Nelson Christensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5683747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
6	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
7	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
8	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
12	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	8.9	1,097
13	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
14	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
15	An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophysical Journal Letters, 2017, 848, L14.	8.3	1,038
16	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
17	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	20.1	971
18	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968

#	Article	IF	CITATIONS
19	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
20	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
21	Gw190521: A Binary Black Hole Merger with a Total Mass or <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> stretchy="false">劙</mml:mtext></mml:mrow></mmi:math 	nl ma text>	<nastationsub></nastationsub>
22	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
23	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
24	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
25	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	8.9	728
26	Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Physical Review D, 2015, 91, .	4.7	674
27	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
28	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
29	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
30	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
31	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	4.7	470
32	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
33	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
34	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
35	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
36	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406

#	Article	IF	CITATIONS
37	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
38	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
39	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	4.7	338
40	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
41	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
42	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
43	Detector description and performance for the first coincidence observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 517, 154-179.	1.6	259
44	Quantum Delta-Kicked Rotor: Experimental Observation of Decoherence. Physical Review Letters, 1998, 80, 4111-4115.	7.8	258
45	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	1.2	257
46	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
47	FERMI GBM OBSERVATIONS OF LIGO GRAVITATIONAL-WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 826, L6.	8.3	246
48	Potential multiparticle entanglement measure. Physical Review A, 2001, 63, .	2.5	230
49	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
50	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
51	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
52	Measuring the stochastic gravitational-radiation background with laser-interferometric antennas. Physical Review D, 1992, 46, 5250-5266.	4.7	209
53	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	4.7	200
54	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194

#	Article	IF	CITATIONS
55	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	4.7	192
56	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
57	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
58	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	4.7	185
59	Stochastic gravitational wave backgrounds. Reports on Progress in Physics, 2019, 82, 016903.	20.1	176
60	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
61	Setting upper limits on the strength of periodic gravitational waves from PSRJ1939+2134using the first science data from the GEO 600 and LIGO detectors. Physical Review D, 2004, 69, .	4.7	165
62	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	4.5	160
63	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
64	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
65	Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements. Classical and Quantum Gravity, 2001, 18, 2677-2688.	4.0	154
66	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
67	Analysis of LIGO data for gravitational waves from binary neutron stars. Physical Review D, 2004, 69, .	4.7	145
68	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
69	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
70	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	4.5	143
71	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
72	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131

#	Article	IF	CITATIONS
73	Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data. Physical Review Letters, 2005, 94, 181103.	7.8	130
74	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	4.7	128
75	LIGO detector characterization in the second and third observing runs. Classical and Quantum Gravity, 2021, 38, 135014.	4.0	128
76	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	4.7	126
77	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
78	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	2.9	123
79	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	4.7	121
80	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	4.5	120
81	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	4.7	120
82	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	1.6	120
83	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
84	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
85	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	4.7	111
86	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	4.7	110
87	Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project. Classical and Quantum Gravity, 2009, 26, 165008.	4.0	110
88	Search for gravitational waves from galactic and extra-galactic binary neutron stars. Physical Review D, 2005, 72, .	4.7	109
89	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
90	First upper limits from LIGO on gravitational wave bursts. Physical Review D, 2004, 69, .	4.7	108

6

#	Article	IF	CITATIONS
91	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	4.7	107
92	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	4.7	107
93	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
94	Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background. Physical Review Letters, 2017, 118, 151105.	7.8	106
95	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	105
96	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
97	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
98	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Physical Review D, 2018, 97, .	4.7	104
99	Delta Kick Cooling: A New Method for Cooling Atoms. Physical Review Letters, 1997, 78, 2088-2091.	7.8	103
100	The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements. Astrophysical Journal, 2001, 563, L95-L98.	4.5	102
101	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
102	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	4.7	102
103	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
104	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
105	Analysis of first LIGO science data for stochastic gravitational waves. Physical Review D, 2004, 69, .	4.7	96
106	Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo. Classical and Quantum Gravity, 2008, 25, 184011.	4.0	95
107	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
108	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94

