
Cathrin Brisken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5677521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell, 2008, 133, 704-715.	13.5	7,695
2	Identification of molecular apocrine breast tumours by microarray analysis. Oncogene, 2005, 24, 4660-4671.	2.6	694
3	The Tumor Suppressor p53 Regulates Polarity of Self-Renewing Divisions in Mammary Stem Cells. Cell, 2009, 138, 1083-1095.	13.5	656
4	Essential function of <i>Wnt-4</i> in mammary gland development downstream of progesterone signaling. Genes and Development, 2000, 14, 650-654.	2.7	416
5	Paracrine signaling through the epithelial estrogen receptor α is required for proliferation and morphogenesis in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2196-2201.	3.3	356
6	Hormone Action in the Mammary Gland. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003178-a003178.	2.3	337
7	Prolactin Controls Mammary Gland Development via Direct and Indirect Mechanisms. Developmental Biology, 1999, 210, 96-106.	0.9	284
8	Amphiregulin is an essential mediator of estrogen receptor function in mammary gland development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5455-5460.	3.3	274
9	Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3799-3804.	3.3	271
10	Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2989-2994.	3.3	258
11	Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development (Cambridge), 2004, 131, 4819-4829.	1.2	243
12	Epithelial-Mesenchymal Transition-Derived Cells Exhibit Multilineage Differentiation Potential Similar to Mesenchymal Stem Cells Â. Stem Cells, 2010, 28, 1435-1445.	1.4	232
13	Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nature Reviews Cancer, 2013, 13, 385-396.	12.8	204
14	p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes and Development, 2005, 19, 1485-1495.	2.7	190
15	Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer and Metastasis Reviews, 2016, 35, 547-573.	2.7	189
16	Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nature Cell Biology, 2015, 17, 1193-1204.	4.6	170
17	A Preclinical Model for ERα-Positive Breast Cancer Points to the Epithelial Microenvironment as Determinant of Luminal Phenotype and Hormone Response. Cancer Cell, 2016, 29, 407-422.	7.7	168
18	IGF-2 Is a Mediator of Prolactin-Induced Morphogenesis in the Breast. Developmental Cell, 2002, 3, 877-887.	3.1	158

CATHRIN BRISKEN

#	Article	IF	CITATIONS
19	Progesterone/RANKL Is a Major Regulatory Axis in the Human Breast. Science Translational Medicine, 2013, 5, 182ra55.	5.8	157
20	IL6/STAT3 Signaling Hijacks Estrogen Receptor α Enhancers to Drive Breast Cancer Metastasis. Cancer Cell, 2020, 38, 412-423.e9.	7.7	145
21	Does Cancer Start in the Womb? Altered Mammary Gland Development and Predisposition to Breast Cancer due to in Utero Exposure to Endocrine Disruptors. Journal of Mammary Gland Biology and Neoplasia, 2013, 18, 199-208.	1.0	138
22	miR148b is a major coordinator of breast cancer progression in a relapseâ€associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB Journal, 2013, 27, 1223-1235.	0.2	134
23	Hormonal control of alveolar development and its implications for breast carcinogenesis. Journal of Mammary Gland Biology and Neoplasia, 2002, 7, 39-48.	1.0	115
24	The Ret Receptor Tyrosine Kinase Pathway Functionally Interacts with the ERα Pathway in Breast Cancer. Cancer Research, 2008, 68, 3743-3751.	0.4	109
25	Perinatal Exposure to Bisphenol A Increases Adult Mammary Gland Progesterone Response and Cell Number. Molecular Endocrinology, 2011, 25, 1915-1923.	3.7	105
26	Progesterone and <scp>W</scp> nt4 control mammary stem cells via myoepithelial crosstalk. EMBO Journal, 2015, 34, 641-652.	3.5	90
27	Alveolar and Lactogenic Differentiation. Journal of Mammary Gland Biology and Neoplasia, 2006, 11, 239-248.	1.0	89
28	Control of hair follicle cell fate by underlying mesenchyme through a CSL–Wnt5a–FoxN1 regulatory axis. Genes and Development, 2010, 24, 1519-1532.	2.7	87
29	Stem Cells and the Stem Cell Niche in the Breast: An Integrated Hormonal and Developmental Perspective. Stem Cell Reviews and Reports, 2007, 3, 147-156.	5.6	78
30	Endocrine hormones and local signals during the development of the mouse mammary gland. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 181-195.	5.9	78
31	Characterization of circulating breast cancer cells with tumorigenic and metastatic capacity. EMBO Molecular Medicine, 2020, 12, e11908.	3.3	77
32	ER and PR signaling nodes during mammary gland development. Breast Cancer Research, 2012, 14, 210.	2.2	74
33	Progesterone and Overlooked Endocrine Pathways in Breast Cancer Pathogenesis. Endocrinology, 2015, 156, 3442-3450.	1.4	63
34	An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells. Breast Cancer Research, 2007, 9, R38.	2.2	45
35	Epidermal Receptor Activator of NF-κB Ligand Controls Langerhans Cells Numbers and Proliferation. Journal of Immunology, 2008, 181, 1103-1108.	0.4	41
36	ID4 regulates mammary gland development by suppressing p38MAPK activity. Development (Cambridge), 2011, 138, 5247-5256.	1.2	40

