Nicholas A Kotov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5680992/publications.pdf Version: 2024-02-01

506	62,542 citations	433	⁹⁸¹ 237
papers	citations	h-index	g-index
537 all docs	537 docs citations	537 times ranked	56065 citing authors

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
2	Structural diversity in binary nanoparticle superlattices. Nature, 2006, 439, 55-59.	13.7	1,956
3	Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science, 2002, 297, 237-240.	6.0	1,778
4	Ultrastrong and Stiff Layered Polymer Nanocomposites. Science, 2007, 318, 80-83.	6.0	1,500
5	Nanostructured artificial nacre. Nature Materials, 2003, 2, 413-418.	13.3	1,362
6	Biomedical Applications of Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering. Advanced Materials, 2006, 18, 3203-3224.	11.1	1,214
7	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
8	Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Materials, 2002, 1, 190-194.	13.3	949
9	Three-Dimensional Cell Culture Matrices: State of the Art. Tissue Engineering - Part B: Reviews, 2008, 14, 61-86.	2.5	895
10	Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets. Science, 2006, 314, 274-278.	6.0	824
11	Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films. The Journal of Physical Chemistry, 1995, 99, 13065-13069.	2.9	770
12	One-Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise. Advanced Materials, 2005, 17, 951-962.	11.1	749
13	Stretchable nanoparticle conductors with self-organized conductive pathways. Nature, 2013, 500, 59-63.	13.7	729
14	Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer. Nano Letters, 2008, 8, 4593-4596.	4.5	710
15	Chiral Inorganic Nanostructures. Chemical Reviews, 2017, 117, 8041-8093.	23.0	656
16	Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nature Materials, 2012, 11, 1065-1073.	13.3	601
17	Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Research Letters, 2006, 1, 84-90.	3.1	582
18	Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states. Advanced Materials, 1996, 8, 637-641.	11.1	564

#	Article	IF	CITATIONS
19	Dispersions of Aramid Nanofibers: A New Nanoscale Building Block. ACS Nano, 2011, 5, 6945-6954.	7.3	553
20	Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano, 2018, 12, 9635-9638.	7.3	537
21	Composite Layer-by-Layer (LBL) Assembly with Inorganic Nanoparticles and Nanowires. Accounts of Chemical Research, 2008, 41, 1831-1841.	7.6	528
22	A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature Materials, 2015, 14, 785-789.	13.3	509
23	Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. Nano Letters, 2002, 2, 817-822.	4.5	501
24	Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes. Nano Letters, 2008, 8, 4151-4157.	4.5	496
25	Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotechnology, 2011, 6, 580-587.	15.6	488
26	Excitonâ~'Plasmon Interaction and Hybrid Excitons in Semiconductorâ~'Metal Nanoparticle Assemblies. Nano Letters, 2006, 6, 984-994.	4.5	482
27	Nanomaterials for Neural Interfaces. Advanced Materials, 2009, 21, 3970-4004.	11.1	460
28	Attomolar DNA detection with chiral nanorod assemblies. Nature Communications, 2013, 4, 2689.	5.8	443
29	Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical Reviews, 2017, 117, 1826-1914.	23.0	425
30	Albuminâ^'CdTe Nanoparticle Bioconjugates:  Preparation, Structure, and Interunit Energy Transfer with Antenna Effect. Nano Letters, 2001, 1, 281-286.	4.5	412
31	Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8157-8161.	3.3	412
32	"Raisin Bun―Type Composite Spheres of Silica and Semiconductor Nanocrystals. Chemistry of Materials, 2000, 12, 2676-2685.	3.2	406
33	Layer-by-Layer Assembled Mixed Spherical and Planar Gold Nanoparticles:Â Control of Interparticle Interactions. Langmuir, 2002, 18, 3694-3697.	1.6	404
34	Nonadditivity of nanoparticle interactions. Science, 2015, 350, 1242477.	6.0	403
35	Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles. Journal of the American Chemical Society, 2016, 138, 306-312.	6.6	399
36	Self-Assembly of Chiral Nanoparticle Pyramids with Strong <i>R</i> / <i>S</i> Optical Activity. Journal of the American Chemical Society, 2012, 134, 15114-15121.	6.6	366

#	Article	IF	CITATIONS
37	Bioconjugates of CdTe Nanowires and Au Nanoparticles:Â Plasmonâ^'Exciton Interactions, Luminescence Enhancement, and Collective Effects. Nano Letters, 2004, 4, 2323-2330.	4.5	364
38	High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System. Nano Letters, 2007, 7, 1914-1918.	4.5	359
39	Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. ACS Nano, 2018, 12, 6378-6388.	7.3	359
40	Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. Journal of Applied Physics, 2007, 102, .	1.1	357
41	Aqueous Dispersions of Single-wall and Multiwall Carbon Nanotubes with Designed Amphiphilic Polycations. Journal of the American Chemical Society, 2005, 127, 3463-3472.	6.6	353
42	Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons. Science, 2010, 327, 1355-1359.	6.0	341
43	Chiral templating of self-assembling nanostructures by circularly polarized light. Nature Materials, 2015, 14, 66-72.	13.3	330
44	One-Pot Synthesis of Ag@TiO2Coreâ^'Shell Nanoparticles and Their Layer-by-Layer Assembly. Langmuir, 2000, 16, 2731-2735.	1.6	323
45	Inorganic Nanoparticles as Protein Mimics. Science, 2010, 330, 188-189.	6.0	316
46	Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nature Materials, 2007, 6, 291-295.	13.3	315
47	Successful Differentiation of Mouse Neural Stem Cells on Layer-by-Layer Assembled Single-Walled Carbon Nanotube Composite. Nano Letters, 2007, 7, 1123-1128.	4.5	310
48	Chiral Graphene Quantum Dots. ACS Nano, 2016, 10, 1744-1755.	7.3	304
49	In vitro Toxicity Testing of Nanoparticles in 3D Cell Culture. Small, 2009, 5, 1213-1221.	5.2	300
50	Free-Standing Layer-by-Layer Assembled Films of Magnetite Nanoparticles. Langmuir, 2000, 16, 5530-5533.	1.6	297
51	Nanorainbows:Â Graded Semiconductor Films from Quantum Dots. Journal of the American Chemical Society, 2001, 123, 7738-7739.	6.6	290
52	Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Molecular Imaging and Biology, 2004, 6, 341-349.	1.3	279
53	Two Modes of Linear Layer-by-Layer Growth of Nanoparticleâ^'Polylectrolyte Multilayers and Different Interactions in the Layer-by-layer Deposition. Journal of the American Chemical Society, 2001, 123, 1101-1110.	6.6	274
54	Unexpected Chirality of Nanoparticle Dimers and Ultrasensitive Chiroplasmonic Bioanalysis. Journal of the American Chemical Society, 2013, 135, 18629-18636.	6.6	274

#	Article	IF	CITATIONS
55	A dendrite-suppressing composite ion conductor from aramid nanofibres. Nature Communications, 2015, 6, 6152.	5.8	272
56	Layer-by-layer self-assembly: The contribution of hydrophobic interactions. Scripta Materialia, 1999, 12, 789-796.	0.5	265
57	Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. Journal of Physical Chemistry B, 2004, 108, 15461-15469.	1.2	263
58	Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing. Smart Materials and Structures, 2007, 16, 429-438.	1.8	259
59	Regiospecific Plasmonic Assemblies for <i>in Situ</i> Raman Spectroscopy in Live Cells. Journal of the American Chemical Society, 2012, 134, 1699-1709.	6.6	259
60	Layer-by-Layer Assembled Composites from Multiwall Carbon Nanotubes with Different Morphologies. Nano Letters, 2004, 4, 1889-1895.	4.5	255
61	Mechanism of and Defect Formation in the Self-Assembly of Polymeric Polycationâ ^{~,} Montmorillonite Ultrathin Films. Journal of the American Chemical Society, 1997, 119, 6821-6832.	6.6	251
62	Self-assembly: From nanoscale to microscale colloids. AICHE Journal, 2004, 50, 2978-2985.	1.8	250
63	Molecularly Engineered Nanocomposites:Â Layer-by-Layer Assembly of Cellulose Nanocrystals. Biomacromolecules, 2005, 6, 2914-2918.	2.6	249
64	Simple, Rapid, Sensitive, and Versatile SWNTâ^'Paper Sensor for Environmental Toxin Detection Competitive with ELISA. Nano Letters, 2009, 9, 4147-4152.	4.5	249
65	Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins. Angewandte Chemie - International Edition, 2011, 50, 5110-5115.	7.2	248
66	Carbon sheet solutions. Nature, 2006, 442, 254-255.	13.7	243
67	Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals. Journal of the American Chemical Society, 2010, 132, 6006-6013.	6.6	243
68	Enantiomer-dependent immunological response to chiral nanoparticles. Nature, 2022, 601, 366-373.	13.7	243
69	Layer-by-Layer Assembly of Nacre-like Nanostructured Composites with Antimicrobial Properties. Langmuir, 2005, 21, 11915-11921.	1.6	239
70	Sideâ€byâ€&ide and Endâ€ŧoâ€End Gold Nanorod Assemblies for Environmental Toxin Sensing. Angewandte Chemie - International Edition, 2010, 49, 5472-5475.	7.2	239
71	Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Physical Review B, 2007, 76, .	1.1	238
72	Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals:  A Technique for Rapid Production of High-Quality Opals. Chemistry of Materials, 2000, 12, 2721-2726.	3.2	233

