

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5680176/publications.pdf Version: 2024-02-01

WENLI

#	Article	IF	CITATIONS
1	A Lightweight Semantic Segmentation Model of Wucai Seedlings Based on Attention Mechanism. Photonics, 2022, 9, 393.	2.0	2
2	Repositioned Drugs for COVID-19—the Impact on Multiple Organs. SN Comprehensive Clinical Medicine, 2021, 3, 1484-1501.	0.6	3
3	3D in vivo Magnetic Particle Imaging of Human Stem Cell-Derived Islet Organoid Transplantation Using a Machine Learning Algorithm. Frontiers in Cell and Developmental Biology, 2021, 9, 704483.	3.7	19
4	Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nature Communications, 2021, 12, 5142.	12.8	177
5	A fully transparent, flexible PEDOT:PSS–ITO–Ag–ITO based microelectrode array for ECoG recording. Lab on A Chip, 2021, 21, 1096-1108.	6.0	28
6	Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. Micromachines, 2021, 12, 128.	2.9	15
7	Wireless, passive strain sensor in a doughnut-shaped contact lens for continuous non-invasive self-monitoring of intraocular pressure. Lab on A Chip, 2020, 20, 332-342.	6.0	50
8	A mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device. Micromachines, 2020, 11, 621.	2.9	4
9	Flexible, diamond-based microelectrodes fabricated using the diamond growth side for neural sensing. Microsystems and Nanoengineering, 2020, 6, 42.	7.0	39
10	Stability Performance Analysis of Various Packaging Materials and Coating Strategies for Chronic Neural Implants under Accelerated, Reactive Aging Tests. Micromachines, 2020, 11, 810.	2.9	3
11	A Fully Transparent, Flexible νECoG Array Based on Highly Conductive and Anti-reflective PEDOT:PSS-ITO-Ag-ITO Thin Films. , 2020, , .		2
12	Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. Journal of Neural Engineering, 2020, 17, 021001.	3.5	22
13	A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants. Frontiers in Bioengineering and Biotechnology, 2020, 8, 622923.	4.1	31
14	A Trimodal Wireless Implantable Neural Interface System-on-Chip. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 1207-1217.	4.0	58
15	A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 608-618.	4.0	33
16	Highly Conductive, Transparent, and Antireflective PEDOT:PSS/ITO/Ag/ITO on Parylene-C with Tunable Peak Transmittance. , 2019, , .		0
17	Single-channel opto-neurostimulators: a review. Journal of Micromechanics and Microengineering, 2019, 29, 043001.	2.6	6
18	Inductively coupled, mm-sized, single channel optical neuro-stimulator with intensity enhancer. Microsystems and Nanoengineering, 2019, 5, 23.	7.0	12

#	Article	IF	CITATIONS
19	Fabrication and Characterization of Micro-Nano Electrodes for Implantable BCI. Micromachines, 2019, 10, 242.	2.9	2
20	A Dual-Band Wireless Power Transmission System for Evaluating mm-Sized Implants. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 595-607.	4.0	34
21	Editorial for the Special Issue on Implantable Microdevices. Micromachines, 2019, 10, 603.	2.9	0
22	Transparent and ultra-flexible PEDOT:PSS/ITO/Ag/ITO on Parylene thin films with tunable properties. , 2019, , .		1
23	Characteristics of Transparent, PEDOT:PSS-Coated Indium-Tin-Oxide (ITO) Microelectrodes. IEEE Nanotechnology Magazine, 2018, 17, 701-704.	2.0	30
24	Implantation of multiple suprachoroidal electrode arrays in rabbits. Journal of Current Ophthalmology, 2018, 30, 68-73.	0.8	2
25	A mm-sized free-floating wirelessly powered implantable optical stimulating system-on-a-chip. , 2018, , .		31
26	Micro-Reflector Integrated Multichannel μLED Optogenetic Neurostimulator With Enhanced Intensity. Frontiers in Mechanical Engineering, 2018, 4, .	1.8	14
27	Designing an apparatus for behavioral testing in awake rodents during brain stimulation. , 2018, , .		0
28	All-Diamond Microfiber Electrodes for Neurochemical Analysis. Journal of the Electrochemical Society, 2018, 165, G3087-G3092.	2.9	20
29	Flexible polyimide-based hybrid opto-electric neural interface with 16 channels of micro-LEDs and electrodes. Microsystems and Nanoengineering, 2018, 4, 27.	7.0	59
30	Wireless opto-electro neural interface for experiments with small freely behaving animals. Journal of Neural Engineering, 2018, 15, 046032.	3.5	39
31	Complementary metal‣U8â€graphene method for making integrated graphene nanocircuits. Micro and Nano Letters, 2018, 13, 465-468.	1.3	4
32	GaN LEDs fabricated using SF 6 plasma RIE. Micro and Nano Letters, 2018, 13, 1255-1259.	1.3	1
33	A miniaturized, wirelessly-powered, reflector-coupled single channel opto neurostimulator. , 2018, , .		8
34	Wireless intraocular pressure sensor using stretchable variable inductor. , 2017, , .		10
35	Optical propagation of blue LED light in brain tissue and Parylene-C. , 2017, , .		2
36	Large-scale, all polycrystalline diamond structures transferred onto flexible Parylene-C films for neurotransmitter sensing. Lab on A Chip, 2017, 17, 3159-3167.	6.0	22

