Sirio Dupont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5683180/publications.pdf

Version: 2024-02-01

46 papers

17,036 citations

35 h-index 223800 46 g-index

46 all docs

46 docs citations

46 times ranked

22542 citing authors

#	Article	IF	CITATIONS
1	Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nature Cell Biology, 2022, 24, 168-180.	10.3	68
2	Mechanical regulation of chromatin and transcription. Nature Reviews Genetics, 2022, 23, 624-643.	16.3	64
3	Crosstalk between mechanotransduction and metabolism. Nature Reviews Molecular Cell Biology, 2021, 22, 22-38.	37.0	193
4	A Lung Organotypic Coculture Reveals a Role for TFEB-Lysosomal Axis in the Survival of Disseminated Dormant Cancer Cells. Cancers, 2021, 13, 1007.	3.7	6
5	EphB6 Regulates TFEB-Lysosomal Pathway and Survival of Disseminated Indolent Breast Cancer Cells. Cancers, 2021, 13, 1079.	3.7	14
6	Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Communications Biology, 2021, 4, 763.	4.4	6
7	YAP/TAZ functions and their regulation at a glance. Journal of Cell Science, 2020, 133, .	2.0	204
8	Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nature Cell Biology, 2019, 21, 338-347.	10.3	135
9	Tissue Patterning: The Winner Takes It All, the Losers Standing Small. Current Biology, 2019, 29, R334-R337.	3.9	5
10	F-actin dynamics regulates mammalian organ growth and cell fate maintenance. Journal of Hepatology, 2019, 71, 130-142.	3.7	56
11	Luciferase Reporter Assays to Determine YAP/TAZ Activity in Mammalian Cells. Methods in Molecular Biology, 2019, 1893, 121-135.	0.9	7
12	Regulation of YAP/TAZ Activity by Mechanical Cues: An Experimental Overview. Methods in Molecular Biology, 2019, 1893, 183-202.	0.9	19
13	d <scp>NTP</scp> metabolism links mechanical cues and <scp>YAP</scp> / <scp>TAZ</scp> to cell growth and oncogeneâ€induced senescence. EMBO Journal, 2018, 37, .	7.8	60
14	Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Scientific Reports, 2018, 8, 10189.	3.3	42
15	Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways. Trends in Cell Biology, 2016, 26, 289-299.	7.9	140
16	Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Experimental Cell Research, 2016, 343, 42-53.	2.6	340
17	Functional differentiation of human pluripotent stem cells on a chip. Nature Methods, 2015, 12, 637-640.	19.0	122
18	Aerobic glycolysis tunes <scp>YAP</scp> / <scp>TAZ</scp> transcriptional activity. EMBO Journal, 2015, 34, 1349-1370.	7.8	306

#	Article	IF	Citations
19	The sweet side of YAP/TAZ. Cell Cycle, 2015, 14, 2543-2544.	2.6	8
20	Metabolic control of YAP and TAZ by the mevalonate pathway. Nature Cell Biology, 2014, 16, 357-366.	10.3	630
21	YAP/TAZ Incorporation in the \hat{I}^2 -Catenin Destruction Complex Orchestrates the Wnt Response. Cell, 2014, 158, 157-170.	28.9	873
22	The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiological Reviews, 2014, 94, 1287-1312.	28.8	1,336
23	Inflammation and pancreatic cancer: molecular and functional interactions between S100A8, S100A9, NT-S100A8 and TGF \hat{I}^2 1. Cell Communication and Signaling, 2014, 12, 20.	6.5	31
24	A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors. Cell, 2013, 154, 1047-1059.	28.9	1,278
25	BMP signaling controls muscle mass. Nature Genetics, 2013, 45, 1309-1318.	21.4	379
26	Molecular Pathways: YAP and TAZ Take Center Stage in Organ Growth and Tumorigenesis. Clinical Cancer Research, 2013, 19, 4925-4930.	7.0	135
27	Signaling crosstalk between TGF \hat{l}^2 and Dishevelled/Par1b. Cell Death and Differentiation, 2012, 19, 1689-1697.	11.2	11
28	Self-regulation of the head-inducing properties of the Spemann organizer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15354-15359.	7.1	24
29	Fat facets deubiquitylation of Medea/Smad4 modulates interpretation of a Dpp morphogen gradient. Development (Cambridge), 2012, 139, 2721-2729.	2.5	22
30	Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nature Reviews Molecular Cell Biology, 2012, 13, 591-600.	37.0	788
31	Regulation of TGFâ€Î² signal transduction by mono―and deubiquitylation of Smads. FEBS Letters, 2012, 586, 1913-1920.	2.8	36
32	USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nature Cell Biology, 2011, 13, 1368-1375.	10.3	182
33	The Hippo Transducer TAZ Confers Cancer Stem Cell-Related Traits on Breast Cancer Cells. Cell, 2011, 147, 759-772.	28.9	1,115
34	Recruitment of TIF1 \hat{I}^3 to Chromatin via Its PHD Finger-Bromodomain Activates Its Ubiquitin Ligase and Transcriptional Repressor Activities. Molecular Cell, 2011, 43, 85-96.	9.7	133
35	Role of YAP/TAZ in mechanotransduction. Nature, 2011, 474, 179-183.	27.8	4,288
36	Negative control of Smad activity by ectodermin/Tif $1\hat{l}^3$ patterns the mammalian embryo. Development (Cambridge), 2010, 137, 2571-2578.	2.5	79

SIRIO DUPONT

#	Article	lF	CITATION
37	A MicroRNA Targeting Dicer for Metastasis Control. Cell, 2010, 141, 1195-1207.	28.9	619
38	FAM/USP9x, a Deubiquitinating Enzyme Essential for TGF \hat{I}^2 Signaling, Controls Smad4 Monoubiquitination. Cell, 2009, 136, 123-135.	28.9	442
39	A Mutant-p53/Smad Complex Opposes p63 to Empower TGFÎ ² -Induced Metastasis. Cell, 2009, 137, 87-98.	28.9	717
40	Integration of TGF-Â and Ras/MAPK Signaling Through p53 Phosphorylation. Science, 2007, 315, 840-843.	12.6	199
41	MicroRNA control of Nodal signalling. Nature, 2007, 449, 183-188.	27.8	177
42	Emilin1 Links TGF-Î ² Maturation to Blood Pressure Homeostasis. Cell, 2006, 124, 929-942.	28.9	274
43	Germ-Layer Specification and Control of Cell Growth by Ectodermin, a Smad4 Ubiquitin Ligase. Cell, 2005, 121, 87-99.	28.9	316
44	Convergence of p53 and TGF-beta signaling networks. Cancer Letters, 2004, 213, 129-138.	7.2	66
45	Links between Tumor Suppressors. Cell, 2003, 113, 301-314.	28.9	361
46	Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3299-3304	7.1	730