
Eva Hribova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5682801/publications.pdf Version: 2024-02-01

FVA HDIROVA

#	Article	IF	CITATIONS
1	The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488, 213-217.	27.8	1,049
2	Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA, 2011, 2, 4.	3.6	186
3	Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics, 2008, 9, 294.	2.8	120
4	Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodiversity and Conservation, 2017, 26, 801-824.	2.6	108
5	Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biology, 2010, 10, 204.	3.6	90
6	Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Communications Biology, 2021, 4, 1047.	4.4	86
7	Did backcrossing contribute to the origin of hybrid edible bananas?. Annals of Botany, 2010, 106, 849-857.	2.9	79
8	The ITS1-5.8S-ITS2 Sequence Region in the Musaceae: Structure, Diversity and Use in Molecular Phylogeny. PLoS ONE, 2011, 6, e17863.	2.5	79
9	Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome $\hat{a} \in f1B$. Plant Journal, 2006, 47, 977-986.	5.7	71
10	The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theoretical and Applied Genetics, 2018, 131, 2213-2227.	3.6	64
11	Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nature Communications, 2020, 11, 4488.	12.8	63
12	A multi gene sequence-based phylogeny of the Musaceae (banana) family. BMC Evolutionary Biology, 2011, 11, 103.	3.2	62
13	A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop. PLoS ONE, 2016, 11, e0154448.	2.5	61
14	Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana (Musa Spp.). Frontiers in Plant Science, 2019, 10, 1503.	3.6	59
15	Genome-Wide Analysis of Repeat Diversity across the Family Musaceae. PLoS ONE, 2014, 9, e98918.	2.5	54
16	A platform for efficient genotyping in Musa using microsatellite markers. AoB PLANTS, 2011, 2011, plr024.	2.3	53
17	Challenges of flowâ€cytometric estimation of nuclear genome size in orchids, a plant group with both wholeâ€genome and progressively partial endoreplication. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 958-966.	1.5	51
18	Genomic Prediction in a Multiploid Crop: Genotype by Environment Interaction and Allele Dosage Effects on Predictive Ability in Banana. Plant Genome, 2018, 11, 170090.	2.8	50

Ενά Ηγιβονά

#	Article	IF	CITATIONS
19	Molecular and Cytogenetic Study of East African Highland Banana. Frontiers in Plant Science, 2018, 9, 1371.	3.6	50
20	Molecular Analysis and Genomic Organization of Major DNA Satellites in Banana (Musa spp.). PLoS ONE, 2013, 8, e54808.	2.5	49
21	Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M ^g of <i>Aegilops geniculata</i> . Plant Journal, 2015, 84, 733-746.	5.7	48
22	Trait variation and genetic diversity in a banana genomic selection training population. PLoS ONE, 2017, 12, e0178734.	2.5	36
23	Molecular and Cytogenetic Characterization of Wild Musa Species. PLoS ONE, 2015, 10, e0134096.	2.5	36
24	Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nature Communications, 2022, 13, 2001.	12.8	35
25	Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Research, 2011, 19, 729-739.	2.2	34
26	Flow Sorting and Sequencing Meadow Fescue Chromosome 4F. Plant Physiology, 2013, 163, 1323-1337.	4.8	27
27	Repetitive DNA: A Versatile Tool for Karyotyping in <i> Festuca pratensis</i> Huds Cytogenetic and Genome Research, 2017, 151, 96-105.	1.1	24
28	CRISPR/Cas9-Based RGEN-ISL Allows the Simultaneous and Specific Visualization of Proteins, DNA Repeats, and Sites of DNA Replication. Cytogenetic and Genome Research, 2019, 159, 48-53.	1.1	24
29	The Enigma of Progressively Partial Endoreplication: New Insights Provided by Flow Cytometry and Next-Generation Sequencing. Genome Biology and Evolution, 2016, 8, 1996-2005.	2.5	19
30	The Dark Matter of Large Cereal Genomes: Long Tandem Repeats. International Journal of Molecular Sciences, 2019, 20, 2483.	4.1	19
31	Comparing Super-Resolution Microscopy Techniques to Analyze Chromosomes. International Journal of Molecular Sciences, 2021, 22, 1903.	4.1	18
32	Chromosome Painting in Cultivated Bananas and Their Wild Relatives (Musa spp.) Reveals Differences in Chromosome Structure. International Journal of Molecular Sciences, 2020, 21, 7915.	4.1	17
33	The Formation of Sex Chromosomes in Silene latifolia and S. dioica Was Accompanied by Multiple Chromosomal Rearrangements. Frontiers in Plant Science, 2020, 11, 205.	3.6	14
34	DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei. Journal of Experimental Botany, 2020, 71, 6262-6272.	4.8	13
35	Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC Plant Biology, 2020, 20, 280.	3.6	11
36	Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multiâ€omics approach. Plant Genome, 2022, , e20191.	2.8	10

Ενά Ηγιβονά

#	Article	IF	CITATIONS
37	The Puzzling Fate of a Lupin Chromosome Revealed by Reciprocal Oligo-FISH and BAC-FISH Mapping. Genes, 2020, 11, 1489.	2.4	9
38	An Increasing Need for Productive and Stress Resilient Festulolium Amphiploids: What Can Be Learnt from the Stable Genomic Composition of Festuca pratensis subsp. apennina (De Not.) Hegi?. Frontiers in Environmental Science, 2016, 4, .	3.3	8
39	Molecular Cytogenetic Mapping of Satellite DNA Sequences in <i>Aegilops geniculata</i> and Wheat. Cytogenetic and Genome Research, 2016, 148, 314-321.	1.1	7
40	Advances in the Molecular Cytogenetics of Bananas, Family Musaceae. Plants, 2022, 11, 482.	3.5	7
41	Cytological and Molecular Characterization for Ploidy Determination in Yams (Dioscorea spp.). Agronomy, 2021, 11, 1897.	3.0	6
42	Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers. International Journal of Molecular Sciences, 2022, 23, 3191.	4.1	6
43	B Chromosomes in Genus Sorghum (Poaceae). Plants, 2021, 10, 505.	3.5	5
44	New chromosome counts and genome size estimates for 28 species of Taraxacum sect. Taraxacum. Comparative Cytogenetics, 2018, 12, 403-420.	0.8	5
45	New insights into ribosomal DNA variation in apomictic and sexual <i>Taraxacum</i> (Asteraceae). Botanical Journal of the Linnean Society, 2022, 199, 790-815.	1.6	5
46	Karyotype Differentiation in Cultivated Chickpea Revealed by Oligopainting Fluorescence in situ Hybridization. Frontiers in Plant Science, 2021, 12, 791303.	3.6	4
47	Cytogenetics of Cicer. Compendium of Plant Genomes, 2017, , 25-41.	0.5	2