#	Article	IF	CITATIONS
109	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	4.7	92
110	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
111	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	4.7	90
112	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
113	Upper Limits on a Stochastic Background of Gravitational Waves. Physical Review Letters, 2005, 95, 221101.	7.8	89
114	Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries. Astrophysical Journal, 2008, 688, L61-L64.	4.5	89
115	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
116	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
117	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
118	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
119	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
120	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	4.7	85
121	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
122	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
123	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
124	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
125	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	4.7	83
126	Search for gravitational waves from primordial black hole binary coalescences in the galactic halo. Physical Review D, 2005, 72, .	4.7	79

#	Article	IF	CITATIONS
127	The LSC glitch group: monitoring noise transients during the fifth LIGO science run. Classical and Quantum Gravity, 2008, 25, 184004.	4.0	79
128	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	4.7	79
129	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	4.0	78
130	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	4.7	78
131	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
132	First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform. Physical Review D, 2005, 72, .	4.7	75
133	Search for gravitational waves from binary black hole inspirals in LIGO data. Physical Review D, 2006, 73, .	4.7	75
134	Searching for gravitational waves from Cassiopeia A with LIGO. Classical and Quantum Gravity, 2008, 25, 235011.	4.0	75
135	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	5.1	75
136	Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. Physical Review D, 2005, 72, .	4.7	74
137	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
138	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
139	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
140	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	4.7	72
141	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
142	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
143	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
144	Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications. Physical Review D, 2013, 87, .	4.7	69

#	Article	IF	CITATIONS
145	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
146	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
147	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	4.7	69
148	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
149	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
150	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	4.7	66
151	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
152	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
153	Polarization-Based Tests of Gravity with the Stochastic Gravitational-Wave Background. Physical Review X, 2017, 7, .	8.9	65
154	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
155	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
156	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
157	GRANDMA observations of advanced LIGO's and advanced Virgo's third observational campaign. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5518-5539.	4.4	63
158	ELGAR—a European Laboratory for Gravitation and Atom-interferometric Research. Classical and Quantum Gravity, 2020, 37, 225017.	4.0	63
159	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
160	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	4.7	62
161	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
162	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	4.7	60

#	Article	IF	CITATIONS
163	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
164	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60
165	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60
166	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
167	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
168	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	4.7	60
169	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
170	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
171	Bayesian reconstruction of chaotic dynamical systems. Physical Review E, 2000, 62, 3535-3542.	2.1	58
172	Upper limits on gravitational wave bursts in LIGO's second science run. Physical Review D, 2005, 72, .	4.7	57
173	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
174	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388.	4.0	56
175	Bayesian reconstruction of gravitational wave burst signals from simulations of rotating stellar core collapse and bounce. Physical Review D, 2009, 80, .	4.7	56
176	Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors. Physical Review D, 2007, 75, .	4.7	55
177	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
178	HIGH-ENERGY ELECTROMAGNETIC OFFLINE FOLLOW-UP OF LIGO-VIRGO GRAVITATIONAL-WAVE BINARY COALESCENCE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2015, 217, 8.	7.7	55
179	Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data. Classical and Quantum Gravity, 2006, 23, 4895-4906.	4.0	54
180	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	4.7	54

