
Manuel Espinosa-Urgel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>Câ€diâ€GMP</scp> and biofilm are regulated in <i>Pseudomonas putida</i> by the <scp>CfcA</scp> / <scp>CfcR</scp> twoâ€component system in response to salts. Environmental Microbiology, 2022, 24, 158-178.	3.8	8
2	Role of the Transcriptional Regulator ArgR in the Connection between Arginine Metabolism and c-di-GMP Signaling in Pseudomonas putida. Applied and Environmental Microbiology, 2022, 88, e0006422.	3.1	9
3	Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas. International Journal of Molecular Sciences, 2022, 23, 4386.	4.1	22
4	Pseudomonas putida and its close relatives: mixing and mastering the perfect tune for plants. Applied Microbiology and Biotechnology, 2022, 106, 3351-3367.	3.6	20
5	Genome-Wide Analysis of Targets for Post-Transcriptional Regulation by Rsm Proteins in Pseudomonas putida. Frontiers in Molecular Biosciences, 2021, 8, 624061.	3.5	8
6	The architecture of a mixed fungal–bacterial biofilm is modulated by quorumâ€sensing signals. Environmental Microbiology, 2021, 23, 2433-2447.	3.8	18
7	Isolation of Pseudomonas Strains with Potential for Protection of Soybean Plants against Saline Stress. Agronomy, 2021, 11, 2236.	3.0	4
8	Characterization of the bacteriocins and the PrtR regulator in a plant-associated Pseudomonas strain. Journal of Biotechnology, 2020, 307, 182-192.	3.8	13
9	Inoculation of Pseudomonas mutant strains can improve growth of soybean and corn plants in soils under salt stress. Rhizosphere, 2020, 16, 100255.	3.0	18
10	Arginine as an environmental and metabolic cue for cyclic diguanylate signalling and biofilm formation in Pseudomonas putida. Scientific Reports, 2020, 10, 13623.	3.3	22
11	<i>Pseudomonas stutzeri</i> MJL19, a rhizosphereâ€colonizing bacterium that promotes plant growth under saline stress. Journal of Applied Microbiology, 2020, 129, 1321-1336.	3.1	26
12	Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Applied Microbiology and Biotechnology, 2020, 104, 4577-4592.	3.6	44
13	Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress. Journal of Bacteriology, 2019, 201, .	2.2	26
14	Removal of Hydrocarbons and Other Related Chemicals via the Rhizosphere of Plants. , 2019, , 157-169.		0
15	Removal of Hydrocarbons and Other Related Chemicals Via the Rhizosphere of Plants. , 2018, , 1-13.		1
16	Biofilm Stress Responses Associated to Aromatic Hydrocarbons. , 2018, , 105-115.		1
17	Fatty Acids as Mediators of Intercellular Signaling. , 2018, , 273-285.		0
18	The <i>Pseudomonas putida</i> CsrA/RsmA homologues negatively affect câ€di MP pools and biofilm formation through the GGDEF/EAL response regulator CfcR. Environmental Microbiology, 2017, 19,	3.8	22

3551-3566.

