum transfer. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 437, 257-263.	4.1	11
373	Experimental observation of dynamical localization and decoherence in the atomic -kicked rotor. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 2449-2455.	1.5	11
374	Mixing internal and external atomic dynamics in the kicked rotor. Physical Review E, 1998, 57, 354-358.	2.1	10
375	Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis. Physical Review D, 1998, 58, .	4.7	50
376	Quantum Delta-Kicked Rotor: Experimental Observation of Decoherence. Physical Review Letters, 1998, 80, 4111-4115.	7.8	258
377	Nuclear Transparency in Large Momentum Transfer Quasielastic Scattering. Physical Review Letters, 1998, 81, 5085-5088.	7.8	43
378	Optimal detection strategies for measuring the stochastic gravitational radiation background with laser interferometric antennas. Physical Review D, 1997, 55, 448-454.	4.7	10

#	Article	IF	CITATIONS
379	Delta Kick Cooling: A New Method for Cooling Atoms. Physical Review Letters, 1997, 78, 2088-2091.	7.8	103
380	Transparency in hadronic reactions at high momentum transfers. , 1995, , .		0
381	Noise characteristics of a mode locked argon laser. Optics Communications, 1993, 97, 219-224.	2.1	6
382	Noise characteristics of cross-phase modulation instability light. Optics Communications, 1993, 101, 205-212.	2.1	9
383	Measuring the stochastic gravitational-radiation background with laser-interferometric antennas. Physical Review D, 1992, 46, 5250-5266.	4.7	209
384	Prototype Michelson interferometer with Fabry–Perot cavities. Applied Optics, 1991, 30, 3133.	2.1	23