Daniel C.W. Tsang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5674437/publications.pdf

Version: 2024-02-01

808 papers 68,363 citations

135 h-index 199 g-index

808 all docs 808 docs citations

808 times ranked 35762 citing authors

#	Article	IF	CITATIONS
1	Vinasse-based biochar magnetic composites: adsorptive removal of tetracycline in aqueous solutions. Environmental Science and Pollution Research, 2023, 30, 8916-8927.	5.3	5
2	Effects of lead pollution on soil microbial community diversity and biomass and on invertase activity. Soil Ecology Letters, 2023, 5, 118-127.	4.5	7
3	Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 2022, 52, 675-726.	12.8	196
4	Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 2022, 67, 150-200.	19.3	245
5	Biochar composites: Emerging trends, field successes and sustainability implications. Soil Use and Management, 2022, 38, 14-38.	4.9	73
6	Cytotoxicity of stabilized/solidified municipal solid waste incineration fly ash. Journal of Hazardous Materials, 2022, 424, 127369.	12.4	29
7	Mechanistic insights into trace metal mobilization at the micro-scale in the rhizosphere of Vallisneria spiralis. Science of the Total Environment, 2022, 806, 150735.	8.0	10
8	Microplastics and environmental pollutants: Key interaction and toxicology in aquatic and soil environments. Journal of Hazardous Materials, 2022, 422, 126843.	12.4	220
9	Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. Journal of Hazardous Materials, 2022, 423, 127060.	12.4	82
10	Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions. Journal of Hazardous Materials, 2022, 421, 126647.	12.4	32
11	Designing novel magnesium oxysulfate cement for stabilization/solidification of municipal solid waste incineration fly ash. Journal of Hazardous Materials, 2022, 423, 127025.	12.4	89
12	Stable isotope fractionation of thallium as novel evidence for its geochemical transfer during lead‑zinc smelting activities. Science of the Total Environment, 2022, 803, 150036.	8.0	16
13	Green remediation of benzene contaminated groundwater using persulfate activated by biochar composite loaded with iron sulfide minerals. Chemical Engineering Journal, 2022, 429, 132292.	12.7	39
14	Synergistic effects of blending seafood wastes as Co-pyrolysis feedstock on syngas production and biochar properties. Chemical Engineering Journal, 2022, 429, 132487.	12.7	11
15	Machine learning exploration of the direct and indirect roles of Fe impregnation on Cr(VI) removal by engineered biochar. Chemical Engineering Journal, 2022, 428, 131967.	12.7	50
16	Co-pyrolysis route of chlorella sp. and bauxite tailings to fabricate metal-biochar as persulfate activator. Chemical Engineering Journal, 2022, 428, 132578.	12.7	29
17	Novel insights into the adsorption of organic contaminants by biochar: A review. Chemosphere, 2022, 287, 132113.	8.2	97
18	Transformation and fate of thallium and accompanying metal(loid)s in paddy soils and rice: A case study from a large-scale industrial area in China. Journal of Hazardous Materials, 2022, 423, 126997.	12.4	37