#	Article	IF	CITATIONS
19	Purification and characterization of Pseudomonas aeruginosa LasR expressed in acyl-homoserine lactone free Escherichia coli cultures. Protein Expression and Purification, 2017, 130, 107-114.	1.3	12
20	FleQ of Pseudomonas putida KT2440 is a multimeric cyclic diguanylate binding protein that differentially regulates expression of biofilm matrix components. Research in Microbiology, 2017, 168, 36-45.	2.1	42
21	New insights in the early extracellular events in hydrocarbon and lipid biodegradation. Environmental Microbiology, 2017, 19, 15-18.	3.8	8
22	Biofilm Stress Responses Associated to Aromatic Hydrocarbons. , 2017, , 1-11.		0
23	Genetic Dissection of the Regulatory Network Associated with High c-di-GMP Levels in Pseudomonas putida KT2440. Frontiers in Microbiology, 2016, 7, 1093.	3.5	37
24	Assessment of the contribution of chemoreceptorâ€based signalling to biofilm formation. Environmental Microbiology, 2016, 18, 3355-3372.	3.8	67
25	Learning when (and how) to shut up: intercellular signal turnover in <scp><i>X</i></scp> <i>anthomonas</i> . Environmental Microbiology, 2016, 18, 314-315.	3.8	2
26	Fatty Acids as Mediators of Intercellular Signaling. , 2016, , 1-13.		1
27	Rhizosphere selection of <i>Pseudomonas putida</i> KT2440 variants with increased fitness associated to changes in gene expression. Environmental Microbiology Reports, 2016, 8, 842-850.	2.4	6
28	Self-Regulation and Interplay of Rsm Family Proteins Modulate the Lifestyle of Pseudomonas putida. Applied and Environmental Microbiology, 2016, 82, 5673-5686.	3.1	28
29	So different and still so similar: The plant compound rosmarinic acid mimics bacterial homoserine lactone quorum sensing signals. Communicative and Integrative Biology, 2016, 9, e1156832.	1.4	11
30	Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Science Signaling, 2016, 9, ra1.	3.6	106
31	Engineering Biological Approaches for Detection of Toxic Compounds: A New Microbial Biosensor Based on the Pseudomonas putida TtgR Repressor. Molecular Biotechnology, 2015, 57, 558-564.	2.4	29
32	Evidence of circadian rhythms in non-photosynthetic bacteria?. Journal of Circadian Rhythms, 2014, 8, 8.	1.3	26
33	Roles of Cyclic Di-CMP and the Gac System in Transcriptional Control of the Genes Coding for the Pseudomonas putida Adhesins LapA and LapF. Journal of Bacteriology, 2014, 196, 1484-1495.	2.2	87
34	Identification of reciprocal adhesion genes in pathogenic and nonâ€pathogenic <i>Pseudomonas</i> . Environmental Microbiology, 2013, 15, 36-48.	3.8	48
35	Interplay between extracellular matrix components of Pseudomonas putida biofilms. Research in Microbiology, 2013, 164, 382-389.	2.1	42
36	Stability of a Pseudomonas putida KT2440 Bacteriophage-Carried Genomic Island and Its Impact on Rhizosphere Fitness. Applied and Environmental Microbiology, 2012, 78, 6963-6974.	3.1	11

#	Article	IF	CITATIONS
37	Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c. Microbiology (United Kingdom), 2012, 158, 1493-1503.	1.8	28
38	Calcium Causes Multimerization of the Large Adhesin LapF and Modulates Biofilm Formation by Pseudomonas putida. Journal of Bacteriology, 2012, 194, 6782-6789.	2.2	38
39	Getting in touch: microbial molecular devices for cell–cell and cell–surface interactions. Research in Microbiology, 2012, 163, 577-578.	2.1	Ο
40	Fatty acidâ€mediated signalling between two <i>Pseudomonas</i> species. Environmental Microbiology Reports, 2012, 4, 417-423.	2.4	20
41	The Pseudomonas aeruginosa quinolone quorum sensing signal alters the multicellular behaviour of Pseudomonas putida KT2440. Research in Microbiology, 2011, 162, 773-781.	2.1	37
42	PpoR, an orphan LuxRâ€family protein of <i>Pseudomonas putida</i> KT2440, modulates competitive fitness and surface motility independently of <i>N</i> â€acylhomoserine lactones. Environmental Microbiology Reports, 2011, 3, 79-85.	2.4	15
43	Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in Biotechnology, 2011, 29, 641-647.	9.3	74
44	Selection of hyperadherent mutants in Pseudomonas putida biofilms. Microbiology (United Kingdom), 2011, 157, 2257-2265.	1.8	13
45	Metabolic engineering, new antibiotics and biofilm viscoelasticity. Microbial Biotechnology, 2010, 3, 10-14.	4.2	2
46	LapF, the second largest <i>Pseudomonas putida</i> protein, contributes to plant root colonization and determines biofilm architecture. Molecular Microbiology, 2010, 77, 549-561.	2.5	131
47	Efficient rhizosphere colonization by <i>Pseudomonas fluorescens</i> f113 mutants unable to form biofilms on abiotic surfaces. Environmental Microbiology, 2010, 12, 3185-3195.	3.8	74
48	Removal of Hydrocarbons and Other Related Chemicals via the Rhizosphere of Plants. , 2010, , 2575-2581.		9
49	Multicellularity, neoplasias and biofilms. Research in Microbiology, 2009, 160, 85-86.	2.1	1
50	Different, overlapping mechanisms for colonization of abiotic and plant surfaces by <i>Pseudomonas putida</i> . FEMS Microbiology Letters, 2008, 288, 118-124.	1.8	107
51	A Two-Component Regulatory System Integrates Redox State and Population Density Sensing in <i>Pseudomonas putida</i> . Journal of Bacteriology, 2008, 190, 7666-7674.	2.2	31
52	In silico analysis of large microbial surface proteins. Research in Microbiology, 2007, 158, 545-550.	2.1	29
53	Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biology, 2007, 8, R179.	9.6	183
54	Temperature and pyoverdine-mediated iron acquisition control surface motility ofPseudomonas putida. Environmental Microbiology, 2007, 9, 1842-1850.	3.8	62