#	Article	IF	CITATIONS
73	Coupled Composite CdSâ^'CdSe and Coreâ^'Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles. The Journal of Physical Chemistry, 1996, 100, 8927-8939.	2.9	231
74	Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials. Nano Letters, 2009, 9, 2153-2159.	4.5	228
75	Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. Nature Materials, 2016, 15, 461-468.	13.3	220
76	CNTâ^'CdTe Versatile Donorâ^'Acceptor Nanohybrids. Journal of the American Chemical Society, 2006, 128, 2315-2323.	6.6	219
77	Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chemical Society Reviews, 2013, 42, 3114.	18.7	216
78	Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification. Journal of Nondestructive Evaluation, 2009, 28, 9-25.	1.1	213
79	The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges. ACS Nano, 2012, 6, 8468-8483.	7.3	211
80	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	7.3	211
81	Exponential Growth of LBL Films with Incorporated Inorganic Sheets. Nano Letters, 2008, 8, 1762-1770.	4.5	210
82	Dynamic Nanoparticle Assemblies. Accounts of Chemical Research, 2012, 45, 1916-1926.	7.6	209
83	Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High-Strength Nanocomposite by Layer-by-Layer Assembly of Clay andL-3,4-Dihydroxyphenylalanine Polymer. Advanced Materials, 2007, 19, 949-955.	11.1	204
84	Chiromagnetic nanoparticles and gels. Science, 2018, 359, 309-314.	6.0	201
85	Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant <i>Staphylococcus aureus</i> (MRSA). Nanoscale, 2018, 10, 4927-4939.	2.8	200
86	Layer-By-Layer Assembly of Core-Shell Magnetite Nanoparticles: Effect of Silica Coating on Interparticle Interactions and Magnetic Properties. Advanced Materials, 1999, 11, 1006-1010.	11.1	197
87	Multicolor Luminescence Patterning by Photoactivation of Semiconductor Nanoparticle Films. Journal of the American Chemical Society, 2003, 125, 2830-2831.	6.6	195
88	Electrical Stimulation of Neural Stem Cells Mediated by Humanized Carbon Nanotube Composite Made with Extracellular Matrix Protein. Nano Letters, 2009, 9, 273-278.	4.5	194
89	Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. ACS Nano, 2015, 9, 9097-9105.	7.3	192
90	Gold Nanoparticles Enhance the Anti-Leukemia Action of a 6-Mercaptopurine Chemotherapeutic Agent. Langmuir, 2008, 24, 568-574.	1.6	190

#	Article	IF	CITATIONS
91	Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nature Chemistry, 2018, 10, 821-830.	6.6	189
92	Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer. Angewandte Chemie - International Edition, 2005, 44, 7439-7442.	7.2	188
93	Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles. Journal of Applied Physics, 2001, 89, 1120-1129.	1.1	185
94	Chiral plasmonics of self-assembled nanorod dimers. Scientific Reports, 2013, 3, 1934.	1.6	185
95	Silver Nanowire Embedded in P3HT:PCBM for High-Efficiency Hybrid Photovoltaic Device Applications. ACS Nano, 2011, 5, 3319-3325.	7.3	184
96	Abiotic tooth enamel. Nature, 2017, 543, 95-98.	13.7	184
97	Thermometer design at the nanoscale. Nano Today, 2007, 2, 48-51.	6.2	179
98	Emergence of complexity in hierarchically organized chiral particles. Science, 2020, 368, 642-648.	6.0	179
99	Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting. Joule, 2020, 4, 247-261.	11.7	177
100	Nanoparticle assembly for 1D and 2D ordered structures. Soft Matter, 2009, 5, 1146.	1.2	175
101	Control of Packing Order of Self-Assembled Monolayers of Magnetite Nanoparticles with and without SiO2Coating by Microwave Irradiation. Langmuir, 1998, 14, 6430-6435.	1.6	172
102	Origami and Kirigami Nanocomposites. ACS Nano, 2017, 11, 7587-7599.	7.3	172
103	Stratified Assemblies of Magnetite Nanoparticles and Montmorillonite Prepared by the Layer-by-Layer Assembly. Langmuir, 2000, 16, 3941-3949.	1.6	170
104	Shell-Engineered Chiroplasmonic Assemblies of Nanoparticles for Zeptomolar DNA Detection. Nano Letters, 2014, 14, 3908-3913.	4.5	169
105	Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science, 2021, 371, 1368-1374.	6.0	168
106	Chronic <i>in vivo</i> stability assessment of carbon fiber microelectrode arrays. Journal of Neural Engineering, 2016, 13, 066002.	1.8	166
107	Layer-by-Layer Assembled Films of Cellulose Nanowires with Antireflective Properties. Langmuir, 2007, 23, 7901-7906.	1.6	165
108	High-Content Screening as a Universal Tool for Fingerprinting of Cytotoxicity of Nanoparticles. ACS Nano, 2008, 2, 928-938.	7.3	165

#	Article	IF	CITATIONS
109	Single-Walled Carbon Nanotube Polyelectrolyte Multilayers and Freestanding Films as a Biocompatible Platform for Neuroprosthetic Implants. Advanced Materials, 2005, 17, 2663-2670.	11.1	160
110	Bioconjugated Superstructures of CdTe Nanowires and Nanoparticles: Multistep Cascade Förster Resonance Energy Transfer and Energy Channeling. Nano Letters, 2005, 5, 2063-2069.	4.5	157
111	Collagen Coating Promotes Biocompatibility of Semiconductor Nanoparticles in Stratified LBL Films. Nano Letters, 2003, 3, 1177-1182.	4.5	156
112	Reactive Aramid Nanostructures as Highâ€Performance Polymeric Building Blocks for Advanced Composites. Advanced Functional Materials, 2013, 23, 2072-2080.	7.8	156
113	Tailoring Piezoresistive Sensitivity of Multilayer Carbon Nanotube Composite Strain Sensors. Journal of Intelligent Material Systems and Structures, 2008, 19, 747-764.	1.4	155
114	Integration of Conductivity, Transparency, and Mechanical Strength into Highly Homogeneous Layer-by-Layer Composites of Single-Walled Carbon Nanotubes for Optoelectronics. Chemistry of Materials, 2007, 19, 5467-5474.	3.2	154
115	Biomaterials by Design: Layer-By-Layer Assembled Ion-Selective and Biocompatible Films of TiO2 Nanoshells for Neurochemical Monitoring. Advanced Functional Materials, 2002, 12, 255.	7.8	151
116	SERS-Active Gold Lace Nanoshells with Built-in Hotspots. Nano Letters, 2010, 10, 4013-4019.	4.5	151
117	Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable Over Wide Wavelength Range. Journal of the American Chemical Society, 2020, 142, 4206-4212.	6.6	151
118	Waterâ€Rich Biomimetic Composites with Abiotic Selfâ€Organizing Nanofiber Network. Advanced Materials, 2018, 30, 1703343.	11.1	149
119	Counterintuitive Effect of Molecular Strength and Role of Molecular Rigidity on Mechanical Properties of Layer-by-Layer Assembled Nanocomposites. Nano Letters, 2007, 7, 1224-1231.	4.5	147
120	Simulations and Analysis of Self-Assembly of CdTe Nanoparticles into Wires and Sheets. Nano Letters, 2007, 7, 1670-1675.	4.5	147
121	Layer-by-Layer Assembled Films of HgTe Nanocrystals with Strong Infrared Emission. Chemistry of Materials, 2000, 12, 1526-1528.	3.2	146
122	Stimulation of Neural Cells by Lateral Currents in Conductive Layer-by-Layer Films of Single-Walled Carbon Nanotubes. Advanced Materials, 2006, 18, 2975-2979.	11.1	145
123	Nanoscale Engineering of a Cellular Interface with Semiconductor Nanoparticle Films for Photoelectric Stimulation of Neurons. Nano Letters, 2007, 7, 513-519.	4.5	145
124	Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains. Journal of Physical Chemistry B, 2004, 108, 6927-6931.	1.2	143
125	Insertion of linear 8.4 <i>μ4</i> m diameter 16 channel carbon fiber electrode arrays for single unit recordings. Journal of Neural Engineering, 2015, 12, 046009.	1.8	142
126	Inverted Colloidal Crystals as Three-Dimensional Cell Scaffolds. Langmuir, 2004, 20, 7887-7892.	1.6	141