#	Article	IF	CITATIONS
19	The sorption and short-term immobilization of lead and cadmium by nano-hydroxyapatite/biochar in aqueous solution and soil. Chemosphere, 2022, 286, 131810.	8.2	42
20	Critical factors for levulinic acid production from starch-rich food waste: solvent effects, reaction pressure, and phase separation. Green Chemistry, 2022, 24, 163-175.	9.0	29
21	Insights into deep decline of As(III) leachability induced by As(III) partial oxidation during lime stabilization of As–Ca sludge. Journal of Hazardous Materials, 2022, 424, 127575.	12.4	6
22	Interactions between biochar and clay minerals in changing biochar carbon stability. Science of the Total Environment, 2022, 809, 151124.	8.0	33
23	Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environmental Research, 2022, 207, 112179.	7. 5	75
24	Roles of biochar in cement-based stabilization/solidification of municipal solid waste incineration fly ash. Chemical Engineering Journal, 2022, 430, 132972.	12.7	98
25	Modeling and visualizing the transport and retention of cationic and oxyanionic metals (Cd and Cr) in saturated soil under various hydrochemical and hydrodynamic conditions. Science of the Total Environment, 2022, 812, 151467.	8.0	14
26	Activation of peroxydisulfate by ball-milled \hat{l} ±-FeOOH/biochar composite for phenol removal: Component contribution and internal mechanisms. Environmental Pollution, 2022, 293, 118596.	7.5	21
27	Catalytic co-hydrothermal carbonization of food waste digestate and yard waste for energy application and nutrient recovery. Bioresource Technology, 2022, 344, 126395.	9.6	67
28	Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. Journal of Hazardous Materials, 2022, 425, 127906.	12.4	83
29	Biochar-augmented carbon-negative concrete. Chemical Engineering Journal, 2022, 431, 133946.	12.7	74
30	Mechanochemical modification of biochar-attapulgite nanocomposites for cadmium removal: Performance and mechanisms. Biochemical Engineering Journal, 2022, 179, 108332.	3.6	10
31	Magnetic MgFe2O4/biochar derived from pomelo peel as a persulfate activator for levofloxacin degradation: Effects and mechanistic consideration. Bioresource Technology, 2022, 346, 126547.	9.6	67
32	Chrome-free synergistic tanning system based on biomass-derived hydroxycarboxylic acid–zirconium complexes. Journal of Cleaner Production, 2022, 336, 130428.	9.3	24
33	Efficient removal of hexavalent chromium through adsorption-reduction-adsorption pathway by iron-clay biochar composite prepared from Populus nigra. Separation and Purification Technology, 2022, 285, 120386.	7.9	36
34	Contrasting effects of dry-wet and freeze-thaw aging on the immobilization of As in As-contaminated soils amended by zero-valent iron-embedded biochar. Journal of Hazardous Materials, 2022, 426, 128123.	12.4	20
35	Mg-Fe LDH-coated biochars for metal(loid) removal: Surface complexation modeling and structural change investigations. Chemical Engineering Journal, 2022, 432, 134360.	12.7	22
36	Ball-milled magnetite for efficient arsenic decontamination: Insights into oxidation–adsorption mechanism. Journal of Hazardous Materials, 2022, 427, 128117.	12.4	16

#	Article	IF	Citations
37	Evaluation of long-term carbon sequestration of biochar in soil with biogeochemical field model. Science of the Total Environment, 2022, 822, 153576.	8.0	24
38	Influence of Dolomite Rock Powder and Iron Tailings Powder on the Electrical Resistivity, Strength and Microstructure of Cement Pastes and Concrete. Coatings, 2022, 12, 95.	2.6	6
39	Overview of hazardous waste treatment and stabilization/solidification technology. , 2022, , 1-14.		4
40	Biochar for green and sustainable stabilization/solidification., 2022,, 65-73.		1
41	Efficient removal of pefloxacin from aqueous solution by acid–alkali modified sludge-based biochar: adsorption kinetics, isotherm, thermodynamics, and mechanism. Environmental Science and Pollution Research, 2022, 29, 43201-43211.	5.3	7
42	Future research directions for sustainable remediation. , 2022, , 555-564.		0
43	Evaluating comprehensive carbon emissions of solidification/stabilization technologies: a case study. , 2022, , 517-530.		0
44	Thermochemical conversion of heavy metal contaminated biomass: Fate of the metals and their impact on products. Science of the Total Environment, 2022, 822, 153426.	8.0	26
45	Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates. Science of the Total Environment, 2022, 822, 153483.	8.0	51
46	Direct and Indirect Electron Transfer Routes of Chromium(VI) Reduction with Different Crystalline Ferric Oxyhydroxides in the Presence of Pyrogenic Carbon. Environmental Science & Environmental Scie	10.0	40
47	Sustainability-inspired upcycling of waste polyethylene terephthalate plastic into porous carbon for CO ₂ capture. Green Chemistry, 2022, 24, 1494-1504.	9.0	51
48	Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@FeS core-shell nanowires. Environmental Technology (United Kingdom), 2022, , 1-24.	2.2	0
49	Impact of catalytic hydrothermal treatment and Ca/Al-modified hydrochar on lability, sorption, and speciation of phosphorus in swine manure: Microscopic and spectroscopic investigations. Environmental Pollution, 2022, 299, 118877.	7.5	15
50	Stoichiometric carbocatalysis via epoxide-like Câ^'Sâ^'O configuration on sulfur-doped biochar for environmental remediation. Journal of Hazardous Materials, 2022, 428, 128223.	12.4	25
51	Co-application of biochar and organic fertilizer promotes the yield and quality of red pitaya (Hylocereus polyrhizus) by improving soil properties. Chemosphere, 2022, 294, 133619.	8.2	26
52	Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: Distinct redox nature with varying iron/carbon speciation. Journal of Hazardous Materials, 2022, 430, 128479.	12.4	67
53	Sewage sludge ash-based mortar as construction material: Mechanical studies, macrofouling, and marine toxicity. Science of the Total Environment, 2022, 824, 153768.	8.0	8
54	Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning. Environmental Science & Environmental Science	10.0	138

