M-Henar Valdivieso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5677739/publications.pdf

Version: 2024-02-01

516710 434195 33 1,852 16 31 citations g-index h-index papers 33 33 33 1208 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle Journal of Cell Biology, 1991, 114, 111-123.	5.2	436
2	Rapid Degradation of the G1 Cyclin Cln2 Induced by CDK-Dependent Phosphorylation. Science, 1996, 271, 1597-1601.	12.6	228
3	CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae Journal of Cell Biology, 1991, 114, 101-109.	5.2	174
4	Isolation and characterization of Saccharomyces cerevisiae mutants resistant to Calcofluor white. Journal of Bacteriology, 1988, 170, 1950-1954.	2.2	156
5	Schizosaccharomyces pombe protein kinase C homologues, $pck1p$ and $pck2p$, are targets of rho1p and rho2p and differentially regulate cell integrity. Journal of Cell Science, 1999, 112, 3569-3578.	2.0	97
6	<i>CHS5</i> , a Gene Involved in Chitin Synthesis and Mating in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1997, 17, 2485-2496.	2.3	84
7	Chitin Synthesis in a gas1 Mutant of Saccharomyces cerevisiae. Journal of Bacteriology, 2000, 182, 4752-4757.	2,2	83
8	Papulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in (1,3)beta-D-glucan synthesis in Saccharomyces cerevisiae. Journal of Bacteriology, 1995, 177, 5732-5739.	2.2	81
9	Characterization of the chitin biosynthesis process as a compensatory mechanism in thefks1mutant ofSaccharomyces cerevisiae. FEBS Letters, 2000, 478, 84-88.	2.8	80
10	Effect of calcofluor white on chitin synthases from Saccharomyces cerevisiae. Journal of Bacteriology, 1988, 170, 1945-1949.	2.2	71
11	Proper ascospore maturation requires the chs1+ chitin synthase gene in Schizosaccharomyces pombe. Molecular Microbiology, 2000, 35, 79-89.	2.5	68
12	Maintenance of cell integrity in thegas1 mutant of Saccharomyces cerevisiae requires the Chs3p-targeting and activation pathway and involves an unusual Chs3p localization. Yeast, 2002, 19, 1113-1124.	1.7	44
13	InSchizosaccharomyces pombechs2p has no chitin synthase activity but is related to septum formation. FEBS Letters, 2003, 549, 176-180.	2.8	26
14	Membrane Organization and Cell Fusion During Mating in Fission Yeast Requires Multipass Membrane Protein Prm1. Genetics, 2014, 196, 1059-1076.	2.9	23
15	The fission yeast Map4 protein is a novel adhesin required for mating. FEBS Letters, 2006, 580, 4457-4462.	2.8	20
16	The fission yeast Chs2 protein interacts with the type-II myosin Myo3p and is required for the integrity of the actomyosin ring. Journal of Cell Science, 2006, 119, 2768-2779.	2.0	20
17	Traffic Through the Trans-Golgi Network and the Endosomal System Requires Collaboration Between Exomer and Clathrin Adaptors in Fission Yeast. Genetics, 2017, 205, 673-690.	2.9	18
18	Regulation of Cell Wall Synthesis by the Clathrin Light Chain Is Essential for Viability in Schizosaccharomyces pombe. PLoS ONE, 2013, 8, e71510.	2. 5	17

#	Article	IF	Citations
19	The tetraspan protein Dni1p is required for correct membrane organization and cell wall remodelling during mating in <i>Schizosaccharomyces pombe</i> . Molecular Microbiology, 2009, 73, 695-709.	2.5	16
20	The Schizosaccharomyces pombe cfr $1+$ gene participates in mating through a new pathway that is independent offus $1+$. Yeast, 2006, 23, 375-388.	1.7	15
21	The <i>Schizosaccharomyces pombe</i> Map4 adhesin is a glycoprotein that can be extracted from the cell wall with alkali but not with βâ€glucanases and requires the Câ€terminal DIPSY domain for function. Molecular Microbiology, 2008, 69, 1476-1490.	2.5	15
22	The APâ€2 complex is required for proper temporal and spatial dynamics of endocytic patches in fission yeast. Molecular Microbiology, 2016, 100, 409-424.	2.5	12
23	9 Chitin Synthesis and Fungal Cell Morphogenesis. , 2016, , 167-190.		11
24	The FN3 and BRCT motifs in the exomer component Chs5p define a conserved module that is necessary and sufficient for its function. Cellular and Molecular Life Sciences, 2011, 68, 2907-2917.	5.4	10
25	Ent3 and GGA adaptors facilitate diverse anterograde and retrograde trafficking events to and from the prevacuolar endosome. Scientific Reports, 2019, 9, 10747.	3.3	10
26	The Fission Yeast SEL1 Domain Protein Cfh3p. Journal of Biological Chemistry, 2009, 284, 11070-11079.	3.4	8
27	The long life of an endocytic patch that misses AP-2. Current Genetics, 2016, 62, 765-770.	1.7	7
28	Different steps of sexual development are differentially regulated by the Sec8p and Exo70p exocyst subunits. FEMS Microbiology Letters, 2010, 305, 71-80.	1.8	6
29	The ancient claudin Dni2 facilitates yeast cell fusion by compartmentalizing Dni1 into a membrane subdomain. Cellular and Molecular Life Sciences, 2018, 75, 1687-1706.	5.4	5
30	Generation of null alleles for the functional analysis of six genes from the right arm of Saccharomyces cerevisiae chromosome II., 1999, 15, 615-623.		4
31	Analysis of the SNARE Stx8 recycling reveals that the retromer-sorting motif has undergone evolutionary divergence. PLoS Genetics, 2021, 17, e1009463.	3.5	3
32	The Integrity of the Cytokinesis Machinery under Stress Conditions Requires the Glucan Synthase Bgs1p and Its Regulator Cfh3p. PLoS ONE, 2012, 7, e42726.	2.5	3
33	Exomer Is Part of a Hub Where Polarized Secretion and Ionic Stress Connect. Frontiers in Microbiology, 2021, 12, 708354.	3.5	1