List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5682562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 2018, 555, 657-661.	27.8	795
2	Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology, 2021, 132, 269-306.	1.5	553
3	Dopamine, Affordance and Active Inference. PLoS Computational Biology, 2012, 8, e1002327.	3.2	288
4	The uses and interpretations of the motor-evoked potential for understanding behaviour. Experimental Brain Research, 2015, 233, 679-689.	1.5	260
5	Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic Changes in the Degree of Surprise. Journal of Neuroscience, 2008, 28, 12539-12545.	3.6	248
6	Computations of uncertainty mediate acute stress responses in humans. Nature Communications, 2016, 7, 10996.	12.8	216
7	Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 2015, 19, 13-20.	7.8	202
8	Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1388-1389.	1.9	199
9	Mapping causal interregional influences with concurrent TMS–fMRI. Experimental Brain Research, 2008, 191, 383-402.	1.5	197
10	The Role of Contralesional Dorsal Premotor Cortex after Stroke as Studied with Concurrent TMS-fMRI. Journal of Neuroscience, 2010, 30, 11926-11937.	3.6	190
11	Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off. Journal of Neuroscience, 2016, 36, 10002-10015.	3.6	187
12	Dorsal Premotor Cortex Exerts State-Dependent Causal Influences on Activity in Contralateral Primary Motor and Dorsal Premotor Cortex. Cerebral Cortex, 2008, 18, 1281-1291.	2.9	173
13	Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimulation, 2018, 11, 310-321.	1.6	141
14	Human motor cortical beta bursts relate to movement planning and response errors. PLoS Biology, 2019, 17, e3000479.	5.6	134
15	Hemispheric Differences in Frontal and Parietal Influences on Human Occipital Cortex: Direct Confirmation with Concurrent TMS–fMRI. Journal of Cognitive Neuroscience, 2009, 21, 1146-1161.	2.3	133
16	Influence of Uncertainty and Surprise on Human Corticospinal Excitability during Preparation for Action. Current Biology, 2008, 18, 775-780.	3.9	128
17	tDCS changes in motor excitability are specific to orientation of current flow. Brain Stimulation, 2018, 11, 289-298.	1.6	120
18	Transcranial Magnetic Stimulation. Neuroscientist, 2016, 22, 392-405.	3.5	115

#	Article	IF	CITATIONS
19	Time-Dependent Changes in Human Corticospinal Excitability Reveal Value-Based Competition for Action during Decision Processing. Journal of Neuroscience, 2012, 32, 8373-8382.	3.6	108
20	Behavioral Modeling of Human Choices Reveals Dissociable Effects of Physical Effort and Temporal Delay on Reward Devaluation. PLoS Computational Biology, 2015, 11, e1004116.	3.2	104
21	Dose-controlled tDCS reduces electric field intensity variability at a cortical target site. Brain Stimulation, 2020, 13, 125-136.	1.6	101
22	Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future. Annals of the New York Academy of Sciences, 2013, 1296, 11-30.	3.8	94
23	Pharmacological Fingerprints of Contextual Uncertainty. PLoS Biology, 2016, 14, e1002575.	5.6	91
24	Spatial Attention Changes Excitability of Human Visual Cortex to Direct Stimulation. Current Biology, 2007, 17, 134-139.	3.9	89
25	High precision anatomy for MEG. NeuroImage, 2014, 86, 583-591.	4.2	80
26	Reward and punishment enhance motor adaptation in stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 730-736.	1.9	78
27	The physiological basis of transcranial magnetic stimulation. Trends in Cognitive Sciences, 2008, 12, 81-83.	7.8	77
28	Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS. NeuroImage, 2016, 126, 120-130.	4.2	75
29	Transcranial electrical stimulation. Current Biology, 2017, 27, R1258-R1262.	3.9	71
30	Flexible head-casts for high spatial precision MEG. Journal of Neuroscience Methods, 2017, 276, 38-45.	2.5	69
31	Discrimination of cortical laminae using MEG. NeuroImage, 2014, 102, 885-893.	4.2	65
32	Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function. NeuroImage, 2018, 181, 513-520.	4.2	56
33	Mouth magnetoencephalography: A unique perspective on the human hippocampus. NeuroImage, 2021, 225, 117443.	4.2	56
34	Non-invasive laminar inference with MEC: Comparison of methods and source inversion algorithms. NeuroImage, 2018, 167, 372-383.	4.2	47
35	A novel coil array for combined TMS/fMRI experiments at 3 T. Magnetic Resonance in Medicine, 2015, 74, 1492-1501.	3.0	46
36	Laminar dynamics of high amplitude beta bursts in human motor cortex. NeuroImage, 2021, 242, 118479.	4.2	45