#	Article	IF	CITATIONS
127	Photoacoustic imaging of early inflammatory response using gold nanorods. Applied Physics Letters, 2007, 90, 223901.	1.5	141
128	Multiparameter Structural Optimization of Single-Walled Carbon Nanotube Composites: Toward Record Strength, Stiffness, and Toughness. ACS Nano, 2009, 3, 1711-1722.	7.3	141
129	Branched Aramid Nanofibers. Angewandte Chemie - International Edition, 2017, 56, 11744-11748.	7.2	140
130	Multiscale engineered artificial tooth enamel. Science, 2022, 375, 551-556.	6.0	138
131	Spontaneous Transformation of Stabilizer-Depleted Binary Semiconductor Nanoparticles into Selenium and Tellurium Nanowires. Advanced Materials, 2005, 17, 358-363.	11.1	137
132	Pseudonegative Thermal Expansion and the State of Water in Graphene Oxide Layered Assemblies. ACS Nano, 2012, 6, 8357-8365.	7.3	136
133	Transparent Conductors from Layer-by-Layer Assembled SWNT Films: Importance of Mechanical Properties and a New Figure of Merit. ACS Nano, 2010, 4, 3725-3734.	7.3	135
134	Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. Science Advances, 2017, 3, e1601159.	4.7	135
135	Propellerâ€Like Nanorodâ€Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase. Advanced Materials, 2016, 28, 5907-5915.	11.1	132
136	Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nature Materials, 2019, 18, 820-826.	13.3	132
137	Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. Biomaterials, 2009, 30, 4687-4694.	5.7	130
138	Ultrasound stimulated release and catalysis using polyelectrolyte multilayer capsules. Journal of Materials Chemistry, 2007, 17, 1050-1054.	6.7	129
139	Ultrasound-Triggered Release from Multilayered Capsules. Small, 2007, 3, 804-808.	5.2	129
140	Crown ether assembly of gold nanoparticles: Melamine sensor. Biosensors and Bioelectronics, 2011, 26, 2032-2037.	5.3	128
141	In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry. Biomaterials, 2009, 30, 1071-1079.	5.7	127
142	Chiral Plasmonic Nanostructures on Achiral Nanopillars. Nano Letters, 2013, 13, 5277-5283.	4.5	125
143	Nanoparticle-based environmental sensors. Materials Science and Engineering Reports, 2010, 70, 265-274.	14.8	123
144	Graphene-based multilayers: Critical evaluation of materials assembly techniques. Nano Today, 2012, 7, 430-447.	6.2	123

#	Article	IF	CITATIONS
145	Thermodynamic and Structural Insights into Nanocomposites Engineering by Comparing Two Materials Assembly Techniques for Graphene. ACS Nano, 2013, 7, 4818-4829.	7.3	122
146	Nanostructured Thin Films Made by Dewetting Method of Layer-By-Layer Assembly. Nano Letters, 2007, 7, 3266-3273.	4.5	118
147	Inverted-Colloidal-Crystal Hydrogel Matrices as Three-Dimensional Cell Scaffolds. Advanced Functional Materials, 2005, 15, 725-731.	7.8	117
148	Loading of Exponentially Grown LBL Films with Silver Nanoparticles and Their Application to Generalized SERS Detection. Angewandte Chemie - International Edition, 2009, 48, 5326-5329.	7.2	117
149	Layered Carbon Nanotube-Polyelectrolyte Electrodes Outperform Traditional Neural Interface Materials. Nano Letters, 2009, 9, 4012-4018.	4.5	116
150	Anomalous dispersions of â€~hedgehog' particles. Nature, 2015, 517, 596-599.	13.7	116
151	Environmentally responsive plasmonic nanoassemblies for biosensing. Chemical Society Reviews, 2018, 47, 4677-4696.	18.7	116
152	High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. Advanced Functional Materials, 2016, 26, 8435-8445.	7.8	115
153	Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5359-5364.	3.3	114
154	Mirror-Like Photoconductive Layer-by-Layer Thin Films of Te Nanowires: The Fusion of Semiconductor, Metal, and Insulator Properties. Advanced Materials, 2006, 18, 518-522.	11.1	113
155	Bioconjugated Ag Nanoparticles and CdTe Nanowires: Metamaterials with Field-Enhanced Light Absorption. Angewandte Chemie - International Edition, 2006, 45, 4819-4823.	7.2	112
156	Universal Synthesis of Single-Phase Pyrite FeS ₂ Nanoparticles, Nanowires, and Nanosheets. Journal of Physical Chemistry C, 2013, 117, 2567-2573.	1.5	112
157	Highâ€Performance Nanostructured Membrane Electrode Assemblies for Fuel Cells Made by Layerâ€Byâ€Layer Assembly of Carbon Nanocolloids. Advanced Materials, 2007, 19, 3859-3864.	11.1	111
158	Controllable Side-by-Side and End-to-End Assembly of Au Nanorods by Lyotropic Chromonic Materials. Langmuir, 2008, 24, 13833-13837.	1.6	111
159	Chiral Ceramic Nanoparticles and Peptide Catalysis. Journal of the American Chemical Society, 2017, 139, 13701-13712.	6.6	110
160	A Helicene Nanoribbon with Greatly Amplified Chirality. Journal of the American Chemical Society, 2018, 140, 6235-6239.	6.6	110
161	Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an <i>ex vivo</i> preliminary rat study. Nanotechnology, 2008, 19, 095101.	1.3	109
162	Circular Differential Scattering of Single Chiral Self-Assembled Gold Nanorod Dimers. ACS Photonics, 2015, 2, 1602-1610.	3.2	107

#	Article	IF	CITATIONS
163	Monoparticulate Layers of Titanium Dioxide Nanocrystallites with Controllable Interparticle Distances. The Journal of Physical Chemistry, 1994, 98, 8827-8830.	2.9	106
164	Nearâ \in Bulk Conductivity of Gold Nanowires as Nanoscale Interconnects and the Role of Atomically Smooth Interface. Advanced Materials, 2010, 22, 2338-2342.	11.1	106
165	Charge Transport Dilemma of Solution-Processed Nanomaterials. Chemistry of Materials, 2014, 26, 134-152.	3.2	106
166	Assembly of Gold Nanoparticles into Chiral Superstructures Driven by Circularly Polarized Light. Journal of the American Chemical Society, 2019, 141, 11739-11744.	6.6	105
167	Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles. ACS Nano, 2016, 10, 3248-3256.	7.3	104
168	Can Nature's Design be Improved Upon? High Strength, Transparent Nacre-Like Nanocomposites with Double Network of Sacrificial Cross Links. Journal of Physical Chemistry B, 2008, 112, 14359-14363.	1.2	101
169	Inkjet Deposition of Layer-by-Layer Assembled Films. Journal of the American Chemical Society, 2010, 132, 14496-14502.	6.6	101
170	E-Textile Conductors and Polymer Composites for Conformal Lightweight Antennas. IEEE Transactions on Antennas and Propagation, 2010, 58, 2732-2736.	3.1	101
171	Formation and Assemblyâ~'Disassembly Processes of ZnO Hexagonal Pyramids Driven by Dipolar and Excluded Volume Interactions. Journal of the American Chemical Society, 2010, 132, 1860-1872.	6.6	100
172	Stretchable batteries with gradient multilayer conductors. Science Advances, 2019, 5, eaaw1879.	4.7	100
173	Single Particle Plasmon Spectroscopy of Silver Nanowires and Gold Nanorods. Nano Letters, 2008, 8, 3200-3204.	4.5	99
174	Preparation of Nanoparticle Coatings on Surfaces of Complex Geometry. Nano Letters, 2003, 3, 173-177.	4.5	98
175	Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nature Biomedical Engineering, 2021, 5, 103-113.	11.6	98
176	Polymer/clay and polymer/carbon nanotube hybrid organic–inorganic multilayered composites made by sequential layering of nanometer scale films. Coordination Chemistry Reviews, 2009, 253, 2835-2851.	9.5	97
177	Chiral luminescent CdS nano-tetrapods. Chemical Communications, 2010, 46, 6072.	2.2	97
178	Resolution of Oligomeric Species during the Aggregation of Aβ _{1–40} Using ¹⁹ F NMR. Biochemistry, 2013, 52, 1903-1912.	1.2	97
179	Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles. Nature Communications, 2014, 5, 3593.	5.8	97
180	In2S3Nanocolloids with Excitonic Emission:Â In2S3vs CdS Comparative Study of Optical and Structural Characteristics. Journal of Physical Chemistry B, 2001, 105, 7490-7498.	1.2	95

#	Article	IF	CITATIONS
181	Biological Assembly of Nanocircuit Prototypes from Protein-Modified CdTe Nanowires. Nano Letters, 2005, 5, 243-248.	4.5	94
182	Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nature Chemistry, 2017, 9, 287-294.	6.6	94
183	Intracellular localization of nanoparticle dimers by chirality reversal. Nature Communications, 2017, 8, 1847.	5.8	93
184	Single- and multi-component chiral supraparticles as modular enantioselective catalysts. Nature Communications, 2019, 10, 4826.	5.8	93
185	Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. Experimental Hematology, 2009, 37, 101-110.	0.2	92
186	Unknown Aspects of Self-Assembly of PbS Microscale Superstructures. ACS Nano, 2012, 6, 3800-3812.	7.3	92
187	Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres. Nature Communications, 2016, 7, 10701.	5.8	90
188	Microsphere whispering-gallery-mode laser using HgTe quantum dots. Applied Physics Letters, 2004, 85, 6101-6103.	1.5	89
189	Spontaneous Transformation of CdTe Nanoparticles into Angled Te Nanocrystals:Â From Particles and Rods to Checkmarks, X-Marks, and Other Unusual Shapes. Journal of the American Chemical Society, 2006, 128, 6730-6736.	6.6	89
190	A Floating Self-Assembly Route to Colloidal Crystal Templates for 3D Cell Scaffolds. Chemistry of Materials, 2005, 17, 4918-4924.	3.2	88
191	Ordered Layered Assemblies of Nanoparticles. MRS Bulletin, 2001, 26, 992-997.	1.7	87
192	Nanoscale helices from inorganic materials. Journal of Materials Chemistry, 2011, 21, 6775.	6.7	87
193	Quantum Dot on a Rope. Journal of the American Chemical Society, 2002, 124, 2448-2449.	6.6	86
194	Multifunctional Magnetoplasmonic Nanoparticle Assemblies for Cancer Therapy and Diagnostics (Theranostics). Macromolecular Rapid Communications, 2010, 31, 228-236.	2.0	86
195	Stepwise Assembled Photoactive Films Containing Donor-Linked Fullerenes. Angewandte Chemie - International Edition, 2000, 39, 3905-3909.	7.2	85
196	Reversible Loading and Unloading of Nanoparticles in "Exponentially―Growing Polyelectrolyte LBL Films. Journal of the American Chemical Society, 2008, 130, 3748-3749.	6.6	85
197	Semiconductor Nanoparticles on Solid Substrates:Â Film Structure, Intermolecular Interactions, and Polyelectrolyte Effects. Langmuir, 2002, 18, 7035-7040.	1.6	83
198	On the Origin of a Permanent Dipole Moment in Nanocrystals with a Cubic Crystal Lattice:Â Effects of Truncation, Stabilizers, and Medium for CdS Tetrahedral Homologues. Journal of Physical Chemistry B, 2006, 110, 12211-12217.	1.2	83