#	Article	IF	CITATIONS
181	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	4.7	54
182	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	4.7	54
183	Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data. Physical Review D, 2001, 64, .	4.7	53
184	The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3904-3927.	4.4	53
185	Correlated noise in networks of gravitational-wave detectors: Subtraction and mitigation. Physical Review D, 2014, 90, .	4.7	52
186	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
187	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
188	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	4.7	52
189	Bayesian modeling of source confusion in LISA data. Physical Review D, 2005, 72, .	4.7	51
190	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1806</mml:mn><mml:mo>â^²</mml:mo><mml:mn>20</mml:mn>hyper of 27 December 2004 using LIGO. Physical Review D, 2007, 76, .</mml:math 	flåre	51
191	Optimizing searches for electromagnetic counterparts of gravitational wave triggers. Monthly Notices of the Royal Astronomical Society, 2018, 478, 692-702.	4.4	51
192	Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis. Physical Review D, 1998, 58, .	4.7	50
193	Reconstructing the sky location of gravitational-wave detected compact binary systems: Methodology for testing and comparison. Physical Review D, 2014, 89, .	4.7	50
194	Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts. Physical Review D, 2005, 72, .	4.7	49
195	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	4.7	48
196	Degeneracies in sky localization determination from a spinning coalescing binary through gravitational wave observations: a Markov-chain Monte Carlo analysis for two detectors. Classical and Quantum Gravity, 2009, 26, 114007.	4.0	47
197	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
198	Proposed search for the detection of gravitational waves from eccentric binary black holes. Physical Review D, 2016, 93, .	4.7	47

#	Article	IF	CITATIONS
199	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	4.7	47
200	Methods for reducing false alarms in searches for compact binary coalescences in LIGO data. Classical and Quantum Gravity, 2010, 27, 165023.	4.0	46
201	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
202	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	4.7	46
203	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	4.7	46
204	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	4.7	45
205	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	4.5	45
206	Report on the second Mock LISA data challenge. Classical and Quantum Gravity, 2008, 25, 114037.	4.0	44
207	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
208	Nuclear Transparency in Large Momentum Transfer Quasielastic Scattering. Physical Review Letters, 1998, 81, 5085-5088.	7.8	43
209	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	4.7	43
210	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	4.7	43
211	LIGO S6 detector characterization studies. Classical and Quantum Gravity, 2010, 27, 194010.	4.0	42
212	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
213	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	4.7	42
214	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq0 0	0 rgBT /0 4:0	verlock 10 Tf
215	Nuclear transparency in90c.m.°quasielasticA(p,2p)reactions. Physical Review C, 2004, 70, .	2.9	40

²¹⁶Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries.4.740Physical Review D, 2006, 73, .4.740

#	Article	IF	CITATIONS
217	Search for gravitational-wave bursts in LIGO's third science run. Classical and Quantum Gravity, 2006, 23, S29-S39.	4.0	40
218	Status of NINJA: the Numerical INJection Analysis project. Classical and Quantum Gravity, 2009, 26, 114008.	4.0	39
219	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39
220	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	4.5	39
221	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	4.7	38
222	Modelling coloured residual noise in gravitational-wave signal processing. Classical and Quantum Gravity, 2011, 28, 015010.	4.0	37
223	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
224	Spectral separation of the stochastic gravitational-wave background for LISA: Observing both cosmological and astrophysical backgrounds. Physical Review D, 2021, 103, .	4.7	37
225	A Metropolis–Hastings routine for estimating parameters from compact binary inspiral events with laser interferometric gravitational radiation data. Classical and Quantum Gravity, 2004, 21, 317-330.	4.0	36
226	Parameter estimation for signals from compact binary inspirals injected into LIGO data. Classical and Quantum Gravity, 2009, 26, 204010.	4.0	36
227	Mock data and science challenge for detecting an astrophysical stochastic gravitational-wave background with Advanced LIGO and Advanced Virgo. Physical Review D, 2015, 92, .	4.7	36
228	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	7.8	36
229	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	4.7	35
230	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
231	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
232	Optimizing multitelescope observations of gravitational-wave counterparts. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5775-5783.	4.4	35
233	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	7.8	35
234	Measuring the Hubble constant with a sample of kilonovae. Nature Communications, 2020, 11, 4129.	12.8	35