MANUEL ESPINOSA-URGEL

#	Article	IF	CITATIONS
55	A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440. Environmental Microbiology, 2006, 8, 639-647.	3.8	62
56	Characterization of the Pseudomonas putida Mobile Genetic Element ISPpu 10 : an Occupant of Repetitive Extragenic Palindromic Sequences. Journal of Bacteriology, 2006, 188, 37-44.	2.2	21
57	Role of iron and the TonB system in colonization of corn seeds and roots by Pseudomonas putida KT2440. Environmental Microbiology, 2005, 7, 443-449.	3.8	48
58	Multiple and Interconnected Pathways for l -Lysine Catabolism in Pseudomonas putida KT2440. Journal of Bacteriology, 2005, 187, 7500-7510.	2.2	122
59	Cell Density-Dependent Gene Contributes to Efficient Seed Colonization by Pseudomonas putida KT2440. Applied and Environmental Microbiology, 2004, 70, 5190-5198.	3.1	65
60	The davDT Operon of Pseudomonas putida, Involved in Lysine Catabolism, Is Induced in Response to the Pathway Intermediate δ-Aminovaleric Acid. Journal of Bacteriology, 2004, 186, 3439-3446.	2.2	40
61	In Vivo Gene Expression: The IVET System. , 2004, , 351-366.		2
62	Plant-associated Pseudomonas populations: molecular biology, DNA dynamics, and gene transfer. Plasmid, 2004, 52, 139-150.	1.4	42
63	Proline and Lysine Metabolism. , 2004, , 273-292.		3
64	Plant-Associated Biofilms. Reviews in Environmental Science and Biotechnology, 2003, 2, 99-108.	8.1	29
65	Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Molecular Microbiology, 2003, 49, 905-918.	2.5	438
66	Resident Parking Only: Rhamnolipids Maintain Fluid Channels in Biofilms. Journal of Bacteriology, 2003, 185, 699-700.	2.2	30
67	Root colonization by Pseudomonas putida: love at first sight. Microbiology (United Kingdom), 2002, 148, 341-343.	1.8	113
68	Responses of Gram-negative bacteria to certain environmental stressors. Current Opinion in Microbiology, 2001, 4, 166-171.	5.1	192
69	Expression of a Pseudomonas putida Aminotransferase Involved in Lysine Catabolism Is Induced in the Rhizosphere. Applied and Environmental Microbiology, 2001, 67, 5219-5224.	3.1	58
70	Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds. Journal of Bacteriology, 2000, 182, 2363-2369.	2.2	322
71	A novel system for efficient gene expression and monitoring of bacteria in aquatic environments. Environmental Microbiology, 1999, 1, 175-182.	3.8	2
72	Escherichia coli genes expressed preferentially in an aquatic environment. Molecular Microbiology, 1998, 28, 325-332.	2.5	35

#	Article	IF	CITATIONS
73	Ï∫s regulates pLS 1 maintenance in stationary-phase Escherichia coli. FEMS Microbiology Letters, 1996, 135, 45-50.	1.8	0
74	Ï∱s-dependent promoters inEscherichia coliare located in DNA regions with intrinsic curvature. Nucleic Acids Research, 1993, 21, 3667-3670.	14.5	45
75	Stationary-phase-inducible "gearbox" promoters: differential effects of katF mutations and role of sigma 70. Journal of Bacteriology, 1991, 173, 4482-4492.	2.2	222