
Antonio Miranda-Vizuete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5677146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting EDEM protects against ER stress and improves development and survival in C. elegans. PLoS Genetics, 2022, 18, e1010069.	3.5	5
2	Sperm Redox System Equilibrium: Implications for Fertilization and Male Fertility. Advances in Experimental Medicine and Biology, 2022, , 345-367.	1.6	3
3	A conserved cysteineâ€based redox mechanism sustains TFEB/HLHâ€30 activity under persistent stress. EMBO Journal, 2021, 40, e105793.	7.8	22
4	A Caenorhabditis elegans ortholog of human selenium-binding protein 1 is a pro-aging factor protecting against selenite toxicity. Redox Biology, 2020, 28, 101323.	9.0	17
5	The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy. Free Radical Biology and Medicine, 2020, 152, 797-809.	2.9	19
6	Downregulation of thioredoxin-1-dependent CD95 S-nitrosation by Sorafenib reduces liver cancer. Redox Biology, 2020, 34, 101528.	9.0	16
7	Cautionary note on the use of <i>Caenorhabditis elegans</i> to study muscle phenotypes caused by mutations in the human <i>MYH7</i> gene. BioTechniques, 2020, 68, 296-299.	1.8	2
8	Selenite-induced Expression of a Caenorhabditis elegans Pro-aging Factor and Ortholog of Human Selenium-binding Protein 1. Current Nutraceuticals, 2020, 1, 73-79.	0.1	3
9	4D Microscopy: Unraveling Caenorhabditis elegans Embryonic Development using Nomarski Microscopy. Journal of Visualized Experiments, 2020, , .	0.3	0
10	Implications of the mitochondrial interactome of mammalian thioredoxin 2 for normal cellular function and disease. Free Radical Biology and Medicine, 2019, 137, 59-73.	2.9	10
11	Redox-dependent and redox-independent functions of Caenorhabditis elegans thioredoxin 1. Redox Biology, 2019, 24, 101178.	9.0	9
12	Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation. Cell Death and Differentiation, 2019, 26, 1545-1565.	11.2	30
13	Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PLoS ONE, 2019, 14, e0199483.	2.5	44
14	Reduction of mRNA export unmasks different tissue sensitivities to low mRNA levels during Caenorhabditis elegans development. PLoS Genetics, 2019, 15, e1008338.	3.5	3
15	Exploring Target Genes Involved in the Effect of Quercetin on the Response to Oxidative Stress in Caenorhabditis elegans. Antioxidants, 2019, 8, 585.	5.1	20
16	Sex-Specific Response of Caenorhabditis elegans to Methylmercury Toxicity. Neurotoxicity Research, 2019, 35, 208-216.	2.7	14
17	Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease. Journal of Molecular Neuroscience, 2019, 67, 312-342.	2.3	32
18	The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against α-Synuclein-Induced Toxicity. Molecular Neurobiology, 2018, 55, 7533-7552.	4.0	40

#	Article	IF	CITATIONS
19	Intracellular Trafficking and Persistence of Acinetobacter baumannii Requires Transcription Factor EB. MSphere, 2018, 3, .	2.9	33
20	Genetic and cellular sensitivity of <i>Caenorhabditis elegans</i> to the chemotherapeutic agent cisplatin. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	13
21	The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner. NeuroToxicology, 2018, 68, 189-202.	3.0	5
22	A network of insulin peptides regulate glucose uptake by astrocytes: Potential new druggable targets for brain hypometabolism. Neuropharmacology, 2018, 136, 216-222.	4.1	19
23	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
24	Insights into the differential toxicological and antioxidant effects of 4-phenylchalcogenil-7-chloroquinolines in Caenorhabditis elegans. Free Radical Biology and Medicine, 2017, 110, 133-141.	2.9	39
25	Selenoprotein T is required for pathogenic bacteria avoidance in Caenorhabditis elegans. Free Radical Biology and Medicine, 2017, 108, 174-182.	2.9	7
