Sabrina Mattoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5681929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Filling the Gap Until Full Vaccine Deployment in the War on Coronavirus Disease-19. Infectious Diseases and Therapy, 2021, 10, 27-34.	4.0	5
2	Involvement of fibrocytes in asthma and clinical implications. Clinical and Experimental Allergy, 2015, 45, 1497-1509.	2.9	13
3	Stem Cell-Based Therapy in Idiopathic Pulmonary Fibrosis. Stem Cell Reviews and Reports, 2015, 11, 598-620.	5.6	35
4	Pathogenetic and prognostic roles of bloodborne fibrocytes in asthma. Journal of Zhejiang University: Science B, 2015, 16, 651-660.	2.8	1
5	Enumeration of circulating fibrocytes for clinical use in asthma by an optimized single-platform flow cytometry assay. BBA Clinical, 2014, 1, 52-58.	4.1	11
6	Involvement of fibrocytes in allergen-induced T cell responses and rhinovirus infections in asthma. Biochemical and Biophysical Research Communications, 2013, 437, 446-451.	2.1	13
7	The C-C motif chemokine ligands CCL5, CCL11, and CCL24 induce the migration of circulating fibrocytes from patients with severe asthma. Mucosal Immunology, 2013, 6, 718-727.	6.0	58
8	A Mouse Model for Evaluating the Contribution of Fibrocytes and Myofibroblasts to Airway Remodeling in Allergic Asthma. Methods in Molecular Biology, 2013, 1032, 235-255.	0.9	4
9	Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients. Mucosal Immunology, 2012, 5, 140-149.	6.0	141
10	IL-33 promotes the migration and proliferation of circulating fibrocytes from patients with allergen-exacerbated asthma. Biochemical and Biophysical Research Communications, 2012, 426, 116-121.	2.1	40
11	Extracellular matrix remodelling properties of human fibrocytes. Journal of Cellular and Molecular Medicine, 2012, 16, 483-495.	3.6	57
12	Fibrocytes in Asthma. , 2011, , 113-130.		0
13	Fibrocytes (Reactive or Reparative). , 2010, , 237-259.		1
14	The Role of a Human Hematopoietic Mesenchymal Progenitor in Wound Healing and Fibrotic Diseases and Implications for Therapy. Current Stem Cell Research and Therapy, 2009, 4, 266-280.	1.3	46
15	The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Laboratory Investigation, 2007, 87, 858-870.	3.7	383
16	Role in Asthmatic Lung Disease. , 2007, , 105-123.		2
17	Tissue Repair in Asthma. , 2006, , 40-46.		3
18	Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone	2.6	347

marrow. Experimental Cell Research, 2005, 304, 81-90.

SABRINA MATTOLI

#	Article	IF	CITATIONS
19	Identification of Circulating Fibrocytes as Precursors of Bronchial Myofibroblasts in Asthma. Journal of Immunology, 2003, 171, 380-389.	0.8	593
20	Kinetics of eotaxin expression and its relationship to eosinophil accumulation and activation in bronchial biopsies and bronchoalveolar lavage (BAL) of asthmatic patients after allergen inhalation. Clinical and Experimental Immunology, 2001, 114, 137-146.	2.6	125
21	Allergen-induced generation of mediators in the mucosa Environmental Health Perspectives, 2001, 109, 553-557.	6.0	14
22	Interaction of Mite Allergens Der P3 and Der P9 with Protease-Activated Receptor-2 Expressed by Lung Epithelial Cells. Journal of Immunology, 2001, 167, 1014-1021.	0.8	290
23	Allergen-Induced Generation of Mediators in the Mucosa. Environmental Health Perspectives, 2001, 109, 553.	6.0	10
24	Cellular and molecular characteristics of inflammation in chronic bronchitis. European Journal of Clinical Investigation, 1998, 28, 364-372.	3.4	29
25	Eotaxin Expression and Eosinophilic Inflammation in Asthma. Biochemical and Biophysical Research Communications, 1997, 236, 299-301.	2.1	130
26	The Allergen Der p1 Induces NF-kB Activation through Interference with IkBα Function in Asthmatic Bronchial Epithelial Cells. Biochemical and Biophysical Research Communications, 1997, 236, 522-526.	2.1	79
27	The Role of CD8+ Th2 Lymphocytes in the Development of Smoking-Related Lung Damage. Biochemical and Biophysical Research Communications, 1997, 239, 146-149.	2.1	20
28	Endothelin-1 Induces Bronchial Myofibroblast Differentiation. Peptides, 1997, 18, 1449-1451.	2.4	46
29	Inducibility of RANTES mRNA by IL-1β in Human Bronchial Epithelial Cells Is Associated with Increased NF-κB DNA Binding Activity. Biochemical and Biophysical Research Communications, 1996, 220, 120-124.	2.1	33
30	Endothelin-1 Induces Increased Fibronectin Expression in Human Bronchial Epithelial Cells. Biochemical and Biophysical Research Communications, 1996, 220, 896-899.	2.1	54
31	Functional Analysis of the Preproendothelin-1 Gene Promoter in Pulmonary Epithelial Cells and Monocytes. Biochemical and Biophysical Research Communications, 1996, 221, 647-652.	2.1	11
32	Increased peak flow variability in children with asymptomatic hyperresponsiveness. European Respiratory Journal, 1995, 8, 1731-1735.	6.7	27
33	Mast Cell Chemotactic Activity of RANTES. Biochemical and Biophysical Research Communications, 1995, 209, 316-321.	2.1	63
34	Bronchial Epithelial Cells of Atopic Patients with Asthma Lack the Ability to Inactivate Allergens. Biochemical and Biophysical Research Communications, 1995, 217, 817-824.	2.1	26
35	Constitutive expression of endothelin in bronchial epithelial cells of patients with symptomatic and asymptomatic asthma and modulation by histamine and interleukin-1. Journal of Allergy and Clinical Immunology, 1995, 96, 618-627.	2.9	46
36	Detection of Cytokines and Their Cell Sources in Bronchial Biopsy Specimens From Asthmatic Patients. Chest, 1994, 105, 687-696.	0.8	159