CATHRIN BRISKEN

#	Article	IF	CITATIONS
37	Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics. Experimental Cell Research, 2010, 316, 422-432.	1.2	39
38	The secreted protease Adamts18 links hormone action to activation of the mammary stem cell niche. Nature Communications, 2020, 11, 1571.	5.8	37
39	90 YEARS OF PROGESTERONE: Progesterone receptor signaling in the normal breast and its implications for cancer. Journal of Molecular Endocrinology, 2020, 65, T81-T94.	1.1	36
40	The challenges of modeling hormone receptor-positive breast cancer in mice. Endocrine-Related Cancer, 2018, 25, R319-R330.	1.6	33
41	Using Gene Expression Arrays to Elucidate Transcriptional Profiles Underlying Prolactin Function. Journal of Mammary Gland Biology and Neoplasia, 2003, 8, 269-285.	1.0	32
42	Cyclin D1 Enhances the Response to Estrogen and Progesterone by Regulating Progesterone Receptor Expression. Molecular and Cellular Biology, 2010, 30, 3111-3125.	1.1	31
43	<i>Adamts18</i> deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development. Biology Open, 2016, 5, 1585-1594.	0.6	31
44	Endocrine Disruptors and Breast Cancer. Chimia, 2008, 62, 406.	0.3	30
45	The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14241-14245.	3.3	29
46	Intraductal patientâ€derived xenografts of estrogen receptor αâ€positive breast cancer recapitulate the histopathological spectrum and metastatic potential of human lesions. Journal of Pathology, 2019, 247, 287-292.	2.1	27
47	Estrogen receptor positive breast cancers have patient specific hormone sensitivities and rely on progesterone receptor. Nature Communications, 2022, 13, .	5.8	27
48	Oestrogen receptorÂα AF-1 and AF-2 domains have cell population-specific functions in the mammary epithelium. Nature Communications, 2018, 9, 4723.	5.8	26
49	Intraductal xenografts show lobular carcinoma cells rely on their own extracellular matrix and LOXL1. EMBO Molecular Medicine, 2021, 13, e13180.	3.3	25
50	What Signals Operate in the Mammary Niche?. Breast Disease, 2008, 29, 69-82.	0.4	22
51	Paracrine signaling by progesterone. Molecular and Cellular Endocrinology, 2012, 357, 80-90.	1.6	20
52	Contraceptive progestins with androgenic properties stimulate breast epithelial cell proliferation. EMBO Molecular Medicine, 2021, 13, e14314.	3.3	20
53	ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nature Communications, 2022, 13, .	5.8	20
54	Atlas of Lobular Breast Cancer Models: Challenges and Strategic Directions. Cancers, 2021, 13, 5396.	1.7	17

CATHRIN BRISKEN

#	Article	IF	CITATIONS
55	A high resolution LC–MS targeted method for the concomitant analysis of 11 contraceptive progestins and 4 steroids. Journal of Pharmaceutical and Biomedical Analysis, 2019, 175, 112756.	1.4	16
56	A novel culture method that sustains ERα signaling in human breast cancer tissue microstructures. Journal of Experimental and Clinical Cancer Research, 2020, 39, 161.	3.5	16
57	C/EBPα mediates the growth inhibitory effect of progestins on breast cancer cells. EMBO Journal, 2019, 38, e101426.	3.5	15
58	Two-Tier Mapper, an unbiased topology-based clustering method for enhanced global gene expression analysis. Bioinformatics, 2019, 35, 3339-3347.	1.8	11
59	Monitoring proliferative activities of hormone-like odorants in human breast cancer cells by gene transcription profiling and electrical impedance spectroscopy. Biosensors and Bioelectronics, 2013, 50, 431-436.	5.3	9
60	Reply to Is progesterone a neutral or protective factor for breast cancer?. Nature Reviews Cancer, 2014, 14, 146-146.	12.8	6
61	Membrane expression of the estrogen receptor ${\sf ER}\hat{\sf l}\pm$ is required for intercellular communications in the mammary epithelium. Development (Cambridge), 2020, 147, .	1.2	6
62	A new Achilles Heel in breast cancer?. Oncotarget, 2013, 4, 1126-1127.	0.8	6
63	An Ex vivo Model to Study Hormone Action in the Human Breast. Journal of Visualized Experiments, 2015, , e52436.	0.2	5
64	Deep Learning Enables Individual Xenograft Cell Classification in Histological Images by Analysis of Contextual Features. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 101-112.	1.0	5
65	High hopes for RANKL: will the mouse model live up to its promise?. Breast Cancer Research, 2011, 13, 302.	2.2	3
66	In vivo reprogramming of non-mammary cells to an epithelial cell fate is independent of amphiregulin signaling. Journal of Cell Science, 2017, 130, 2018-2025.	1.2	3
67	Breast Cancer Microenvironment and the Metastatic Process. , 2017, , 39-48.		1
68	Analysis of Mammary Gland Phenotypes by Transplantation of the Genetically Marked Mammary Epithelium. Methods in Molecular Biology, 2017, 1501, 115-129.	0.4	1
69	Variably Scaled Kernels Improve Classification of Hormonally-Treated Patient-Derived Xenografts. , 2020, , .		1
70	IGF-2 Is a Mediator of Prolactin-Induced Morphogenesis in the Breast. Developmental Cell, 2003, 4, 283.	3.1	0
71	Abstract 2993: Intraductal xenografts model ERα-positive invasive lobular carcinoma of the breast. , 2021, , .		0