26	Caenorhabditis elegans as a model for understanding ROS function in physiology and disease. Redox Biology, 2017, 11, 708-714.	9.0	80
27	The neuroprotective transcription factor ATF5 is decreased and sequestered into polyglutamine inclusions in Huntington's disease. Acta Neuropathologica, 2017, 134, 839-850.	7.7	16
28	Caenorhabditis elegans AGXT-1 is a mitochondrial and temperature-adapted ortholog of peroxisomal human AGT1: New insights into between-species divergence in glyoxylate metabolism. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1195-1205.	2.3	3
29	Biallelic Variants in UBA5 Reveal that Disruption of the UFM1 Cascade Can Result in Early-Onset Encephalopathy. American Journal of Human Genetics, 2016, 99, 695-703.	6.2	87
30	Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development. Free Radical Biology and Medicine, 2016, 96, 446-461.	2.9	16
31	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
32	TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in <i>Caenorhabditis elegans</i> . Genetics, 2016, 203, 387-402.	2.9	18
33	Glutathione Is the Resolving Thiol for Thioredoxin Peroxidase Activity of 1-Cys Peroxiredoxin Without Being Consumed During the Catalytic Cycle. Antioxidants and Redox Signaling, 2016, 24, 115-128.	5.4	36
34	Negative biomarker based male fertility evaluation: Sperm phenotypes associated with molecular-level anomalies. Asian Journal of Andrology, 2015, 17, 554.	1.6	49
35	<i>Cis</i> - and <i>Trans</i> -Regulatory Mechanisms of Gene Expression in the ASJ Sensory Neuron of <i>Caenorhabditis elegans</i> . Genetics, 2015, 200, 123-134.	2.9	14
36	Functional characterization of thioredoxin 3 (TRX-3), a Caenorhabditis elegans intestine-specific thioredoxin. Free Radical Biology and Medicine, 2014, 68, 205-219.	2.9	19

#	Article	IF	CITATIONS
37	Adjustments, extinction, and remains of selenocysteine incorporation machinery in the nematode lineage. Rna, 2014, 20, 1023-1034.	3.5	20
38	Protective Role of DNJ-27/ERdj5 in <i>Caenorhabditis elegans</i> Models of Human Neurodegenerative Diseases. Antioxidants and Redox Signaling, 2014, 20, 217-235.	5.4	57
39	Protective effects of the thioredoxin and glutaredoxin systems in dopamine-induced cell death. Free Radical Biology and Medicine, 2014, 73, 328-336.	2.9	41
40	Thioredoxin-Like Protein 2 Is Overexpressed in Colon Cancer and Promotes Cancer Cell Metastasis by Interaction with Ran. Antioxidants and Redox Signaling, 2013, 19, 899-911.	5.4	24
41	Semen Levels of Spermatid-Specific Thioredoxin-3 Correlate with Pregnancy Rates in ART Couples. PLoS ONE, 2013, 8, e61000.	2.5	14
42	The Characterization of the <i>Caenorhabditis elegans</i> Mitochondrial Thioredoxin System Uncovers an Unexpected Protective Role of Thioredoxin Reductase 2 in β-Amyloid Peptide Toxicity. Antioxidants and Redox Signaling, 2012, 16, 1384-1400.	5.4	46
43	Selenium induces cholinergic motor neuron degeneration in Caenorhabditis elegans. NeuroToxicology, 2012, 33, 1021-1032.	3.0	70
44	Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans. Mechanisms of Ageing and Development, 2012, 133, 563-574.	4.6	89
45	The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2011, 406, 478-482.	2.1	36
46	The Thioredoxin TRX-1 Modulates the Function of the Insulin-Like Neuropeptide DAF-28 during Dauer Formation in Caenorhabditis elegans. PLoS ONE, 2011, 6, e16561.	2.5	18
47	Divergence in enzyme regulation between <i>Caenorhabditis elegans</i> and human tyrosine hydroxylase, the key enzyme in the synthesis of dopamine. Biochemical Journal, 2011, 434, 133-141.	3.7	20
48	Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors. Free Radical Biology and Medicine, 2011, 50, 689-699.	2.9	93
49	Selenoprotein TRXR-1 and GSR-1 are essential for removal of old cuticle during molting in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1064-1069.	7.1	69