#	Article	IF	CITATIONS
235	Standardizing kilonovae and their use as standard candles to measure the Hubble constant. Physical Review Research, 2020, 2, .	3.6	35
236	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
237	Comparing inclination-dependent analyses of kilonova transients. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3057-3065.	4.4	34
238	The large momentum transfer reaction 12C(p,2p + n) as a new method for measuring short range NN correlations in nuclei. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 453, 211-216.	4.1	33
239	Report on the first round of the Mock LISA Data Challenges. Classical and Quantum Gravity, 2007, 24, S529-S539.	4.0	33
240	Simultaneous estimation of astrophysical and cosmological stochastic gravitational-wave backgrounds with terrestrial detectors. Physical Review D, 2021, 103, .	4.7	33
241	Identification of a Local Sample of Gamma-Ray Bursts Consistent with a Magnetar Giant Flare Origin. Astrophysical Journal Letters, 2021, 907, L28.	8.3	33
242	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	32
243	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>î³</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters. 2014. 113. 011102.</mml:math 	7.8	32
244	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
245	SEARCHING THE GAMMA-RAY SKY FOR COUNTERPARTS TO GRAVITATIONAL WAVE SOURCES: FERMI GAMMA-RAY BURST MONITORÂAND LARGE AREA TELESCOPE OBSERVATIONS OF LVT151012 AND GW151226. Astrophysical Journal, 2017, 835, 82.	4.5	32
246	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	8.3	32
247	Searching for gravitational waves from binary inspirals with LIGO. Classical and Quantum Gravity, 2004, 21, S1625-S1633.	4.0	31
248	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
249	Improved constraint on the primordial gravitational-wave density using recent cosmological data and its impact on cosmic string models. Classical and Quantum Gravity, 2015, 32, 045003.	4.0	31
250	Detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors. Physical Review D, 2015, 91, .	4.7	31
251	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
252	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. Physical Review D, 2022, 105, .	4.7	31

#	Article	IF	CITATIONS
253	On the Interpretation of the Fermi-GBM Transient Observed in Coincidence with LIGO Gravitational-wave Event GW150914. Astrophysical Journal Letters, 2018, 853, L9.	8.3	30
254	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
255	Parameter estimation with gravitational waves. Reviews of Modern Physics, 2022, 94, .	45.6	30
256	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
257	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
258	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
259	Bayesian nonparametric spectral density estimation using B-spline priors. Statistics and Computing, 2019, 29, 67-78.	1.5	29
260	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537–6910. Astrophysical Journal, 2021, 922, 71.	4.5	29
261	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	4.0	28
262	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
263	Fermi GBM Observations of GRB 150101B: A Second Nearby Event with a Short Hard Spike and a Soft Tail. Astrophysical Journal Letters, 2018, 863, L34.	8.3	28
264	Spectral separation of the stochastic gravitational-wave background for <i>LISA</i> in the context of a modulated Galactic foreground. Monthly Notices of the Royal Astronomical Society, 2021, 508, 803-826.	4.4	28
265	Detecting a stochastic gravitational-wave background in the presence of correlated magnetic noise. Physical Review D, 2020, 102, .	4.7	28
266	Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data. Physical Review D, 2004, 70, .	4.7	26
267	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
268	Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota. Classical and Quantum Gravity, 2010, 27, 225011.	4.0	26
269	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
270	Ability of LISA to detect a gravitational-wave background of cosmological origin: The cosmic string case. Physical Review D, 2022, 105, .	4.7	26