#	Article	IF	CITATIONS
37	Lamina-specific cortical dynamics in human visual and sensorimotor cortices. ELife, 2018, 7, .	6.0	45
38	The Role of Dopamine in Temporal Uncertainty. Journal of Cognitive Neuroscience, 2016, 28, 96-110.	2.3	44
39	Action boosts episodic memory encoding in humans via engagement of a noradrenergic system. Nature Communications, 2019, 10, 3534.	12.8	44
40	Action Reprogramming in Parkinson's Disease: Response to Prediction Error Is Modulated by Levels of Dopamine. Journal of Neuroscience, 2012, 32, 542-550.	3.6	42
41	Using generative models to make probabilistic statements about hippocampal engagement in MEC. NeuroImage, 2017, 149, 468-482.	4.2	42
42	On the Use of Meta-analysis in Neuromodulatory Non-invasive Brain Stimulation. Brain Stimulation, 2015, 8, 666-667.	1.6	40
43	Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee. Clinical Neurophysiology, 2021, 132, 819-837.	1.5	38
44	Understanding the nonlinear physiological and behavioral effects of tDCS through computational neurostimulation. Progress in Brain Research, 2015, 222, 75-103.	1.4	33
45	Response repetition biases in human perceptual decisions are explained by activity decay in competitive attractor models. ELife, 2016, 5, .	6.0	33
46	Dissecting Transient Burst Events. Trends in Cognitive Sciences, 2020, 24, 784-788.	7.8	32
47	Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum. Journal of Physiology, 2019, 597, 4309-4324.	2.9	31
48	Acute stress selectively impairs learning to act. Scientific Reports, 2016, 6, 29816.	3.3	29
49	Are current flow models for transcranial electrical stimulation fit for purpose?. Brain Stimulation, 2017, 10, 865-866.	1.6	29
50	The Role of Dopamine in Motor Flexibility. Journal of Cognitive Neuroscience, 2015, 27, 365-376.	2.3	26
51	Pharmacological Dopamine Manipulation Does Not Alter Reward-Based Improvements in Memory Retention during a Visuomotor Adaptation Task. ENeuro, 2018, 5, ENEURO.0453-17.2018.	1.9	21
52	Emotional valence and contextual affordances flexibly shape approach-avoidance movements. Frontiers in Psychology, 2013, 4, 933.	2.1	19
53	Computing Value from Quality and Quantity in Human Decision-Making. Journal of Neuroscience, 2019, 39, 163-176.	3.6	19
54	Increasing human motor skill acquisition by driving theta–gamma coupling. ELife, 2021, 10, .	6.0	18

#	Article	IF	CITATIONS
55	A range of pulses commonly used for human transcranial ultrasound stimulation are clearly audible. Brain Stimulation, 2021, 14, 1353-1355.	1.6	14
56	Quantifying the performance of MEG source reconstruction using resting state data. NeuroImage, 2018, 181, 453-460.	4.2	13
57	Learning from the past and expecting the future in Parkinsonism: Dopaminergic influence on predictions about the timing of future events. Neuropsychologia, 2019, 127, 9-18.	1.6	13
58	Cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change in speech. Journal of Neurophysiology, 2016, 116, 2023-2032.	1.8	12
59	Glutamatergic Contribution to Probabilistic Reasoning and Jumping to Conclusions in Schizophrenia: A Double-Blind, Randomized Experimental Trial. Biological Psychiatry, 2020, 88, 687-697.	1.3	12
60	Computational neurostimulation for Parkinson's disease. Progress in Brain Research, 2015, 222, 163-190.	1.4	11
61	Age-dependent Pavlovian biases influence motor decision-making. PLoS Computational Biology, 2018, 14, e1006304.	3.2	11
62	Estimates of cortical column orientation improve MEG source inversion. Neurolmage, 2020, 216, 116862.	4.2	11
63	Forget-me-some: General versus special purpose models in a hierarchical probabilistic task. PLoS ONE, 2018, 13, e0205974.	2.5	7
64	The Evidence Information Service as a new platform for supporting evidence-based policy: a consultation of UK parliamentarians. Evidence and Policy, 2017, 13, 275-316.	1.0	7
65	Neurodynamic Evidence Supports a Forced-Excursion Model of Decision-Making under Speed/Accuracy Instructions. ENeuro, 2018, 5, ENEURO.0159-18.2018.	1.9	7
66	Journal Club: Possible role of the basal ganglia in poor reward sensitivity and apathy after stroke. Neurology, 2014, 82, e171-3.	1.1	5
67	The Neurodynamic Decision Variable in Human Multi-alternative Perceptual Choice. Journal of Cognitive Neuroscience, 2019, 31, 262-277.	2.3	5
68	Uncoupling Sensation and Perception in Human Time Processing. Journal of Cognitive Neuroscience, 2020, 32, 1369-1380.	2.3	5
69	Centroparietal activity mirrors the decision variable when tracking biased and time-varying sensory evidence. Cognitive Psychology, 2020, 122, 101321.	2.2	4
70	Unstable Belief Formation and Slowed Decision-making: Evidence That the Jumping-to-Conclusions Bias in Schizophrenia Is Not Linked to Impulsive Decision-making. Schizophrenia Bulletin, 2022, 48, 347-358.	4.3	4
71	Concurrent TMS and functional magnetic resonance imaging: methods and current advances. , 2012, , . $_$		4
72	Differences in outcomes following an intensive upper-limb rehabilitation program for patients with common central nervous system-acting drug prescriptions. International Journal of Stroke, 2022, 17, 269-281.	5.9	3

#	Article	IF	CITATIONS
73	Evidence that endpoint feedback facilitates intermanual transfer of visuomotor force learning by a cognitive strategy. Journal of Neurophysiology, 2022, 127, 16-26.	1.8	3
74	A New Unified Framework for Making and Implementing Decisions. Journal of Neuroscience, 2006, 26, 13121-13122.	3.6	2
75	Neurostimulation: A New Way to Influence Cortical Excitability?. Current Biology, 2011, 21, R893-R894.	3.9	1
76	S231. THE ROLE OF DOPAMINERGIC AND GLUTAMATERGIC NEUROTRANSMISSION IN DELUSIONAL IDEATION AND SENSORY INFORMATION PROCESSING OF PATIENTS WITH SCHIZOPHRENIA IN COMPARISON TO HEALTHY HUMAN PARTICIPANTS. Schizophrenia Bulletin, 2018, 44, S416-S416.	4.3	0
77	The Neurodynamic Decision Variable in Human Multi-Alternative Perceptual Choice. Journal of Vision, 2018, 18, 661.	0.3	0