#	Article	IF	CITATIONS
199	Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature. Current Pharmaceutical Design, 2018, 24, 896-903.	0.9	83
200	Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology, 2022, 17, 408-416.	15.6	83
201	Single-Walled Carbon Nanotube Combing during Layer-by-Layer Assembly:Â From Random Adsorption to Aligned Composites. Langmuir, 2005, 21, 9381-9385.	1.6	82
202	Transparent Conductors from Carbon Nanotubes LBL-Assembled with Polymer Dopant with Ï€â~'Ï€ Electron Transfer. Journal of the American Chemical Society, 2011, 133, 7450-7460.	6.6	82
203	Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3391-3400.	3.3	82
204	Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries. Nature Communications, 2018, 9, 4193.	5.8	79
205	Self-Assembly of Chiral Nanoparticles into Semiconductor Helices with Tunable near-Infrared Optical Activity. Chemistry of Materials, 2020, 32, 476-488.	3.2	79
206	SiO2-Coated CdTe Nanowires:Â Bristled Nano Centipedes. Nano Letters, 2004, 4, 225-231.	4.5	78
207	Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods. Physical Review B, 2009, 80, .	1.1	78
208	Fuel Cell Membrane Electrode Assemblies Fabricated by Layerâ€byâ€Layer Electrostatic Selfâ€Assembly Techniques. Advanced Functional Materials, 2008, 18, 3003-3009.	7.8	77
209	Anti-Biofilm Activity of Graphene Quantum Dots <i>via</i> Self-Assembly with Bacterial Amyloid Proteins. ACS Nano, 2019, 13, 4278-4289.	7.3	77
210	Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures. Journal of Materials Chemistry, 2006, 16, 3558.	6.7	74
211	Tissue-Compliant Neural Implants from Microfabricated Carbon Nanotube Multilayer Composite. ACS Nano, 2013, 7, 7619-7629.	7.3	74
212	Aramid nanofiber-reinforced transparent nanocomposites. Journal of Composite Materials, 2015, 49, 1873-1879.	1.2	74
213	Monte Carlo Computer Simulation of Chain Formation from Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 7500-7507.	1.2	73
214	Layered Nanocomposites from Gold Nanoparticles for Neural Prosthetic Devices. Nano Letters, 2012, 12, 3391-3398.	4.5	73
215	Optical processes in carbon nanocolloids. CheM, 2021, 7, 606-628.	5.8	73
216	Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties. Journal of Physical Chemistry Letters, 2013, 4, 641-647.	2.1	72

#	Article	IF	CITATIONS
217	Covalent Cross-Linked Polymer/Single-Wall Carbon Nanotube Multilayer Films. Chemistry of Materials, 2005, 17, 2131-2135.	3.2	71
218	Notch Ligand Presenting Acellular 3D Microenvironments for ex vivo Human Hematopoietic Stemâ€Cell Culture made by Layerâ€By‣ayer Assembly. Small, 2009, 5, 1008-1013.	5.2	71
219	Selfâ€Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles. Advanced Functional Materials, 2014, 24, 1439-1448.	7.8	70
220	Enantiomeric Discrimination by Surfaceâ€Enhanced Raman Scattering–Chiral Anisotropy of Chiral Nanostructured Gold Films. Angewandte Chemie - International Edition, 2020, 59, 15226-15231.	7.2	70
221	Kirigami Nanocomposites as Wide-Angle Diffraction Gratings. ACS Nano, 2016, 10, 6156-6162.	7.3	69
222	Fabryâ^'Perot Fringes and Their Application To Study the Film Growth, Chain Rearrangement, and Erosion of Hydrogen-Bonded PVPON/PAA Films. Journal of Physical Chemistry B, 2006, 110, 13484-13490.	1.2	68
223	The Role of Nanoparticle Layer Separation in the Finite Deformation Response of Layered Polyurethane-Clay Nanocomposites. Macromolecules, 2009, 42, 6588-6595.	2.2	68
224	Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers. Nanotechnology, 2009, 20, 215602.	1.3	67
225	Biomorphic structural batteries for robotics. Science Robotics, 2020, 5, .	9.9	67
226	Carbon Nanotubes on Polymeric Microcapsules: Free‣tanding Structures and Pointâ€Wise Laser Openings. Advanced Functional Materials, 2010, 20, 3136-3142.	7.8	66
227	pH-responsive photoluminescent LbL hydrogels with confined quantum dots. Soft Matter, 2010, 6, 800-807.	1.2	66
228	Biomimetic Solid-State Zn ²⁺ Electrolyte for Corrugated Structural Batteries. ACS Nano, 2019, 13, 1107-1115.	7.3	66
229	Versatile Organic (Fullerene)â^'Inorganic (CdTe Nanoparticle) Nanoensembles. Journal of the American Chemical Society, 2004, 126, 14340-14341.	6.6	65
230	LBL Assembled Laminates with Hierarchical Organization from Nano- to Microscale: High-Toughness Nanomaterials and Deformation Imaging. ACS Nano, 2009, 3, 1564-1572.	7.3	65
231	¹²⁵ I-Labeled Gold Nanorods for Targeted Imaging of Inflammation. ACS Nano, 2011, 5, 8967-8973.	7.3	65
232	Plasmonic Nanoparticles with Supramolecular Recognition. Advanced Functional Materials, 2020, 30, 1902082.	7.8	64
233	Melanin ontaining Films: Growth from Dopamine Solutions versus Layerâ€byâ€Layer Deposition. ChemPhysChem, 2010, 11, 3299-3305.	1.0	63
234	Nonexclusive Fluorescent Sensing for <scp>l</scp> / <scp>d</scp> Enantiomers Enabled by Dynamic Nanoparticle-Nanorod Assemblies. Analytical Chemistry, 2012, 84, 7330-7335.	3.2	63

#	Article	IF	CITATIONS
235	Self-Assembly of Copper Sulfide Nanoparticles into Nanoribbons with Continuous Crystallinity. ACS Nano, 2013, 7, 9010-9018.	7.3	62
236	CdS Nanoparticles Modified to Chalcogen Sites:Â New Supramolecular Complexes, Butterfly Bridging, and Related Optical Effects. Journal of the American Chemical Society, 2002, 124, 3980-3992.	6.6	61
237	Subcellular Neural Probes from Single-Crystal Gold Nanowires. ACS Nano, 2014, 8, 8182-8189.	7.3	61
238	Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies. Nano Letters, 2014, 14, 6799-6810.	4.5	61
239	Circular Polarized Light Emission in Chiral Inorganic Nanomaterials. Advanced Materials, 2023, 35, e2108431.	11.1	61
240	Nanosized inorganic/organic composites for solar energy conversion. Journal of Materials Chemistry, 2005, 15, 114.	6.7	60
241	Sensitive Detection of Silver Ions Based on Chiroplasmonic Assemblies of Nanoparticles. Advanced Optical Materials, 2013, 1, 626-630.	3.6	60
242	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
243	One- and Two-Dimensional Arrays of Magnetic Nanoparticles by the Langmuir-Blodgett Technique. Advanced Materials, 1999, 11, 388-392.	11.1	58
244	Bioapplication of nanosemiconductors. Materials Today, 2005, 8, 20-31.	8.3	58
245	Conformation of Ethylhexanoate Stabilizer on the Surface of CdS Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 9854-9858.	1.2	56
246	Chiral Nanoceramics. Advanced Materials, 2020, 32, e1906738.	11.1	56
247	Layer-By-Layer Assembly of Collagen Thin Films: Controlled Thickness and Biocompatibility. Biomedical Microdevices, 2001, 3, 301-306.	1.4	55
248	Diffusional Selfâ€Organization in Exponential Layerâ€Byâ€Layer Films with Micro―and Nanoscale Periodicity. Angewandte Chemie - International Edition, 2009, 48, 7073-7077.	7.2	54
249	Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today, 2012, 7, 6-9.	6.2	54
250	Intracellular Gold Nanoparticles Increase Neuronal Excitability and Aggravate Seizure Activity in the Mouse Brain. PLoS ONE, 2014, 9, e91360.	1.1	54
251	Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 33-42.	1.7	54
252	ll–VI semiconductor nanocrystals in thin films and colloidal crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 135-144.	2.3	53