#	Article	IF	CITATIONS
271	Experimental evidence for the role of cantori as barriers in a quantum system. Physical Review E, 1999, 59, 2846-2852.	2.1	25
272	Fast Bayesian reconstruction of chaotic dynamical systems via extended Kalman filtering. Physical Review E, 2001, 65, 016206.	2.1	25
273	Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors. Classical and Quantum Gravity, 2017, 34, 074002.	4.0	25
274	Inference of protoneutron star properties from gravitational-wave data in core-collapse supernovae. Physical Review D, 2021, 103, .	4.7	25
275	The effects of LIGO detector noise on a 15-dimensional Markov-chain Monte Carlo analysis of gravitational-wave signals. Classical and Quantum Gravity, 2010, 27, 114009.	4.0	24
276	Detecting very long-lived gravitational-wave transients lasting hours to weeks. Physical Review D, 2015, 91, .	4.7	24
277	Prototype Michelson interferometer with Fabry–Perot cavities. Applied Optics, 1991, 30, 3133.	2.1	23
278	Detailed comparison of LIGO and Virgo inspiral pipelines in preparation for a joint search. Classical and Quantum Gravity, 2008, 25, 045001.	4.0	23
279	Wiener filtering with a seismic underground array at the Sanford Underground Research Facility. Classical and Quantum Gravity, 2014, 31, 215003.	4.0	23
280	Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis. Physical Review D, 2015, 92, .	4.7	23
281	Estimating the parameters of gravitational waves from neutron stars using an adaptive MCMC method. Classical and Quantum Gravity, 2004, 21, S1655-S1665.	4.0	22
282	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
283	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	4.7	22
284	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
285	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	4.7	21
286	Bayesian parameter estimation of core collapse supernovae using gravitational wave simulations. Inverse Problems, 2014, 30, 114008.	2.0	20
287	Identifying and addressing nonstationary LISA noise. Physical Review D, 2020, 102, .	4.7	20
288	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20

#	Article	IF	CITATIONS
289	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	4.0	20
290	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
291	Vetoes for inspiral triggers in LIGO data. Classical and Quantum Gravity, 2004, 21, S1747-S1755.	4.0	19
292	Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. Classical and Quantum Gravity, 2007, 24, S671-S679.	4.0	19
293	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
294	LISA source confusion: identification and characterization of signals. Classical and Quantum Gravity, 2005, 22, S901-S911.	4.0	18
295	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
296	Momentum distributions for the quantum δ-kicked rotor with decoherence. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 605-611.	1.4	17
297	Coherent Bayesian analysis of inspiral signals. Classical and Quantum Gravity, 2007, 24, S607-S615.	4.0	17
298	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
299	Measurements of diffusion resonances for the atom optics quantum kicked rotor. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 28-33.	1.4	16
300	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	4.0	16
301	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009.	4.0	16
302	Higher-order Hermite-Gauss modes for gravitational waves detection. Physical Review D, 2021, 103, .	4.7	16
303	A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data. Classical and Quantum Gravity, 2005, 22, S1293-S1301.	4.0	15
304	Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets. Classical and Quantum Gravity, 2007, 24, S541-S549.	4.0	15
305	Instrumental vetoes for transient gravitational-wave triggers using noise-coupling models: The bilinear-coupling veto. Physical Review D, 2014, 89, .	4.7	15
306	Fermi Observations of the LIGO Event GW170104. Astrophysical Journal Letters, 2017, 846, L5.	8.3	15

