
Santiago Zelenay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5681401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA sensing via the RIGâ€lâ€like receptor LGP2 is essential for the induction of a type I IFN response in ADAR1 deficiency. EMBO Journal, 2022, 41, e109760.	7.8	27
2	Tissue-resident FOLR2+ macrophages associate with CD8+ TÂcell infiltration in human breast cancer. Cell, 2022, 185, 1189-1207.e25.	28.9	166
3	Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations. Nature Communications, 2022, 13, 2063.	12.8	39
4	The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nature Immunology, 2021, 22, 140-153.	14.5	104
5	Anti-Inflammatory Drugs Remodel the Tumor Immune Environment to Enhance Immune Checkpoint Blockade Efficacy. Cancer Discovery, 2021, 11, 2602-2619.	9.4	90
6	DNGR-1 limits Flt3L-mediated antitumor immunity by restraining tumor-infiltrating type I conventional dendritic cells. , 2021, 9, e002054.		22
7	Secreted gelsolin inhibits DNGR-1-dependent cross-presentation and cancer immunity. Cell, 2021, 184, 4016-4031.e22.	28.9	63
8	Antagonistic Inflammatory Phenotypes Dictate Tumor Fate and Response to Immune Checkpoint Blockade. Immunity, 2020, 53, 1215-1229.e8.	14.3	131
9	NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell, 2018, 172, 1022-1037.e14.	28.9	1,187
10	Resolving the dark side of therapy-driven cancer cell death. Journal of Experimental Medicine, 2018, 215, 9-11.	8.5	9
11	IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature, 2017, 551, 110-114.	27.8	176
12	DNGR-1, an F-Actin-Binding C-Type Lectin Receptor Involved in Cross-Presentation of Dead Cell-Associated Antigens by Dendritic Cells. , 2016, , 65-81.		4
13	Reducing prostaglandin E ₂ production to raise cancer immunogenicity. Oncolmmunology, 2016, 5, e1123370.	4.6	14
14	Alive but Confused: Heterogeneity of CD11c + MHC Class II + Cells in GM-CSF Mouse Bone Marrow Cultures. Immunity, 2016, 44, 3-4.	14.3	31
15	Altered Lymph Node Composition in Diphtheria Toxin Receptor–Based Mouse Models To Ablate Dendritic Cells. Journal of Immunology, 2015, 194, 307-315.	0.8	20
16	GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c+MHCII+ Macrophages and Dendritic Cells. Immunity, 2015, 42, 1197-1211.	14.3	682
17	Oncogenic Transformation of Dendritic Cells and Their Precursors Leads to Rapid Cancer Development in Mice. Journal of Immunology, 2015, 195, 5066-5076.	0.8	5
18	Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity. Cell, 2015, 162, 1257-1270.	28.9	840

SANTIAGO ZELENAY

#	Article	IF	CITATIONS
19	RAS interaction with PI3K p110 \hat{I} ± is required for tumor-induced angiogenesis. Journal of Clinical Investigation, 2014, 124, 3601-3611.	8.2	65
20	Genetic Tracing via DNGR-1 Expression History Defines Dendritic Cells as a Hematopoietic Lineage. Cell, 2013, 154, 843-858.	28.9	253
21	Adaptive immunity after cell death. Trends in Immunology, 2013, 34, 329-335.	6.8	104
22	Recent thymic emigrants are the preferential precursors of regulatory T cells differentiated in the periphery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6494-6499.	7.1	72
23	F-Actin Is an Evolutionarily Conserved Damage-Associated Molecular Pattern Recognized by DNGR-1, a Receptor for Dead Cells. Immunity, 2012, 36, 635-645.	14.3	339
24	The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. Journal of Clinical Investigation, 2012, 122, 1615-1627.	8.2	221
25	CLECâ€⊇ signaling via Syk in myeloid cells can regulate inflammatory responses. European Journal of Immunology, 2011, 41, 3040-3053.	2.9	75
26	Efficient and versatile manipulation of the peripheral CD4 ⁺ Tâ€cell compartment by antigen targeting to DNGRâ€1/CLEC9A. European Journal of Immunology, 2010, 40, 1255-1265.	2.9	131
27	Cutting Edge: Intrathymic Differentiation of Adaptive Foxp3+ Regulatory T Cells upon Peripheral Proinflammatory Immunization. Journal of Immunology, 2010, 185, 3829-3833.	0.8	18
28	Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. Journal of Experimental Medicine, 2010, 207, 1261-1271.	8.5	613
29	Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. European Journal of Immunology, 2009, 39, 948-955.	2.9	221
30	Steroid treatments in mice do not alter the number and function of regulatory T cells, but amplify cyclophosphamide-induced autoimmune disease. Journal of Autoimmunity, 2009, 33, 109-120.	6.5	13
31	Physiopathology of natural auto-antibodies: The case for regulation. Journal of Autoimmunity, 2007, 29, 229-235.	6.5	46
32	Regulatory T cells in microbial infection. Seminars in Immunopathology, 2006, 28, 41-50.	4.0	45
33	Heme oxygenase-1 is not required for mouse regulatory T cell development and function. International Immunology, 2006, 19, 11-18.	4.0	45
34	Comment on "Cutting Edge: Anti-CD25 Monoclonal Antibody Injection Results in the Functional Inactivation, Not Depletion, of CD4+CD25+ T Regulatory Cellsâ€: Journal of Immunology, 2006, 177, 2036.1-2037.	0.8	47
35	Foxp3+ CD25- CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4091-4096.	7.1	205
36	Immunostimulatory effects of plasmid DNA and synthetic oligodeoxynucleotides. European Journal of Immunology, 2003, 33, 1382-1392.	2.9	39

#	Article	IF	CITATIONS
37	Regulatory T Cells Selectively Express Toll-like Receptors and Are Activated by Lipopolysaccharide. Journal of Experimental Medicine, 2003, 197, 403-411.	8.5	920