
David Teze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5681499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A healthy Bifidobacterium dentium caramel cocktail. Journal of Biological Chemistry, 2022, 298, 101452.	3.4	4
2	Characterization of five marine family 29 glycoside hydrolases reveals an α-L-fucosidase targeting specifically Fuc(<i>α</i> 1,4)GlcNAc. Glycobiology, 2022, 32, 529-539.	2.5	7
3	Computer Simulation to Rationalize "Rational―Engineering of Glycoside Hydrolases and Glycosyltransferases. Journal of Physical Chemistry B, 2022, 126, 802-812.	2.6	15
4	Mechanistic Basis for Understanding the Dual Activities of the Bifunctional Azotobacter vinelandii Mannuronan C-5-Epimerase and Alginate Lyase AlgE7. Applied and Environmental Microbiology, 2022, 88, AEM0183621.	3.1	6
5	Family 1 Glycosyltransferase UGT706F8 from <i>Zea mays</i> Selectively Catalyzes the Synthesis of Silibinin 7- <i>O</i> -β- <scp>d</scp> -Glucoside. ACS Sustainable Chemistry and Engineering, 2022, 10, 5078-5083.	6.7	9
6	Natural product <i>C</i> -glycosyltransferases – a scarcely characterised enzymatic activity with biotechnological potential. Natural Product Reports, 2021, 38, 432-443.	10.3	39
7	Structural, biosynthetic and serological cross-reactive elucidation of capsular polysaccharides from Streptococcus pneumoniae serogroup 28. Carbohydrate Polymers, 2021, 254, 117323.	10.2	2
8	<i>O</i> -/ <i>N</i> -/ <i>S</i> -Specificity in Glycosyltransferase Catalysis: From Mechanistic Understanding to Engineering. ACS Catalysis, 2021, 11, 1810-1815.	11.2	42
9	Rational Enzyme Design without Structural Knowledge: A Sequenceâ€Based Approach for Efficient Generation of Transglycosylases. Chemistry - A European Journal, 2021, 27, 10323-10334.	3.3	29
10	Exploring the <i>in Vitro</i> Operating Window of Glycosyltransferase <i>Pt</i> UGT1 from <i>Polygonum tinctorium</i> for a Biocatalytic Route to Indigo Dye. ACS Sustainable Chemistry and Engineering, 2021, 9, 8497-8506.	6.7	7
11	A Single Point Mutation Converts GH84 <i>O</i> -GlcNAc Hydrolases into Phosphorylases: Experimental and Theoretical Evidence. Journal of the American Chemical Society, 2020, 142, 2120-2124.	13.7	25
12	A Multifunctional Polysaccharide Utilization Gene Cluster in <i>Colwellia echini</i> Encodes Enzymes for the Complete Degradation of κ-Carrageenan, Î1-Carrageenan, and Hybrid β/κ-Carrageenan. MSphere, 2020, 5, .	2.9	18
13	The Catalytic Acid–Base in GH109 Resides in a Conserved GGHGG Loop and Allows for Comparable α-Retaining and β-Inverting Activity in an <i>N</i> -Acetylgalactosaminidase from <i>Akkermansia muciniphila</i> . ACS Catalysis, 2020, 10, 3809-3819.	11.2	15
14	Identification and Characterization of a β-N-Acetylhexosaminidase with a Biosynthetic Activity from the Marine Bacterium Paraglaciecola hydrolytica S66T. International Journal of Molecular Sciences, 2020, 21, 417.	4.1	12
15	Structural and functional aspects of mannuronic acid–specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. Journal of Biological Chemistry, 2019, 294, 17915-17930.	3.4	40
16	Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation. Molecules, 2019, 24, 2033.	3.8	83
17	Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology, 2018, 28, 3-8.	2.5	175
18	Experimental and computational evidence of halogen bonds involving astatine. Nature Chemistry, 2018, 10, 428-434.	13.6	63

David Teze

#	Article	IF	CITATIONS
19	Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates. Scientific Reports, 2017, 7, 2579.	3.3	45
20	The Heaviest Possible Ternary Trihalogen Species, IAtBr ^{â^²} , Evidenced in Aqueous Solution: An Experimental Performance Driven by Computations. Angewandte Chemie, 2016, 128, 15595-15598.	2.0	8
21	211 At-labeled agents for alpha-immunotherapy: On the inÂvivo stability of astatine-agent bonds. European Journal of Medicinal Chemistry, 2016, 116, 156-164.	5.5	28
22	Advances on the Determination of the Astatine Pourbaix Diagram: Predomination of AtO(OH) ₂ ^{â^'} over At ^{â^'} in Basic Conditions. Chemistry - A European Journal, 2016, 22, 2964-2971.	3.3	46
23	The Heaviest Possible Ternary Trihalogen Species, IAtBr ^{â^'} , Evidenced in Aqueous Solution: An Experimental Performance Driven by Computations. Angewandte Chemie - International Edition, 2016, 55, 15369-15372.	13.8	15
24	Semi-rational approach for converting a GH36 α-glycosidase into an α-transglycosidase. Glycobiology, 2015, 25, 420-427.	2.5	27
25	Polymeric Iminosugars Improve the Activity of Carbohydrate-Processing Enzymes. Bioconjugate Chemistry, 2015, 26, 766-772.	3.6	40
26	Semi-rational approach for converting a GH1 Â-glycosidase into a Â-transglycosidase. Protein Engineering, Design and Selection, 2014, 27, 13-19.	2.1	65
27	Alkoxyamino glycoside acceptors for the regioselective synthesis of oligosaccharides using glycosynthases and transglycosidases. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 448-451.	2.2	20
28	Conserved Water Molecules in Family 1 Glycosidases: A DXMS and Molecular Dynamics Study. Biochemistry, 2013, 52, 5900-5910.	2.5	34