#	Article	IF	CITATIONS
37	Control of cell fate and excitability at the neural electrode interface: Genetic reprogramming and optical induction. , 2017, , .		3
38	Neuronal excitability and network formation on optically transparent electrode materials. , 2017, 2017, 2017, 154-157.		2
39	Towards a free-floating wireless implantable optogenetic stimulating system. , 2017, , .		6
40	A hybrid neural interface optrode with a polycrystalline diamond heat spreader for optogenetics. Technology, 2016, 04, 15-22.	1.4	15
41	A Flexible, Micro-Lens-Coupled LED Stimulator for Optical Neuromodulation. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10, 972-978.	4.0	20
42	Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Frontiers in Systems Neuroscience, 2015, 9, 69.	2.5	76
43	Fabrication of flexible microlens arrays through vapor-induced dewetting on selectively plasma-treated surfaces. Journal of Materials Chemistry C, 2015, 3, 5825-5834.	5.5	23
44	A polycrystalline diamond-based, hybrid neural interfacing probe for optogenetics. , 2015, , .		10
45	Microfabricated optoelectronic neural implants for optogenetics. , 2015, , .		0
46	A Power-Efficient Switched-Capacitor Stimulating System for Electrical/Optical Deep Brain Stimulation. IEEE Journal of Solid-State Circuits, 2015, 50, 360-374.	5.4	117
47	Fabrication of polycrystalline diamond on a flexible Parylene substrate. , 2015, , .		3
48	Assessment of neurovascular dynamics during transient ischemic attack by the novel integration of micro-electrocorticography electrode array with functional photoacoustic microscopy. Neurobiology of Disease, 2015, 82, 455-465.	4.4	26
49	A Minimally Invasive 64-Channel Wireless μECoG Implant. IEEE Journal of Solid-State Circuits, 2015, 50, 344-359.	5.4	295
50	An implantable, miniaturized SU-8 optical probe for optogenetics-based deep brain stimulation. , 2014, 2014, 450-3.		16
51	Varying-Length Polymer Microneedle Arrays Fabricated by Droplet Backside Exposure. Journal of Microelectromechanical Systems, 2014, 23, 1272-1280.	2.5	19
52	Highly stable chemical N-doping of graphene nanomesh FET. , 2014, , .		1
53	Super Hydrophobic Parylene-C Produced by Consecutive <inline-formula> <tex-math notation="TeX">\${m O}_{2}\$ </tex-math </inline-formula> and <inline-formula> <tex-math notation="TeX">\${m SF}_{6}\$ </tex-math></inline-formula> Plasma Treatment, lournal of Microelectromechanical Systems, 2014, 23, 628-635.	2.5	32
54	Singular Sheet Etching of Graphene with Oxygen Plasma. Nano-Micro Letters, 2014, 6, 116-124.	27.0	53

#	Article	IF	CITATIONS
55	Singular Sheet Etching of Graphene with Oxygen Plasma. Nano-Micro Letters, 2014, 6, 116.	27.0	3
56	Tunable graphene nanomesh semiconductor: Design, fabrication, and characterization. , 2013, , .		2
57	Opto-μECoG Array: A Hybrid Neural Interface With Transparent μECoG Electrode Array and Integrated LEDs for Optogenetics. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 593-600.	4.0	148
58	Parylene-based fold-and-bond wireless pressure sensor. , 2013, , .		5
59	Design, fabrication, and characterization of graphene thermistor. , 2013, , .		14
60	Investigation of phase-locked neuronal oscillation with optical stimulation based on a time-frequency approach. , 2013, , .		1
61	Thermoâ€flow and temperature sensing behaviour of graphene based on surface heat convection. Micro and Nano Letters, 2013, 8, 681-685.	1.3	17
62	SU-8 doped and encapsulated n-type graphene nanomesh with high air stability. Applied Physics Letters, 2013, 103, .	3.3	11
63	Design and optimization of microscale magnetic probes for multi-site neural stimulation. , 2013, , .		1
64	Single-bacterium resolution biosensors based on pristine graphenes. , 2012, , .		0
65	CMOS monolithic chemiresistor array with microfluidic channel for micro gas chromatograph. , 2012, , .		0
66	Plasma-treated switchable wettability of parylene-C surface. , 2012, , .		3
67	Characterization of surface heat convection of bilayer graphene. , 2012, , .		3
68	Opto-μECoG array: Transparent μECoG electrode array and integrated LEDs for optogenetics. , 2012, , .		10
69	Nanosensors based on graphene inter-layer electronic properties: Sensing mechanism and selectivity. , 2012, , .		0
70	Towards simple methods for mass production of suspended graphene. , 2012, , .		0
71	Adaptable chip-level microfluidic packaging for a micro-scale gas chromatograph. , 2012, , .		2
72	Layer engineering of graphene with oxygen plasma etching. , 2011, , .		2

#	Article	IF	CITATIONS
73	Wafer-Level Parylene Packaging With Integrated RF Electronics for Wireless Retinal Prostheses. Journal of Microelectromechanical Systems, 2010, 19, 735-742.	2.5	72
74	Molecular nanosensors based on the inter-sheet tunneling effect of a bilayer graphene. , 2010, , .		2
75	Corrosion Behavior of Parylene-Metal-Parylene Thin Films in Saline. ECS Transactions, 2008, 11, 1-6.	0.5	40
76	Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators B: Chemical, 2008, 132, 449-460.	7.8	295