SABRINA MATTOLI

#	Article	IF	CITATIONS
37	Bronchial epithelial cells of patients with asthma release chemoattractant factors for T lymphocytes. Journal of Allergy and Clinical Immunology, 1993, 92, 412-424.	2.9	96
38	Bronchoconstrictive Responses to Inhaled Ultrasonically Nebulized Distilled Water and Airway Inflammation in Asthma. Chest, 1993, 104, 1346-1351.	0.8	13
39	Intraepithelial Dendritic Cells and Selective Activation of Th2-Like Lymphocytes in Patients With Atopic Asthma. Chest, 1993, 103, 997-1005.	0.8	94
40	Increased Expression of Endothelin in Bronchial Epithelial Cells of Asthmatic Patients and Effect of Corticosteroids. The American Review of Respiratory Disease, 1992, 146, 1320-1325.	2.9	118
41	Cytokine mRNA Profile and Cell Activation in Bronchoalveolar Lavage Fluid from Nonatopic Patients with Symptomatic Asthma. Chest, 1992, 102, 661-669.	0.8	63
42	Expression of the Potent Inflammatory Cytokines, GM-CSF, IL6, and IL8, in Bronchial Epithelial Cells of Asthmatic Patients. Chest, 1992, 101, 27S-29S.	0.8	48
43	Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. Journal of Allergy and Clinical Immunology, 1992, 89, 1001-1009.	2.9	377
44	Protective effect of nedocromil sodium on the interleukin-1-induced production of interleukin-8 in human bronchial epithelial cells+. Journal of Allergy and Clinical Immunology, 1992, 90, 76-84.	2.9	32
45	Protective effect of nedocromil sodium on the IL1-induced release of GM-CSF from cultured human bronchial epithelial cells. Pulmonary Pharmacology, 1992, 5, 61-65.	0.6	25
46	Expression of the potent inflammatory cytokines, GM-CSF, IL6, and IL8, in bronchial epithelial cells of asthmatic patients. Chest, 1992, 101, 27S-29.	0.8	15
47	Interleukin-1 Binds to Specific Receptors on Human Bronchial Epithelial Cells and Upregulates Granulocyte/Macrophage Colony-stimulating Factor Synthesis and Release. American Journal of Respiratory Cell and Molecular Biology, 1991, 4, 519-524.	2.9	91
48	Levels of endothelin in the bronchoalveolar lavage fluid of patients with symptomatic asthma and reversible airflow obstruction. Journal of Allergy and Clinical Immunology, 1991, 88, 376-384.	2.9	198
49	Cellular and biochemical characteristics of bronchoalveolar lavage fluid in symptomatic nonallergic asthma. Journal of Allergy and Clinical Immunology, 1991, 87, 794-802.	2.9	194
50	Human bronchial epithelial cells modulate CD3 and mitogen-induced DNA synthesis in T cells but function poorly as antigen-presenting cells compared to pulmonary macrophages. Journal of Allergy and Clinical Immunology, 1991, 87, 930-938.	2.9	39
51	A bronchial epithelial cell-derived factor in asthma that promotes eosinophil activation and survival as GM-CSF. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1991, 260, L530-L538.	2.9	41
52	The protective effect of frusemide on the generation of superoxide anions by human bronchial epithelial cells and pulmonary macrophages in vitro. Pulmonary Pharmacology, 1991, 4, 80-84.	0.6	14
53	Time course of IL1 and IL6 synthesis and release in human bronchial epithelial cell cultures exposed to	4.1	35
54	Mechanisms of Calcium Mobilization and Phosphoinositide Hydrolysis in Human Bronchial Smooth Muscle Cells by Endothelin 1. American Journal of Respiratory Cell and Molecular Biology, 1991, 5, 424-430.	2.9	34