50	The Glutaredoxin GLRX-21 Functions to Prevent Selenium-Induced Oxidative Stress in Caenorhabditis elegans. Toxicological Sciences, 2010, 118, 530-543.	3.1	52
51	The human thioredoxin reductase-1 splice variant TXNRD1_v3 is an atypical inducer of cytoplasmic filaments and cell membrane filopodia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1588-1596.	4.1	23
52	Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy. Nature Structural and Molecular Biology, 2009, 16, 890-896.	8.2	91
53	High Throughput, Parallel Imaging and Biomarker Quantification of Human Spermatozoa by ImageStream Flow Cytometry. Systems Biology in Reproductive Medicine, 2009, 55, 244-251.	2.1	29
54	Peroxiredoxin 2 and Peroxidase Enzymatic Activity of Mammalian Spermatozoa1. Biology of Reproduction, 2009, 80, 1168-1177.	2.7	41

#	Article	IF	CITATIONS
55	Identification and distribution of thioredoxinâ€like 2 as the antigen for the monoclonal antibody MC3 specific to colorectal cancer. Proteomics, 2008, 8, 2220-2229.	2.2	18
56	Cleavage of Disulfide Bonds in Mouse Spermatogenic Cell-Specific Type 1 Hexokinase Isozyme Is Associated with Increased Hexokinase Activity and Initiation of Sperm Motility1. Biology of Reproduction, 2008, 79, 537-545.	2.7	28
57	Induction of Cell Membrane Protrusions by the N-terminal Glutaredoxin Domain of a Rare Splice Variant of Human Thioredoxin Reductase 1. Journal of Biological Chemistry, 2008, 283, 2814-2821.	3.4	38
58	Thetxl1+gene fromSchizosaccharomyces pombeencodes a new thioredoxin-like 1 protein that participates in the antioxidant defence againsttert-butyl hydroperoxide. Yeast, 2007, 24, 481-490.	1.7	16
59	Lifespan decrease in aCaenorhabditis elegansmutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons. FEBS Letters, 2006, 580, 484-490.	2.8	78
60	Characterization of human thioredoxin-like-1: Potential involvement in the cellular response against glucose deprivation. FEBS Letters, 2006, 580, 960-967.	2.8	44
61	Involvement of glutaredoxin-1 and thioredoxin-1 in β-amyloid toxicity and Alzheimer's disease. Cell Death and Differentiation, 2006, 13, 1454-1465.	11.2	159
62	Thioredoxin-related protein-1 induced by prostaglandin E2. International Journal of Cancer, 2006, 119, 2499-2501.	5.1	0
63	Absolute mRNA levels and transcriptional regulation of the mouse testis-specific thioredoxins. Biochemical and Biophysical Research Communications, 2005, 330, 65-74.	2.1	12
64	Spermatocyte/Spermatid-specific Thioredoxin-3, a Novel Golgi Apparatus-associated Thioredoxin, Is a Specific Marker of Aberrant Spermatogenesis. Journal of Biological Chemistry, 2004, 279, 34971-34982.	3.4	63
65	An Alternative Splicing Variant of the Selenoprotein Thioredoxin Reductase Is a Modulator of Estrogen Signaling. Journal of Biological Chemistry, 2004, 279, 38721-38729.	3.4	51
66	Overexpression of Enzymatically Active Human Cytosolic and Mitochondrial Thioredoxin Reductase in HEK-293 Cells. Journal of Biological Chemistry, 2004, 279, 54510-54517.	3.4	56
67	The Mammalian Testis-Specific Thioredoxin System. Antioxidants and Redox Signaling, 2004, 6, 25-40.	5.4	81
68	Evidence for intriguingly complex transcription of human thioredoxin reductase 1. Free Radical Biology and Medicine, 2004, 36, 641-656.	2.9	83
69	Purification and characterization of Δ3Trx-1, a splicing variant of human thioredoxin-1 lacking exon 3. Protein Expression and Purification, 2003, 27, 319-324.	1.3	4
70	ERdj5, an Endoplasmic Reticulum (ER)-resident Protein Containing DnaJ and Thioredoxin Domains, Is Expressed in Secretory Cells or following ER Stress. Journal of Biological Chemistry, 2003, 278, 1059-1066.	3.4	175
71	Cloning and Developmental Analysis of Murid Spermatid-specific Thioredoxin-2 (SPTRX-2), a Novel Sperm Fibrous Sheath Protein and Autoantigen. Journal of Biological Chemistry, 2003, 278, 44874-44885.	3.4	44