#	Article	IF	CITATIONS
55	Development of phosphorus composite biochar for simultaneous enhanced carbon sink and heavy metal immobilization in soil. Science of the Total Environment, 2022, 831, 154845.	8.0	28
56	Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environmental Science and Ecotechnology, 2022, 10, 100167.	13.5	90
57	New insights into physicochemical properties of different particulate size-fractions and dissolved organic matter derived from biochars and their sorption capacity for phenanthrene. Journal of Hazardous Materials, 2022, 434, 128867.	12.4	10
58	Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: Preparation, characterization, and adsorption properties. Separation and Purification Technology, 2022, 289, 120796.	7.9	42
59	Soil plastisphere: Exploration methods, influencing factors, and ecological insights. Journal of Hazardous Materials, 2022, 430, 128503.	12.4	45
60	A review of pristine and modified biochar immobilizing typical heavy metals in soil: Applications and challenges. Journal of Hazardous Materials, 2022, 432, 128668.	12.4	83
61	Unintentional release of antibiotics associated with nutrients recovery from source-separated human urine by biochar. Chemosphere, 2022, 299, 134426.	8.2	9
62	Valorizing plastic toy wastes to flammable gases through CO2-mediated pyrolysis with a Co-based catalyst. Journal of Hazardous Materials, 2022, 434, 128850.	12.4	3
63	Selective hydrogenation of vanillin to vanillyl alcohol over Pd, Pt, and Au catalysts supported on an advanced nitrogen-containing carbon material produced from food waste. Chemical Engineering Journal, 2022, 440, 135885.	12.7	23
64	Removal of toxic elements from aqueous environments using nano zero-valent iron- and iron oxide-modified biochar: a review. Biochar, 2022, 4, 1.	12.6	54
65	Source tracing with cadmium isotope and risk assessment of heavy metals in sediment of an urban river, China. Environmental Pollution, 2022, 305, 119325.	7. 5	23
66	Control of the fate of toxic pollutants from catalytic pyrolysis of polyurethane by oxidation using CO2. Chemical Engineering Journal, 2022, 442, 136358.	12.7	11
67	Enhancing microplastics biodegradation during composting using livestock manure biochar. Environmental Pollution, 2022, 306, 119339.	7. 5	29
68	Investigations of the Mechanical Properties and Durability of Reactive Powder Concrete Containing Waste Fly Ash. Buildings, 2022, 12, 560.	3.1	16
69	Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects. Renewable and Sustainable Energy Reviews, 2022, 163, 112515.	16.4	87
70	Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. Bioresource Technology, 2022, 355, 127303.	9.6	50
71	Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. Science of the Total Environment, 2022, 836, 155421.	8.0	30
72	Biochar and sustainable development goals. , 2022, , 15-22.		6