SABRINA MATTOLI

#	Article	IF	CITATIONS
55	Nedocromil Sodium Prevents the Release of 15-Hydroxyeicosatetraenoic Acid from Human Bronchial Epithelial Cells Exposed to Toluene Diisocyanate in vitro. International Archives of Allergy and Immunology, 1990, 92, 16-22.	2.1	19
56	Eicosanoid release from human bronchial epithelial cells upon exposure to toluene diisocyanate in vitro. Journal of Cellular Physiology, 1990, 142, 379-385.	4.1	19
57	Bronchial epithelial cells exposed to isocyanates potentiate activation and proliferation of T-cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1990, 259, L320-L327.	2.9	28
58	Specific Binding of Endothelin on Human Bronchial Smooth Muscle Cells in Culture and Secretion of Endothelin-like Material from Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 1990, 3, 145-151.	2.9	138
59	Cellular characteristics of sputum from patients with asthma and chronic bronchitis Thorax, 1989, 44, 693-699.	5.6	199
60	Bronchial epithelium and asthma. The European Respiratory Journal Supplement, 1989, 6, 460s-468s.	0.8	2
61	Probit analysis applied to the allergen dose-response curve: A method for epidemiologic surveys. Journal of Allergy and Clinical Immunology, 1988, 81, 41-47.	2.9	17
62	Effects of two doses of cromolyn on allergen-induced late asthmatic response and increased responsiveness. Journal of Allergy and Clinical Immunology, 1987, 79, 747-754.	2.9	47
63	The effect of indomethacin on the refractory period occurring after the inhalation of ultrasonically nebulized distilled water. Journal of Allergy and Clinical Immunology, 1987, 79, 678-683.	2.9	31
64	Allergy indices based on allergen dose-response curve in a randomly selected sample of schoolchildren. Allergy: European Journal of Allergy and Clinical Immunology, 1987, 42, 230-237.	5.7	4
65	Refractory period to ultrasonic mist of distilled water: relationship to methacholine responsiveness, atopic status, and clinical characteristics. Annals of Allergy, 1987, 58, 134-40.	0.5	5
66	Late bronchial response and increase in methacholine hyperresponsiveness after exercise and distilled water challenge in atopic subjects with asthma with dual asthmatic response to allergen inhalation. Journal of Allergy and Clinical Immunology, 1986, 78, 1130-1139.	2.9	37
67	Increase in Bronchial Responsiveness to Methacholine and Late Asthmatic Response after the Inhalation of Ultrasonically Nebulized Distilled Water. Chest, 1986, 90, 726-732.	0.8	27
68	Comparison of Bronchial Responses to Ultrasonically Nebulized Distilled Water, Exercise, and Methacholine in Asthma. Chest, 1986, 90, 822-826.	0.8	67
69	Protective effect of disodium cromoglycate on allergen-induced bronchoconstriction and increased hyperresponsiveness: a double-blind placebo-controlled study. Annals of Allergy, 1986, 57, 295-300.	0.5	9
70	Allergen-Induced Increase in Non-Allergic Bronchial Responsiveness to Ultrasonic Mist. Progress in Respiratory Research, 1985, 19, 256-265.	0.1	7
71	The immediate and short-term effects of corticosteroids on cholinergic hyperreactivity and pulmonary function in subjects with well-controlled asthma. Journal of Allergy and Clinical Immunology, 1985, 76, 214-222.	2.9	30