#	Article	IF	CITATIONS
253	Nanoengineered Colloidal Probes for Ramanâ€based Detection of Biomolecules inside Living Cells. Small, 2013, 9, 351-356.	5.2	53
254	Two-dimensional silver electrocrystallization under monolayers spread on aqueous silver nitrate. Langmuir, 1993, 9, 3710-3716.	1.6	52
255	Photoactive Nanowires in Fullereneâ^'Ferrocene Dyad Polyelectrolyte Multilayers. Nano Letters, 2002, 2, 775-780.	4.5	52
256	Chiral Nanostructures: New Twists. ACS Nano, 2021, 15, 12457-12460.	7.3	52
257	Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures. Chemical Science, 2022, 13, 595-610.	3.7	51
258	Polyelectrolyte layâ€Protein Layer Films on Microfluidic PDMS Bioreactor Surfaces for Primary Murine Bone Marrow Culture. Advanced Functional Materials, 2007, 17, 2701-2709.	7.8	50
259	Automated spin-assisted layer-by-layer assembly of nanocomposites. Review of Scientific Instruments, 2009, 80, 023903.	0.6	50
260	Recycling Is Not Always Good: The Dangers of Self-Plagiarism. ACS Nano, 2012, 6, 1-4.	7.3	49
261	Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry. Biomaterials, 2005, 26, 5581-5585.	5.7	46
262	Inductively coupled nanocomposite wireless strain and pH sensors. Smart Structures and Systems, 2008, 4, 531-548.	1.9	46
263	Nanocomposite Microcontainers. Advanced Materials, 2012, 24, 4597-4600.	11.1	46
264	Chiral phonons in microcrystals and nanofibrils of biomolecules. Nature Photonics, 2022, 16, 366-373.	15.6	46
265	Investigation of Transversal Conductance in Semiconductor CdTe Nanowires with and without a Coaxial Silica Shell. Langmuir, 2004, 20, 1016-1020.	1.6	45
266	Poly(lactic-co-glycolic acid) Bone Scaffolds with Inverted Colloidal Crystal Geometry. Tissue Engineering - Part A, 2008, 14, 1639-1649.	1.6	45
267	Resonance Tunneling Diode Structures on CdTe Nanowires Made by Conductive AFM. Nano Letters, 2004, 4, 1637-1641.	4.5	44
268	Self-Assembly of Nanoparticles: A Snapshot. ACS Nano, 2014, 8, 3101-3103.	7.3	43
269	Template-Free Hierarchical Self-Assembly of Iron Diselenide Nanoparticles into Mesoscale Hedgehogs. Journal of the American Chemical Society, 2017, 139, 16630-16639.	6.6	43
270	Spontaneous CdTe → Alloy → CdS Transition of Stabilizer-Depleted CdTe Nanoparticles Induced by EDTA. Journal of the American Chemical Society, 2006, 128, 7036-7042.	6.6	42

#	Article	IF	CITATIONS
271	Media Effect on CdTe Nanowire Growth:  Mechanism of Self-Assembly, Ostwald Ripening, and Control of NW Geometry. Journal of Physical Chemistry C, 2008, 112, 370-377.	1.5	42
272	Scalable Nanopillar Arrays with Layerâ€by‣ayer Patterned Overt and Covert Images. Advanced Materials, 2014, 26, 6119-6124.	11.1	42
273	What Is the Effective Charge of TGA-Stabilized CdTe Nanocolloids?. Journal of the American Chemical Society, 2005, 127, 7322-7323.	6.6	41
274	Phase-Pure FeSe _{<i>x</i>} (<i>x</i> = 1, 2) Nanoparticles with One- and Two-Photon Luminescence. Journal of the American Chemical Society, 2014, 136, 7189-7192.	6.6	41
275	Hydrothermal Synthesis of CdSe Nanoparticles. Industrial & Engineering Chemistry Research, 2007, 46, 4358-4362.	1.8	40
276	Gold Colloids with Unconventional Angled Shapes. Langmuir, 2009, 25, 11431-11435.	1.6	40
277	Simultaneously High Stiffness and Damping in Nanoengineered Microtruss Composites. ACS Nano, 2014, 8, 3468-3475.	7.3	40
278	Shape-Morphing Nanocomposite Origami. Langmuir, 2014, 30, 5378-5385.	1.6	40
279	Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates. ACS Nano, 2015, 9, 5009-5017.	7.3	40
280	Multilayer composites from vapor-grown carbon nano-fibers. Composites Science and Technology, 2006, 66, 1174-1181.	3.8	39
281	Stretchable conductors by kirigami patterning of aramid-silver nanocomposites with zero conductance gradient. Applied Physics Letters, 2017, 111, .	1.5	39
282	Dipole-like electrostatic asymmetry of gold nanorods. Science Advances, 2018, 4, e1700682.	4.7	39
283	Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods. Biomedical Optics Express, 2011, 2, 645.	1.5	38
284	Inorganic Nanostructures with Strong Chiroptical Activity. CCS Chemistry, 2020, 2, 583-604.	4.6	38
285	Free flow electrophoresis for the separation of CdTe nanoparticles. Journal of Materials Chemistry, 2009, 19, 1390.	6.7	37
286	Dual-mode imaging with radiolabeled gold nanorods. Journal of Biomedical Optics, 2011, 16, 051307.	1.4	37
287	Omnidispersible Hedgehog Particles with Multilayer Coatings for Multiplexed Biosensing. Journal of the American Chemical Society, 2018, 140, 7835-7845.	6.6	37
288	Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters. Nature Communications, 2022, 13, 278.	5.8	36

#	Article	IF	CITATIONS
289	Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions. Nanoscale, 2010, 2, 2084.	2.8	34
290	Spontaneous formation of temperature-responsive assemblies by molecular recognition of a β-cyclodextrin-containing block copolymer and poly(N-isopropylacrylamide). Soft Matter, 2010, 6, 610-617.	1.2	34
291	Brillouin Light Scattering Investigation of the Mechanical Properties of Layer-by-Layer Assembled Cellulose Nanocrystal Films. Macromolecules, 2010, 43, 9541-9548.	2.2	34
292	Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids. ACS Nano, 2015, 9, 8231-8238.	7.3	33
293	A photoelectrochemical effect at the interface of immiscible electrolyte solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 285, 223-240.	0.3	32
294	Highly Ductile Multilayered Films by Layer-by-Layer Assembly of Oppositely Charged Polyurethanes for Biomedical Applications. Langmuir, 2009, 25, 14093-14099.	1.6	32
295	Direct-write maskless lithography of LBL nanocomposite films and its prospects for MEMS technologies. Nanoscale, 2012, 4, 4393.	2.8	32
296	Zwitterionic Acceptor Moieties:Â Small Reorganization Energy and Unique Stabilization of Charge Transfer Productsâ€. Journal of Physical Chemistry B, 2003, 107, 7293-7298.	1.2	31
297	Synthesis and bioevaluation of ¹²⁵ I-labeled gold nanorods. Nanotechnology, 2011, 22, 135102.	1.3	31
298	Optical Heating and Temperature Determination of Core–Shell Gold Nanoparticles and Singleâ€Walled Carbon Nanotube Microparticles. Small, 2015, 11, 1320-1327.	5.2	31
299	Third-harmonic Mie scattering from semiconductor nanohelices. Nature Photonics, 2022, 16, 126-133.	15.6	31
300	Frontiers in Nanoparticle Research: Toward Greater Complexity of Structure and Function of Nanomaterials. Advanced Materials, 2008, 20, 4221-4222.	11.1	30
301	CORE-SHELL NANOPARTICLES AND ASSEMBLIES THEREOF. , 2001, , 189-237.		29
302	Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. ACS Energy Letters, 2018, 3, 1578-1583.	8.8	29
303	Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. Advanced Functional Materials, 2022, 32, 2102080.	7.8	29
304	The Effect of Stabilizer Density on Transformation of CdTe Nanoparticles Induced by Ag Cations. Advanced Functional Materials, 2008, 18, 3801-3808.	7.8	28
305	A Rapid Hot-Injection Method for the Improved Hydrothermal Synthesis of CdSe Nanoparticles. Industrial & Engineering Chemistry Research, 2009, 48, 4316-4321.	1.8	28
306	Unusual multiscale mechanics of biomimetic nanoparticle hydrogels. Nature Communications, 2018, 9, 181.	5.8	28