#	Article	IF	CITATIONS
307	Veto studies for LIGO inspiral triggers. Classical and Quantum Gravity, 2005, 22, S1059-S1068.	4.0	14
308	Teaching general relativity to undergraduates. Physics Today, 2012, 65, 41-47.	0.3	14
309	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
310	Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. Classical and Quantum Gravity, 2007, 24, S491-S499.	4.0	13
311	Inference on inspiral signals using LISA MLDC data. Classical and Quantum Gravity, 2007, 24, S521-S527.	4.0	13
312	Measurement of the optical parameters of the Virgo interferometer. Applied Optics, 2007, 46, 3466.	2.1	13
313	Momentum distributions for the quantuml´-kicked rotor with decoherence. Physical Review E, 2000, 61, 5994-5996.	2.1	12
314	A comparison of methods for gravitational wave burst searches from LIGO and Virgo. Classical and Quantum Gravity, 2008, 25, 045002.	4.0	12
315	Detecting compact binary coalescences with seedless clustering. Physical Review D, 2014, 90, .	4.7	12
316	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
317	Measurement of quasi-elastic C(p,2p) scattering at high momentum transfer. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 437, 257-263.	4.1	11
318	Experimental observation of dynamical localization and decoherence in the atomic -kicked rotor. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 2449-2455.	1.5	11
319	Optimal detection strategies for measuring the stochastic gravitational radiation background with laser interferometric antennas. Physical Review D, 1997, 55, 448-454.	4.7	10
320	Mixing internal and external atomic dynamics in the kicked rotor. Physical Review E, 1998, 57, 354-358.	2.1	10
321	Benefits of joint LIGO - Virgo coincidence searches for burst and inspiral signals. Journal of Physics: Conference Series, 2006, 32, 212-222.	0.4	10
322	Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Classical and Quantum Gravity, 2007, 24, S617-S625.	4.0	10
323	Method for estimation of gravitational-wave transient model parameters in frequency–time maps. Classical and Quantum Gravity, 2014, 31, 165012.	4.0	10
324	All-sky, narrowband, gravitational-wave radiometry with folded data. Physical Review D, 2015, 91, .	4.7	10

#	Article	IF	CITATIONS
325	Stepping-stone sampling algorithm for calculating the evidence of gravitational wave models. Physical Review D, 2019, 99, .	4.7	10
326	Using machine learning for transient classification in searches for gravitational-wave counterparts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1320-1331.	4.4	10
327	Impact of Schumann resonances on the Einstein Telescope and projections for the magnetic coupling function. Physical Review D, 2021, 104, .	4.7	10
328	Noise characteristics of cross-phase modulation instability light. Optics Communications, 1993, 101, 205-212.	2.1	9
329	Medical physics: the perfect intermediate level physics class. European Journal of Physics, 2001, 22, 421-427.	0.6	9
330	Analysis of noise lines in the Virgo C7 data. Classical and Quantum Gravity, 2007, 24, S433-S443.	4.0	9
331	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-5775.	4.0	9
332	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
333	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9
334	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.4	9
335	Predicting electromagnetic counterparts using low-latency gravitational-wave data products. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4235-4248.	4.4	9
336	Prospects for searches for long-duration gravitational-waves without time slides. Physical Review D, 2015, 92, .	4.7	8
337	LISA telescope: phase noise due to pointing jitter. Classical and Quantum Gravity, 2019, 36, 205003.	4.0	8
338	A first comparison between LIGO and Virgo inspiral search pipelines. Classical and Quantum Gravity, 2005, 22, S1149-S1158.	4.0	7
339	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. IEEE Transactions on Nuclear Science, 2008, 55, 302-310.	2.0	7
340	Bayesian inference on EMRI signals using low frequency approximations. Classical and Quantum Gravity, 2012, 29, 145014.	4.0	7
341	Fermi-GBM Follow-up of LIGO-Virgo Binary Black Hole Mergers: Detection Prospects. Astrophysical Journal, 2019, 882, 53.	4.5	7
342	Noise characteristics of a mode locked argon laser. Optics Communications, 1993, 97, 219-224.	2.1	6