#	Article	IF	Citations
73	Biochars' potential role in the remediation, revegetation, and restoration of contaminated soils. , 2022, , 381-399.		0
74	Partitioning and (im)mobilization of arsenic associated with iron in arsenic-bearing deep subsoil profiles from Hong Kong. Environmental Pollution, 2022, 308, 119527.	7.5	5
75	Catalytic valorisation of various paper wastes into levulinic acid, hydroxymethylfurfural, and furfural: Influence of feedstock properties and ferric chloride. Bioresource Technology, 2022, 357, 127376.	9.6	11
76	Customizing high-performance molten salt biochar from wood waste for CO2/N2 separation. Fuel Processing Technology, 2022, 234, 107319.	7.2	23
77	Sustainable management of plastic wastes in COVID-19 pandemic: The biochar solution. Environmental Research, 2022, 212, 113495.	7.5	31
78	p-Arsanilic acid decontamination over a wide pH range using biochar-supported manganese ferrite material as an effective persulfate catalyst: Performances and mechanisms. Biochar, 2022, 4, .	12.6	23
79	Mobilization of contaminants: Potential for soil remediation and unintended consequences. Science of the Total Environment, 2022, 839, 156373.	8.0	43
80	Engineered biochar for environmental decontamination in aquatic and soil systems: a review. , 2022, 1 , .		93
81	Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth & Environment, 2022, 3, 444-460.	29.7	233
82	Oil spills enhanced dispersion and transport of microplastics in sea water and sand at coastal beachheads. Journal of Hazardous Materials, 2022, 436, 129312.	12.4	4
83	Beneficial use of Fe-impregnated bentonite as a catalyst for pyrolysis of grass cut into syngas, bio-oil and biochar. Chemical Engineering Journal, 2022, 448, 137502.	12.7	34
84	Designing Magnesium Phosphate Cement for Stabilization/Solidification of Zn-Rich Electroplating Sludge. Environmental Science & Environmental Science	10.0	20
85	Sustainable Valorization of E-Waste Plastic through Catalytic Pyrolysis Using CO ₂ . ACS Sustainable Chemistry and Engineering, 2022, 10, 8443-8451.	6.7	8
86	A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives. Journal of Hazardous Materials, 2022, 438, 129437.	12.4	80
87	Combined acid pretreatment and co-hydrothermal carbonization to enhance energy recovery from food waste digestate. Energy Conversion and Management, 2022, 266, 115855.	9.2	36
88	Biochar as carbon sequestration material combines with sewage sludge incineration ash to prepare lightweight concrete. Construction and Building Materials, 2022, 343, 128116.	7.2	24
89	Zero-waste strategy by means of valorization of bread waste. Journal of Cleaner Production, 2022, 365, 132795.	9.3	16
90	Ecoenzymatic stoichiometry reveals stronger microbial carbon and nitrogen limitation in biochar amendment soils: A meta-analysis. Science of the Total Environment, 2022, 838, 156532.	8.0	16

#	Article	IF	Citations
91	Redox-induced transformation of potentially toxic elements with organic carbon in soil. , 2022, 1, .		42
92	Life-cycle assessment of pyrolysis processes for sustainable production of biochar from agro-residues. Bioresource Technology, 2022, 360, 127601.	9.6	60
93	Removal of nanoplastics in water treatment processes: A review. Science of the Total Environment, 2022, 845, 157168.	8.0	38
94	Effects of selenium on the uptake of toxic trace elements by crop plants: A review. Critical Reviews in Environmental Science and Technology, 2021, 51, 2531-2566.	12.8	50
95	Sustainable use of biochar for resource recovery and pharmaceutical removal from human urine: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 3016-3048.	12.8	18
96	Feasibility of wet-extraction of phosphorus from incinerated sewage sludge ash (ISSA) for phosphate fertilizer production: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 939-971.	12.8	50
97	Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology, 2021, 51, 1479-1532.	12.8	50
98	Recyclable aqueous metal adsorbent: Synthesis and Cu(II) sorption characteristics of ternary nanocomposites of Fe3O4 nanoparticles@graphene–poly-N-phenylglycine nanofibers. Journal of Hazardous Materials, 2021, 401, 123283.	12.4	28
99	Highly efficient removal of thallium in wastewater by MnFe2O4-biochar composite. Journal of Hazardous Materials, 2021, 401, 123311.	12.4	142
100	Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Journal of Hazardous Materials, 2021, 401, 123415.	12.4	325
101	A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 2021, 272, 115985.	7.5	76
102	Boron supply alleviates cadmium toxicity in rice (Oryza sativa L.) by enhancing cadmium adsorption on cell wall and triggering antioxidant defense system in roots. Chemosphere, 2021, 266, 128938.	8.2	68
103	High-efficiency and low-carbon remediation of zinc contaminated sludge by magnesium oxysulfate cement. Journal of Hazardous Materials, 2021, 408, 124486.	12.4	61
104	Thio-groups decorated covalent triazine frameworks for selective mercury removal. Journal of Hazardous Materials, 2021, 403, 123702.	12.4	60
105	Sustainable production of lignin micro-/nano-particles (LMNPs) from biomass: Influence of the type of biomass on their self-assembly capability and physicochemical properties. Journal of Hazardous Materials, 2021, 403, 123701.	12.4	29
106	A new DGT technique comprising a hybrid sensor for the simultaneous high resolution 2-D imaging of sulfides, metallic cations, oxyanions and dissolved oxygen. Journal of Hazardous Materials, 2021, 403, 123597.	12.4	20
107	A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. Journal of Hazardous Materials, 2021, 402, 123496.	12.4	184
108	Performance indicators for a holistic evaluation of catalyst-based degradationâ€"A case study of selected pharmaceuticals and personal care products (PPCPs). Journal of Hazardous Materials, 2021, 402, 123460.	12.4	26