#	Article	IF	CITATIONS
307	Biomimetic nanoporous aerogels from branched aramid nanofibers combining high heat insulation and compressive strength. SmartMat, 2021, 2, 76-87.	6.4	28
308	Formation of Thin Films of Platinum, Palladium, and Mixed Platinum: Palladium Nanocrystallites by the Langmuir Monolayer Technique. Chemistry of Materials, 1995, 7, 1112-1116.	3.2	27
309	Cell Distribution Profiles in Three-Dimensional Scaffolds with Inverted-Colloidal-Crystal Geometry: Modeling and Experimental Investigations. Small, 2005, 1, 1208-1214.	5.2	27
310	Optical Emission and Energy Transfer in Nanoparticleâ^'Nanorod Assemblies: Potential Energy Pump System for Negative Refractive Index Materials. Journal of Physical Chemistry C, 2008, 112, 18314-18320.	1.5	27
311	Helical Assemblies of Gold Nanoparticles. Small, 2011, 7, 2004-2009.	5.2	27
312	Practical aspects of self-organization of nanoparticles: experimental guide and future applications. Journal of Materials Chemistry, 2011, 21, 16673.	6.7	26
313	Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotechnology, 2012, 7, 479-479.	15.6	26
314	Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. Angewandte Chemie - International Edition, 2020, 59, 8542-8551.	7.2	26
315	Singleâ€Molecule Binding Assay Using Nanopores and Dimeric NP Conjugates. Advanced Materials, 2021, 33, e2103067.	11.1	26
316	Surface Modification of CdS Nanoparticles with MoS42-:  A Case Study of Nanoparticleâ^'Modifier Electronic Interaction. Journal of Physical Chemistry B, 1999, 103, 9859-9866.	1.2	25
317	Control of Energy Transfer to CdTe Nanowires via Conjugated Polymer Orientation. Journal of Physical Chemistry C, 2009, 113, 109-116.	1.5	25
318	Coordination Assembly of Discoid Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 8966-8970.	7.2	25
319	Sustainability of the Academic Enterprise in the United States. ACS Nano, 2015, 9, 1-2.	7.3	25
320	The only way is up. Nature Materials, 2011, 10, 903-904.	13.3	24
321	Generic, phenomenological, on-the-fly renormalized repulsion model for self-limited organization of terminal supraparticle assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3161-8.	3.3	24
322	Supraparticle Nanoassemblies with Enzymes. Chemistry of Materials, 2019, 31, 7493-7500.	3.2	24
323	Single-Walled Carbon Nanotubes Spontaneous Loading into Exponentially Grown LBL Films. Chemistry of Materials, 2009, 21, 4397-4400.	3.2	23
324	Reversible nanoparticle gels with colour switching. Journal of Materials Chemistry, 2011, 21, 11639.	6.7	23

#	Article	IF	CITATIONS
325	Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods. ACS Nano, 2017, 11, 5925-5932.	7.3	23
326	Unifying structural descriptors for biological and bioinspired nanoscale complexes. Nature Computational Science, 2022, 2, 243-252.	3.8	23
327	Nonlinear magneto-optical Kerr effect in hyper-Rayleigh scattering from layer-by-layer assembled films of yttrium iron garnet nanoparticles. Applied Physics Letters, 2001, 79, 1309-1311.	1.5	22
328	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	7.3	22
329	Self-assembly of inorganic nanoparticles: Ab ovo. Europhysics Letters, 2017, 119, 66008.	0.7	22
330	Enantiomeric Discrimination by Surfaceâ€Enhanced Raman Scattering–Chiral Anisotropy of Chiral Nanostructured Gold Films. Angewandte Chemie, 2020, 132, 15338-15343.	1.6	22
331	Cadmium sulfide particles in organomontmorillonite complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 71, 317-326.	2.3	21
332	Multidirectional Hierarchical Nanocomposites Made by Carbon Nanotube Growth within Layer-by-Layer-Assembled Films. Chemistry of Materials, 2011, 23, 1023-1031.	3.2	21
333	Structural Analysis of Nanoscale Network Materials Using Graph Theory. ACS Nano, 2021, 15, 12847-12859.	7.3	21
334	Self-Organization of Te Nanorods into V-Shaped Assemblies: A Brownian Dynamics Study and Experimental Insights. ACS Nano, 2007, 1, 126-132.	7.3	20
335	Replication of Bone Marrow Differentiation Niche: Comparative Evaluation of Different Threeâ€Đimensional Matrices. Small, 2013, 9, 1008-1015.	5.2	20
336	Interpretable and Efficient Interferometric Contrast in Scanning Transmission Electron Microscopy with a Diffraction-Grating Beam Splitter. Physical Review Applied, 2018, 10, .	1.5	20
337	Chemo- and Thermomechanically Configurable 3D Optical Metamaterials Constructed from Colloidal Nanocrystal Assemblies. ACS Nano, 2020, 14, 1427-1435.	7.3	20
338	Self-Assembly Mechanism of Complex Corrugated Particles. Journal of the American Chemical Society, 2021, 143, 19655-19667.	6.6	20
339	Mie Resonance Engineering in Meta-Shell Supraparticles for Nanoscale Nonlinear Optics. ACS Nano, 2020, 14, 17203-17212.	7.3	19
340	Corrosion protection with synergistic LBL/Ormosil nanostructured thin films. International Journal of Nanotechnology, 2004, 1, 347.	0.1	18
341	Passive wireless sensing using SWNT-based multifunctional thin film patches. International Journal of Applied Electromagnetics and Mechanics, 2008, 28, 87-94.	0.3	18
342	Self-Guided One-Sided Metal Reduction in Te Nanowires Leading to Auâ^'Te Matchsticks. Langmuir, 2009, 25, 13545-13550.	1.6	18

#	Article	IF	CITATIONS
343	Fraud, the <i>h</i> -index, and Pasternak. ACS Nano, 2010, 4, 585-586.	7.3	18
344	Spontaneous Self-Organization Enables Dielectrophoresis of Small Nanoparticles and Formation of Photoconductive Microbridges. Journal of the American Chemical Society, 2011, 133, 10688-10691.	6.6	18
345	Nature of the processes of charge-carrier generation at ITIES by the photoexcitation of porphyrins. Journal of Electroanalytical Chemistry, 1992, 338, 99-124.	1.9	17
346	Morphology-dependent spectroelectrochemical behavior of pbs nanoparticulate films grown under surfactant monolayers. Advanced Materials, 1994, 6, 959-962.	11.1	17
347	Nanoparticles, molecular biosensors, and multispectral confocal microscopy. Journal of Molecular Histology, 2004, 35, 555-564.	1.0	17
348	Ringâ^'Ribbon Transition and Parallel Alignment in SWNT Films on Polyelectrolytes. Journal of Physical Chemistry B, 2004, 108, 8770-8772.	1.2	17
349	Electrical and optical properties of colloidal semiconductor nanocrystals in aqueous environments. Superlattices and Microstructures, 2006, 40, 38-44.	1.4	17
350	Metallic nanoparticles as optoacoustic contrast agents for medical imaging. , 2006, 6086, 155.		17
351	Passive wireless strain and pH sensing using carbon nanotube-gold nanocomposite thin films. , 2007, , .		17
352	Origin of chiroptical activity in nanorod assemblies. Science, 2019, 365, 1378-1379.	6.0	17
353	Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale. ACS Nano, 2021, 15, 15229-15237.	7.3	17
354	Low-current field-assisted assembly of copper nanoparticles for current collectors. Faraday Discussions, 2015, 181, 383-401.	1.6	16
355	Redefining the Experimental and Methods Sections. ACS Nano, 2019, 13, 4862-4864.	7.3	16
356	Chiral nanomaterials: evolving rapidly from concepts to applications. Materials Advances, 2022, 3, 3677-3679.	2.6	16
357	Monte Carlo simulation of linear aggregate formation from CdTe nanoparticles. Modelling and Simulation in Materials Science and Engineering, 2005, 13, 389-399.	0.8	15
358	Anisotropic calcium phosphate nanoparticles coated with 2-carboxyethylphosphonic acid. Journal of Materials Chemistry, 2006, 16, 3964.	6.7	15
359	Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds. Journal of Biomedical Materials Research - Part A, 2007, 83A, 1-9.	2.1	15
360	Conductive textiles and polymer-ceramic composites for novel load bearing antennas. , 2008, , .		15

Conductive textiles and polymer-ceramic composites for novel load bearing antennas. , 2008, , . 360

#	Article	IF	CITATIONS
361	Traversing Material Scales: Macroscale LBL-Assembled Nanocomposites with Microscale Inverted Colloidal Crystal Architecture. Chemistry of Materials, 2012, 24, 9-11.	3.2	15
362	Biomimetic Nanocomposites: Waterâ€Rich Biomimetic Composites with Abiotic Selfâ€Organizing Nanofiber Network (Adv. Mater. 1/2018). Advanced Materials, 2018, 30, 1870007.	11.1	15
363	Emerging Trends in Chiral Inorganic Nanostructures. Israel Journal of Chemistry, 2021, 61, 851-862.	1.0	15
364	Langmuir-Blodgett Films Prepared from Ferroelectric Lead Zirconium Titanate Particles. The Journal of Physical Chemistry, 1995, 99, 12375-12378.	2.9	14
365	Bioconjugated gold nanoparticles as a contrast agent for detection of small tumors. , 2003, , .		14
366	Branched Aramid Nanofibers. Angewandte Chemie, 2017, 129, 11906-11910.	1.6	14
367	Scattering Properties of Individual Hedgehog Particles. Journal of Physical Chemistry C, 2018, 122, 12015-12021.	1.5	14
368	Recent advances in chiral nanomaterials with unique electric and magnetic properties. Nano Convergence, 2022, 9, .	6.3	14
369	In situ gene transfection and neuronal programming on electroconductive nanocomposite to reduce inflammatory response. Journal of Materials Chemistry, 2011, 21, 1109-1114.	6.7	13
370	Permselectivity Replication of Artificial Glomerular Basement Membranes in Nanoporous Collagen Multilayers. Journal of Physical Chemistry Letters, 2011, 2, 2067-2072.	2.1	13
371	Thermodynamic insights into the self-assembly of capped nanoparticles using molecular dynamic simulations. Physical Chemistry Chemical Physics, 2015, 17, 3820-3831.	1.3	13
372	Strong coupling of localized surface plasmons and ensembles of dye molecules. Optics Express, 2016, 24, 25653.	1.7	13
373	Superstructures simplified. Nature Nanotechnology, 2016, 11, 1002-1003.	15.6	13
374	Photocatalytic Hedgehog Particles for High Ionic Strength Environments. ACS Nano, 2021, 15, 4226-4234.	7.3	13
375	Self-Assembly of Earth-Abundant Supraparticles with Chiral Interstices for Enantioselective Photocatalysis. ACS Energy Letters, 0, , 1405-1412.	8.8	13
376	Nanoparticle Assembly:A Perspective and some Unanswered Questions. Current Science, 2017, 112, 1635.	0.4	13
377	Computer analysis of photoinduced charge transfer at the ITIES in protoporphyrin—quinone systems. Journal of Electroanalytical Chemistry, 1992, 341, 47-60.	1.9	12
378	Ultra-thin particulate films prepared from capped and uncapped reverse-micelle-entrapped silver particles. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 673.	1.7	12