#	Article	IF	CITATIONS
343	Gravitational waves: A statistical autopsy of a black hole merger. Significance, 2016, 13, 20-25.	0.4	6
344	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
345	Search for advanced LIGO single interferometer compact binary coalescence signals in coincidence with Gamma-ray events in Fermi-GBM. Classical and Quantum Gravity, 2020, 37, 175001.	4.0	6
346	Detecting Gravitational Radiation from Neutron Stars using a Six-Parameter Adaptive MCMC Method. AIP Conference Proceedings, 2004, , .	0.4	5
347	A time-domain MCMC search and upper limit technique for gravitational waves of uncertain frequency from a targeted neutron star. Classical and Quantum Gravity, 2005, 22, S995-S1001.	4.0	5
348	Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. IEEE Transactions on Nuclear Science, 2008, 55, 225-232.	2.0	5
349	Stray light estimates due to micrometeoroid damage in space optics, application to the LISA telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2020, 6, .	1.8	5
350	Upper limits on the strength of periodic gravitational waves from PSR J1939+2134. Classical and Quantum Gravity, 2004, 21, S671-S676.	4.0	4
351	Data quality studies for burst analysis of Virgo data acquired during Weekly Science Runs. Classical and Quantum Gravity, 2007, 24, S415-S422.	4.0	4
352	Gravitational waves: search results, data analysis and parameter estimation. General Relativity and Gravitation, 2015, 47, 11.	2.0	4
353	Search for Long-duration Gravitational-wave Signals Associated with Magnetar Giant Flares. Astrophysical Journal, 2021, 918, 80.	4.5	4
354	Long-duration transient gravitational-wave search pipeline. Physical Review D, 2021, 104, .	4.7	4
355	Searches for Modulated Î ³ -Ray Precursors to Compact Binary Mergers in Fermi-GBM Data. Astrophysical Journal, 2022, 930, 45.	4.5	4
356	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	3
357	Computational techniques for parameter estimation of gravitational wave signals. Wiley Interdisciplinary Reviews: Computational Statistics, 2020, , e1532.	3.9	3
358	Numerical solutions for phase noise due to pointing jitter with the LISA telescope. Journal of Physics Communications, 2020, 4, 045005.	1.2	3
359	Numerical investigation of the effects of classical phase space structure on a quantum system with decoherence. Physical Review E, 2000, 61, 1299-1311.	2.1	2
360	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, .	4.7	2

#	Article	IF	CITATIONS
361	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	4.7	2
362	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
363	Gravitational-wave geodesy: Defining false alarm probabilities with respect to correlated noise. Physical Review D, 2022, 105, .	4.7	2
364	Methods of gravitational wave detection in the VIRGO Interferometer. , 2007, , .		1
365	The Real-time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. , 2007, , .		1
366	Education and public outreach on gravitational-wave astronomy. General Relativity and Gravitation, 2014, 46, 1.	2.0	1
367	The Nobel pulsar. Science, 2015, 348, 766-766.	12.6	1
368	Optimizing signal recycling for detecting a stochastic gravitational-wave background. Classical and Quantum Gravity, 2018, 35, 125002.	4.0	1
369	Gravitational Wave Detection. , 2018, , 432-444.		1
370	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
371	Strategies and goals for stochastic gravitational wave background searches with Advanced LIGO and Advanced Virgo. , 2017, , .		1
372	AP Physics Workshop at Carleton College. Physics Teacher, 2002, 40, 330-332.	0.3	0
373	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. DPRVDAQ0556-282176, 022001 (2007)]. Physical Review D, 2007, 76, .	4.7	Ο
374	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	4.7	0
375	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
376	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	4.7	0
377	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
378	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	4.7	0

#	Article	IF	CITATIONS
379	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	4.7	0
380	A Student's Guide to Einstein's Major PapersA Student's Guide to Einstein's Major Papers, Robert Kennedy, Oxford U. Press, New York, 2012. \$45.00 (296 pp.). ISBN 978-0-19-969403-7. Physics Today, 2013, 66, 52-53.	E. 0.3	0
381	Lasers and Optics for the Laser Interferometer Space Antenna (LISA). EPJ Web of Conferences, 2020, 243, 08001.	0.3	0
382	VIRGO COMMISSIONING PROGRESS., 2008, , .		0
383	RESULTS FROM LIGO OBSERVATIONS: STOCHASTIC BACKGROUND AND CONTINUOUS WAVE SIGNALS. , 2008, , .		0
384	Transparency in hadronic reactions at high momentum transfers. , 1995, , .		0