#	Article	IF	Citations
109	Fe/Al (hydr)oxides engineered biochar for reducing phosphorus leaching from a fertile calcareous soil. Journal of Cleaner Production, 2021, 279, 123877.	9.3	72
110	Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars. Journal of Hazardous Materials, 2021, 404, 124162.	12.4	63
111	Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake. Chemosphere, 2021, 263, 128169.	8.2	88
112	A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 2021, 135, 110033.	16.4	176
113	Diels–Alder Conversion of Acrylic Acid and 2,5â€Dimethylfuran to <i>para</i> à€Xylene Over Heterogeneous Biâ€BTC Metalâ€Organic Framework Catalysts Under Mild Conditions. Angewandte Chemie - International Edition, 2021, 60, 624-629.	13.8	27
114	Designing sustainable drainage systems in subtropical cities: Challenges and opportunities. Journal of Cleaner Production, 2021, 280, 124418.	9.3	22
115	Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption. Chemical Engineering Journal, 2021, 406, 126782.	12.7	119
116	New insight into adsorption and reduction of hexavalent chromium by magnetite: Multi-step reaction mechanism and kinetic model developing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125784.	4.7	23
117	Metal–organic framework for the extraction and detection of pesticides from food commodities. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1009-1035.	11.7	44
118	Valorization of plastics and goethite into iron-carbon composite as persulfate activator for amaranth oxidation. Chemical Engineering Journal, 2021, 407, 127188.	12.7	15
119	Iron-crosslinked alginate derived Fe/C composites for atrazine removal from water. Science of the Total Environment, 2021, 756, 143866.	8.0	21
120	Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. Environment International, 2021, 146, 106207.	10.0	105
121	Metal chloride-loaded biochar for phosphorus recovery: Noteworthy roles of inherent minerals in precursor. Chemosphere, 2021, 266, 128991.	8.2	33
122	Design and fabrication of exfoliated Mg/Al layered double hydroxides on biochar support. Journal of Cleaner Production, 2021, 289, 125142.	9.3	56
123	Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. Bioresource Technology, 2021, 320, 124412.	9.6	60
124	Effects of field scale in situ biochar incorporation on soil environment in a tropical highly weathered soil. Environmental Pollution, 2021, 272, 116009.	7.5	23
125	Manganese ferrite modified biochar from vinasse for enhanced adsorption of levofloxacin: Effects and mechanisms. Environmental Pollution, 2021, 272, 115968.	7.5	46
126	Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field. Environmental Pollution, 2021, 270, 116281.	7. 5	57