#	Article	IF	CITATIONS
379	Gold nanoparticles with stable yellow-green luminescence. International Journal of Nanotechnology, 2007, 4, 239.	0.1	12
380	Frustrated self-assembly of non-Euclidean crystals of nanoparticles. Nature Communications, 2021, 12, 4925.	5.8	12
381	Optoacoustic imaging of gold nanoparticles targeted to breast cancer cells. , 2004, , .		11
382	Solvent Effect in Dynamic Superstructures from Au Nanoparticles and CdTe Nanowires: Experimental Observation and Theoretical Description. Journal of Physical Chemistry C, 2010, 114, 1404-1410.	1.5	11
383	Incorporation of Indium Tin Oxide Nanoparticles in PEMFC Electrodes. Advanced Energy Materials, 2012, 2, 569-574.	10.2	11
384	Phosphatidylserine-Gold Nanoparticles (PS-AuNP) Induce Prostate and Breast Cancer Cell Apoptosis. Pharmaceutics, 2021, 13, 1094.	2.0	10
385	The Collective Behavior of Nanoscale Building Blocks. ACS Nano, 2009, 3, 1307-1308.	7.3	9
386	Optical anisotropy and sign reversal in layer-by-layer assembled films from chiral nanoparticles. Faraday Discussions, 2016, 191, 141-157.	1.6	9
387	Electrochemistry on Stretchable Nanocomposite Electrodes: Dependence on Strain. ACS Nano, 2018, 12, 9223-9232.	7.3	9
388	Broadband Circular Polarizers via Coupling in 3D Plasmonic Meta-Atom Arrays. ACS Photonics, 2021, 8, 1286-1292.	3.2	9
389	Metalâ€Bridged Graphene–Protein Supraparticles for Analog and Digital Nitric Oxide Sensing. Advanced Materials, 2021, 33, e2007900.	11.1	9
390	Engineering of inorganic nanostructures with hierarchy of chiral geometries at multiple scales. AICHE Journal, 2022, 68, e17438.	1.8	9
391	Excitation-dependent emissive FeSe nanoparticles induced by chiral interlayer expansion and their multi-color bio-imaging. Nano Today, 2022, 43, 101424.	6.2	9
392	Nanocomposites are stretched thin. Nature Materials, 2004, 3, 669-671.	13.3	8
393	Anisotropic nanoparticles: general discussion. Faraday Discussions, 2016, 191, 229-254.	1.6	8
394	Mono- and multiparticulate Langmuir-Blodgett films prepared from surfactant-stabilized silver particles. Materials Science and Engineering C, 1995, 3, 149-152.	3.8	7
395	Streptavidin Inhibits Self-Assembly of CdTe Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 3249-3256.	2.1	7
396	A loop of two rods. Nature Materials, 2014, 13, 228-229.	13.3	7

#	Article	IF	CITATIONS
397	Optimization of polymer solar cells performance by incorporated scattering of ZnO nanoparticles with different particle geometry. Synthetic Metals, 2015, 205, 185-189.	2.1	7
398	Materials Engineering of High-Performance Anodes as Layered Composites with Self-Assembled Conductive Networks. Journal of Physical Chemistry C, 2018, 122, 14014-14028.	1.5	7
399	Omnidispersible Microscale Colloids with Nanoscale Polymeric Spikes. Chemistry of Materials, 2020, 32, 9897-9905.	3.2	7
400	Reconfigurable Chirality of DNA-Bridged Nanorod Dimers. ACS Nano, 2021, 15, 13547-13558.	7.3	7
401	Spanning Network Gels from Nanoparticles and Graph Theoretical Analysis of Their Structure and Properties. Advanced Materials, 2022, 34, e2201313.	11.1	7
402	Kinetics of Photoinduced Charge Transfer at Microscopic and Macroscopic Interfaces Analytical Sciences, 1999, 15, 3-16.	0.8	6
403	In vivo imaging of inflammatory responses by photoacoustics using cell-targeted gold nanorods (GNR) as contrast agent. Proceedings of SPIE, 2008, , .	0.8	6
404	In vitro integration of human skin dermis with porous cationic hydrogels. Acta Biomaterialia, 2009, 5, 3337-3345.	4.1	6
405	Fracture toughness of exponential layer-by-layer polyurethane/poly(acrylic acid) nanocomposite films. Engineering Fracture Mechanics, 2010, 77, 3227-3245.	2.0	6
406	A Year for Nanoscience. ACS Nano, 2014, 8, 11901-11903.	7.3	6
407	Layered biomimetic nanocomposites replicate bone surface in three-dimensional cell cultures. Nanocomposites, 2018, 4, 156-166.	2.2	6
408	Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1383-1398.	1.4	6
409	Nonsolvent induced reconfigurable bonding configurations of ligands in nanoparticle purification. Nanoscale Horizons, 2019, 4, 1416-1424.	4.1	6
410	Fiber-reinforced monolithic supercapacitors with interdigitated interfaces. Journal of Materials Chemistry A, 2021, 9, 11033-11041.	5.2	6
411	Layer-by-layer (LBL) assembly with semiconductor nanoparticles and nanowires. , 2008, , 197-216.		6
412	Enhanced photoacoustic neuroimaging with gold nanorods and PEBBLEs. , 2008, , .		5
413	"Cloud―assemblies: quantum dots form electrostatically bound dynamic nebulae around large gold nanoparticles. Physical Chemistry Chemical Physics, 2010, 12, 11878.	1.3	5

414 Be Critical but Fair. ACS Nano, 2013, 7, 8313-8316.

#	Article	IF	CITATIONS
415	Plasmonic nanoparticles assemblies templated by helical bacteria and resulting optical activity. Chirality, 2020, 32, 899-906.	1.3	5
416	Graph theoretical design of biomimetic aramid nanofiber composites as insulation coatings for implantable bioelectronics. MRS Bulletin, 2021, 46, 576-587.	1.7	5
417	High-Resolution Imaging of Molecular and Nanoparticles Assemblies with Kelvin Force Microscopy. Journal of Nanoscience and Nanotechnology, 2010, 10, 7060-7064.	0.9	4
418	Virtual Issue on Nanotoxicology. ACS Nano, 2010, 4, 5513-5514.	7.3	4
419	Inside Cover: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. Int. Ed. 22/2011). Angewandte Chemie - International Edition, 2011, 50, 4992-4992.	7.2	4
420	Ultrafast laser orthogonal alignment and patterning of carbon nanotube-polymer composite films. Applied Physics Letters, 2012, 101, .	1.5	4
421	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4
422	Three-dimensional biomimetic scaffolds for hepatic differentiation of size-controlled embryoid bodies. Journal of Materials Research, 2019, 34, 1371-1380.	1.2	4
423	Spontaneous Formation of Cold-Welded Plasmonic Nanoassemblies with Refracted Shapes for Intense Raman Scattering. Langmuir, 2019, 35, 4110-4116.	1.6	4
424	Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. Angewandte Chemie, 2020, 132, 8620-8629.	1.6	4
425	Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells. Materials, 2020, 13, 4856.	1.3	4
426	The New Era of Self-Assembled Nanomaterials. Accounts of Chemical Research, 2022, 55, 1783-1784.	7.6	4
427	Self-Assembly of Nanostructured Semiconductor Films. , 1996, , 557-577.		3
428	Politics and Nanotechnology in the Health Care Industry. ACS Nano, 2009, 3, 2855-2856.	7.3	3
429	Effect of CdSe Nanoparticles on the Growth of Te Nanowires: Greater Length and Tortuosity and Nonmonotonic Concentration Effect. Journal of Physical Chemistry C, 2010, 114, 2428-2433.	1.5	3
430	Multi-target photoacoustic molecular imaging of cardiovascular inflammatory biomarkers using bioconjugated gold nanorods. , 2011, , .		3
431	We Take It Personally. ACS Nano, 2012, 6, 10417-10419.	7.3	3
432	Grand Plans for Nano. ACS Nano, 2015, 9, 11503-11505.	7.3	3