72	Characterization of Human Thioredoxin-like 2. Journal of Biological Chemistry, 2003, 278, 13133-13142.	3.4	80

#	Article	IF	CITATIONS
73	Cloning, expression and characterization of mouse spermatid specific thioredoxin-1 gene and protein. Molecular Human Reproduction, 2002, 8, 710-718.	2.8	22
74	Developmental Expression of Spermatid-Specific Thioredoxin-1 Protein: Transient Association to the Longitudinal Columns of the Fibrous Sheath During Sperm Tail Formation1. Biology of Reproduction, 2002, 67, 1546-1554.	2.7	34
75	Human Mitochondrial Thioredoxin. Journal of Biological Chemistry, 2002, 277, 33249-33257.	3.4	169
76	Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments. Biochemical Journal, 2002, 364, 617-623.	3.7	61
77	Human spermatid-specific thioredoxin-1 (Sptrx-1) is a two-domain protein with oxidizing activity. FEBS Letters, 2002, 530, 79-84.	2.8	21
78	Genomic organization and identification of a novel alternative splicing variant of mouse mitochondrial thioredoxin reductase (TrxR2) gene. Molecules and Cells, 2002, 13, 488-92.	2.6	17
79	A genome-wide survey of human thioredoxin and glutaredoxin family pseudogenes. Human Genetics, 2001, 109, 429-439.	3.8	7
80	Sptrx-2, a fusion protein composed of one thioredoxin and three tandemly repeated NDP-kinase domains is expressed in human testis germ cells. Genes To Cells, 2001, 6, 1077-1090.	1.2	77
81	Characterization of Sptrx, a Novel Member of the Thioredoxin Family Specifically Expressed in Human Spermatozoa. Journal of Biological Chemistry, 2001, 276, 31567-31574.	3.4	130
82	ldentification of the First Human Glutaredoxin Pseudogene Localized to Human Chromosome 20qll.2. DNA Sequence, 2001, 11, 535-539.	0.7	1
83	Mitochondria of Saccharomyces cerevisiae Contain One-conserved Cysteine Type Peroxiredoxin with Thioredoxin Peroxidase Activity. Journal of Biological Chemistry, 2000, 275, 16296-16301.	3.4	171
84	The Mitochondrial Thioredoxin System. Antioxidants and Redox Signaling, 2000, 2, 801-810.	5.4	134
85	Identification of a Novel Thioredoxin-1 Pseudogene on Human Chromosome 10. DNA Sequence, 2000, 10, 411-414.	0.7	1
86	Genomic Structure and Chromosomal Localization of Human Thioredoxin-Like Protein Gene (<i>txl</i>). DNA Sequence, 2000, 10, 419-424.	0.7	5
87	Identification and Functional Characterization of a Novel Mitochondrial Thioredoxin System in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274, 6366-6373.	3.4	187
88	cDNA cloning, expression and chromosomal localization of the mouse mitochondrial thioredoxin reductase gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1447, 113-118.	2.4	36
89	Human mitochondrial thioredoxin reductase. cDNA cloning, expression and genomic organization. FEBS Journal, 1999, 261, 405-412.	0.2	156
90	Cloning and Sequencing of Mouse Glutaredoxin (grx) cDNA. DNA Sequence, 1999, 10, 179-182.	0.7	3

#	Article	IF	CITATIONS
91	Molecular Cloning and Expression of a cDNA Encoding a Human Thioredoxin-like Protein. Biochemical and Biophysical Research Communications, 1998, 243, 284-288.	2.1	49
92	Cloning, Expression, and Characterization of a NovelEscherichia coli Thioredoxin. Journal of Biological Chemistry, 1997, 272, 30841-30847.	3.4	130
93	The novel oxidoreductase KDRF (KM-102-derived reductase-like factor) is identical with human thioredoxin reductase. Biochemical Journal, 1997, 325, 287-288.	3.7	12
94	Cloning and Expression of a Novel Mammalian Thioredoxin. Journal of Biological Chemistry, 1997, 272, 2936-2941.	3.4	335
95	The Levels of Ribonucleotide Reductase, Thioredoxin, Glutaredoxin 1, and GSH Are Balanced in Escherichia coli K12. Journal of Biological Chemistry, 1996, 271, 19099-19103.	3.4	60
96	Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9813-9817.	7.1	181