#	Article	IF	CITATIONS
127	High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide. Water Research, 2021, 190, 116711.	11.3	61
128	Effect of biochar aging and co-existence of diethyl phthalate on the mono-sorption of cadmium and zinc to biochar-treated soils. Journal of Hazardous Materials, 2021, 408, 124850.	12.4	37
129	Emergent thallium exposure from uranium mill tailings. Journal of Hazardous Materials, 2021, 407, 124402.	12.4	71
130	A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen. Science of the Total Environment, 2021, 756, 143679.	8.0	108
131	Responses of ammonia-oxidizing microorganisms to biochar and compost amendments of heavy metals-polluted soil. Journal of Environmental Sciences, 2021, 102, 263-272.	6.1	40
132	How energy service companies moderate the impact of industrialization and urbanization on carbon emissions in China?. Science of the Total Environment, 2021, 751, 141610.	8.0	69
133	Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement. Journal of Hazardous Materials, 2021, 408, 124404.	12.4	85
134	Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. Journal of Hazardous Materials, 2021, 403, 123674.	12.4	79
135	Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of Hazardous Materials, 2021, 407, 124344.	12.4	150
136	Sorption of reactive red by biochars ball milled in different atmospheres: Co-effect of surface morphology and functional groups. Chemical Engineering Journal, 2021, 413, 127468.	12.7	23
137	Activated carbons prepared via reflux-microwave-assisted activation approach with high adsorption capability for methylene blue. Journal of Environmental Chemical Engineering, 2021, 9, 104671.	6.7	24
138	Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. Environmental Pollution, 2021, 268, 115549.	7. 5	74
139	Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils – To mobilize or to immobilize or to degrade?. Journal of Hazardous Materials, 2021, 401, 123892.	12.4	169
140	Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Journal of Hazardous Materials, 2021, 402, 123919.	12.4	266
141	Magnetic nanocomposite-system for the remediation of lead-contaminated urban surface. E3S Web of Conferences, 2021, 266, 08007.	0.5	0
142	The Fe3O4-modified biochar reduces arsenic availability in soil and arsenic accumulation in indica rice (Oryza sativa L.). Environmental Science and Pollution Research, 2021, 28, 18050-18061.	5. 3	22
143	Iron-based materials for removal of arsenic from water. , 2021, , 209-245.		4
144	Magnetic biochar-based composites for removal of recalcitrant pollutants in water., 2021,, 163-187.		5

#	Article	IF	CITATIONS
145	Nitrate removal uncertainty in stormwater control measures: Is the design or climate a culprit?. Water Research, 2021, 190, 116781.	11.3	29
146	Efficient Removal of Antimony(III) in Aqueous Phase by Nano-Fe3O4 Modified High-Iron Red Mud: Study on Its Performance and Mechanism. Water (Switzerland), 2021, 13, 809.	2.7	8
147	Stress-Strain behaviour of Cement-Stabilized Hong Kong marine deposits. Construction and Building Materials, 2021, 274, 122103.	7.2	35
148	Critical Impact of Nitrogen Vacancies in Nonradical Carbocatalysis on Nitrogen-Doped Graphitic Biochar. Environmental Science & Environmental Science	10.0	112
149	Effect of phosphorus supplementation on growth, nutrient uptake, physiological responses, and cadmium absorption by tall fescue (Festuca arundinacea Schreb.) exposed to cadmium. Ecotoxicology and Environmental Safety, 2021, 213, 112021.	6.0	18
150	An overview on engineering the surface area and porosity of biochar. Science of the Total Environment, 2021, 763, 144204.	8.0	434
151	Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Research, 2021, 196, 117011.	11.3	253
152	Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends. Chemosphere, 2021, 271, 129868.	8.2	44
153	Comparison of the Hydraulic Fracturing Water Cycle in China and North America: A Critical Review. Environmental Science & Envi	10.0	57
154	Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation. Environmental Pollution, 2021, 279, 116899.	7.5	12
155	Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. Journal of Hazardous Materials, 2021, 411, 125132.	12.4	219
156	Distribution and migration characteristics of dinitrotoluene sulfonates (DNTs) in typical TNT production sites: Effects and health risk assessment. Journal of Environmental Management, 2021, 287, 112342.	7.8	9
157	Stabilization of dissolvable biochar by soil minerals: Release reduction and organo-mineral complexes formation. Journal of Hazardous Materials, 2021, 412, 125213.	12.4	41
158	Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial. Chemosphere, 2021, 273, 129692.	8.2	38
159	Novel recycling of incinerated sewage sludge ash (ISSA) and waste bentonite as ceramsite for Pb-containing wastewater treatment: Performance and mechanism. Journal of Environmental Management, 2021, 288, 112382.	7.8	31
160	Valorization of humins from food waste biorefinery for synthesis of biochar-supported Lewis acid catalysts. Science of the Total Environment, 2021, 775, 145851.	8.0	30
161	Roles of Biochar and CO ₂ Curing in Sustainable Magnesia Cement-Based Composites. ACS Sustainable Chemistry and Engineering, 2021, 9, 8603-8610.	6.7	62
162	New insights into the underlying influence of bentonite on Pb immobilization by undissolvable and dissolvable fractions of biochar. Science of the Total Environment, 2021, 775, 145824.	8.0	10