#	Article	IF	CITATIONS
433	Nanoparticle Assemblies into Luminescent Dendrites in Shrinking Microdroplets. Langmuir, 2016, 32, 12468-12475.	1.6	3
434	Authentic synthetic nacre. National Science Review, 2017, 4, 284-285.	4.6	3
435	Nanoceramics: Chiral Nanoceramics (Adv. Mater. 41/2020). Advanced Materials, 2020, 32, 2070311.	11.1	3
436	Chiromagnetic Properties of Semiconductor Nanorods. Matter, 2020, 2, 1089-1090.	5.0	3
437	Penetration of Carbon Nanotubes into the Retinoblastoma Tumor after Intravitreal Injection in LHBETATAG Transgenic Mice Reti-noblastoma Model. Journal of Ophthalmic and Vision Research, 2020, 15, 446-452.	0.7	3
438	Layered Biomimetic Composites from MXenes with Sequential Bridging. Angewandte Chemie - International Edition, 2022, , e202114140.	7.2	3
439	A Multiphysics Modeling of Electromagnetic Signaling Phenomena at kHz-GHz Frequencies in Bacterial Biofilms. IEEE Access, 2022, , 1-1.	2.6	3
440	Mechanical-electrical characterization of carbon-nanotube thin films for structural monitoring applications. , 2006, , .		2
441	Colloidal quantum dots as optoelectronic elements. , 2006, 6127, 131.		2
442	Functionalized gold nanorods for molecular optoacoustic imaging. , 2007, 6437, 117.		2
443	Spatial structural sensing by carbon nanotube-based skins. , 2008, , .		2
444	Innentitelbild: Inhibition of Amyloid Peptide Fibrillation by Inorganic Nanoparticles: Functional Similarities with Proteins (Angew. Chem. 22/2011). Angewandte Chemie, 2011, 123, 5096-5096.	1.6	2
445	The art of empty space. Science, 2017, 358, 448-448.	6.0	2
446	Real-Time 3D Analysis During Tomographic Experiments on tomviz. Microscopy and Microanalysis, 2021, 27, 2860-2862.	0.2	2
447	Cell Scaffolds with Three-Dimensional Order: The Role of Modelling in Establishing Design Guidelines. Australian Journal of Chemistry, 2005, 58, 713.	0.5	2
448	Organization of Nanoparticles and Nanowires in Electronic Devices. , 2005, , 3-73.		2
449	Terahertz time-domain polarimetry for generalized anistropic and chiral materials. , 2019, , .		2
450	Experimental Evidence of Radio Frequency Radiation From <i>Staphylococcus aureus</i> Biofilms. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6, 420-428.	2.3	2

#	Article	IF	CITATIONS
451	Assembly of Nanomaterials using Polymers and Biomaterials: Sensing and Electronic Applications. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	1
452	Gold nano-rods as a targeting contrast agent for photoacoustic imaging. , 2007, , .		1
453	Nanoscale design of ultrastrong materials by LBL assembly. , 2008, , .		1
454	Simultaneous photoacoustic detection of multiple inflammatory biomarkers using bioconjugated gold nanorods as selective targeting agents. , 2010, , .		1
455	Soft X-Ray Microscopic Investigation on Self Assembling Nanocrystals. , 2011, , .		1
456	Fluorescence spectroscopy of semiconductor CdTe nanocrystals: preparation effect on photostability. Open Physics, 2011, 9, 287-292.	0.8	1
457	Photoacoustic and nuclear imaging of [125I]-labeled gold nanorod contrast agent. , 2011, , .		1
458	Record Properties of Layer-by-Layer Assembled Composites. , 2012, , 573-593.		1
459	Exciting Times for Nano. ACS Nano, 2013, 7, 10437-10439.	7.3	1
460	Effect of TGA Concentration on Morphology of Cu ₂ S Nanoparticals. Advanced Materials Research, 0, 998-999, 47-50.	0.3	1
461	Field-assisted self-assembly process: general discussion. Faraday Discussions, 2015, 181, 463-479.	1.6	1
462	Modeling and Theory: general discussion. Faraday Discussions, 2016, 186, 371-398.	1.6	1
463	Circular extinction of plasmonic silver nanocaps and gas sensing. Faraday Discussions, 2016, 186, 345-352.	1.6	1
464	Applications to Soft Matter: general discussion. Faraday Discussions, 2016, 186, 503-527.	1.6	1
465	Nanocomposites: general discussion. Faraday Discussions, 2016, 186, 277-293.	1.6	1
466	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	7.3	1
467	Early Growth Stages of Hierarchically Organized Chiral Structures. Microscopy and Microanalysis, 2020, 26, 550-551.	0.2	1
468	Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification. , 2009, 28, 9.		1

Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification. , 2009, 28, 9. 468

#	Article	IF	CITATIONS
469	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	7.3	1
470	The Endless and Turbulent Frontier of Academic Entrepreneurship. ACS Nano, 2021, 15, 16947-16952.	7.3	1
471	Morphology-Dependent Spectroelectrochemical Behavior of PbS Nanoparticulate Films Grown Under Surfactant Monolayers. Materials Research Society Symposia Proceedings, 1994, 358, 259.	0.1	0
472	Fullerene-based materials for layer-by-layer assembly of photoactive films. AIP Conference Proceedings, 2001, , .	0.3	0
473	Organization of Layer-By-Layer Assembled Nanocomposites. , 2004, , 273-301.		Ο
474	Designing ultrastrong materials for space applications. , 2004, 5166, 228.		0
475	Fluorescence enhancement and energy transport from bioconjugation between nanowires and nanoparticles. , 2004, , .		Ο
476	Integration of electrical conductivity and high strength in a SWNT polymeric nanocomposite. , 2007, , .		0
477	ONE-AND TWO-DIMENSIONAL ASSEMBLIES OF NANOPARTICLES: MECHANISMS OF FORMATION AND FUNCTIONALITY. Annual Review of Nano Research, 2008, , 345-375.	0.2	Ο
478	Electron Energy Loss Spectroscopy of Plasmons in Individual Silver Nanowires and Gold Nanorods. , 2008, , .		0
479	Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. Materials Research Society Symposia Proceedings, 2009, 1208, 1.	0.1	Ο
480	Gaining Strength, Increasing Our Impact. ACS Nano, 2009, 3, 3815-3816.	7.3	0
481	Self-assembly of nanoparticles: Toward to biological functions, inorganic viruses, and microscale electronic components. , 2010, , .		0
482	ACS Nano in 2011 and Looking Forward to 2012. ACS Nano, 2011, 5, 9301-9302.	7.3	0
483	Ultrafast Laser Alignment and Processing of Carbon Nanotube Films. Materials Research Society Symposia Proceedings, 2011, 1308, 10601.	0.1	0
484	Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert Images (Adv. Mater. 35/2014). Advanced Materials, 2014, 26, 6200-6200.	11.1	0
485	Synthesis of Nanoparticle Assemblies: general discussion. Faraday Discussions, 2016, 186, 123-152.	1.6	0
486	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	7.3	0

#	Article	IF	CITATIONS
487	Addendum: Self-assembly of inorganic nanoparticles: Ab ovo. Europhysics Letters, 2017, 120, 39901.	0.7	Ο
488	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	7.3	0
489	Nonlinear and Quantum-Light Scattering from Gold Nanorods. , 2018, , .		Ο
490	Frontispiz: Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. Angewandte Chemie, 2020, 132, .	1.6	0
491	Frontispiece: Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts. Angewandte Chemie - International Edition, 2020, 59, .	7.2	Ο
492	Ex vivo modeling of stem cell interactions and localization during bone marrow development. FASEB Journal, 2006, 20, .	0.2	0
493	Dimensionally Graded Semiconductor Nanoparticle Films. , 2008, , 1062-1069.		Ο
494	Nanostructured Ultrastrong Materials. , 2008, , 3072-3079.		0
495	Enhanced Surface Third Harmonic Generation from Gold Nanorods. , 2009, , .		0
496	Correlation Spectroscopy of Third-Harmonic Generation by Single Nanorods. , 2009, , .		0
497	Nanoparticle Films: Dimensionally Graded Semiconductor. , 0, , 3125-3131.		Ο
498	A Fresh Look on the Origin of Nonlinear Light Scattering and Photoluminescence from Gold Nanorods. , 2016, , .		0
499	Non-resonant Enhancement of Second-Harmonic Generation in a Dielectric Particle with a Nanostructured Nonlinear Metamaterial Shell. , 2019, , .		0
500	Light-Induced Assembly and Reconfiguration of Chiral Nanostructures. , 2019, , .		0
501	Penetration of Carbon Nanotubes into the Retinoblastoma Tumor after Intravitreal Injection in LH T Transgenic Mice Reti-noblastoma Model. Journal of Ophthalmic and Vision Research, 2020, 15, 446-452.	0.7	0
502	Layered Biomimetic Composites from MXenes with Sequential Bridging. Angewandte Chemie, 0, , .	1.6	0
503	Electrostatic Asymmetry of Wurtzite Nanocrystals and Resulting Photocatalytic Properties. Journal of Physical Chemistry C, 2022, 126, 4751-4761.	1.5	0

504 Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.

7.3 0

#	Article	IF	CITATIONS
505	Layer-by-Layer Assembly of Multifunctional Carbon Nanotube Thin Films. , 0, , 305-319.		0
506	Tribute to Marie-Paule Pileni. Journal of Physical Chemistry C, 2022, 126, 7357-7358.	1.5	0