#	Article	IF	Citations
163	On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC). Cement and Concrete Research, 2021, 144, 106421.	11.0	76
164	Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chemical Engineering Journal, 2021, 414, 128800.	12.7	211
165	Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination. Science of the Total Environment, 2021, 774, 145143.	8.0	29
166	Rice husk-derived biochar can aggravate arsenic mobility in ferrous-rich groundwater during oxygenation. Water Research, 2021, 200, 117264.	11.3	17
167	Characteristics and Influencing Factors of Microbial Community in Heavy Metal Contaminated Soil under Silicon Fertilizer and Biochar Remediation. Adsorption Science and Technology, 2021, 2021, .	3.2	8
168	A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. Journal of Hazardous Materials, 2021, 414, 125378.	12.4	155
169	A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. Journal of Cleaner Production, 2021, 305, 127143.	9.3	252
170	Evolution of redox activity of biochar during interaction with soil minerals: Effect on the electron donating and mediating capacities for Cr(VI) reduction. Journal of Hazardous Materials, 2021, 414, 125483.	12.4	57
171	A cross-region analysis of commercial food waste recycling behaviour. Chemosphere, 2021, 274, 129750.	8.2	11
172	Selective degradation and oxidation of hemicellulose in corncob to oligosaccharides: From biomass into masking agent for sustainable leather tanning. Journal of Hazardous Materials, 2021, 413, 125425.	12.4	31
173	Heterogeneous Diels–Alder tandem catalysis for converting cellulose and polyethylene into BTX. Journal of Hazardous Materials, 2021, 414, 125418.	12.4	30
174	Enhanced adsorption of $Cu(II)$ and $Zn(II)$ from aqueous solution by polyethyleneimine modified straw hydrochar. Science of the Total Environment, 2021, 778, 146116.	8.0	105
175	A holistic understanding of cobalt cycling and limiting roles in the eutrophic Lake Taihu. Chemosphere, 2021, 277, 130234.	8.2	4
176	Tailored design of food waste hydrochar for efficient adsorption and catalytic degradation of refractory organic contaminant. Journal of Cleaner Production, 2021, 310, 127482.	9.3	52
177	Catalytic degradation of waste rubbers and plastics over zeolites to produce aromatic hydrocarbons. Journal of Cleaner Production, 2021, 309, 127469.	9.3	35
178	A combined management scheme to simultaneously mitigate As and Cd concentrations in rice cultivated in contaminated paddy soil. Journal of Hazardous Materials, 2021, 416, 125837.	12.4	35
179	Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure. Journal of Hazardous Materials, 2021, 416, 125738.	12.4	37
180	Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: A critical review. Journal of Cleaner Production, 2021, 312, 127745.	9.3	49

#	Article	IF	CITATIONS
181	Thallium geochemical fractionation and migration in Tl-As rich soils: The key controls. Science of the Total Environment, 2021, 784, 146995.	8.0	14
182	Synergistic role of bulk carbon and iron minerals inherent in the sludge-derived biochar for As(V) immobilization. Chemical Engineering Journal, 2021, 417, 129183.	12.7	18
183	New insights into ball milling effects on MgAl-LDHs exfoliation on biochar support: A case study for cadmium adsorption. Journal of Hazardous Materials, 2021, 416, 126258.	12.4	46
184	A holistic DPSIR-based approach to the remediation of heavily contaminated coastal areas. Environmental Pollution, 2021, 284, 117129.	7.5	8
185	Promoting Diels-Alder reactions to produce bio-BTX: Co-aromatization of textile waste and plastic waste over USY zeolite. Journal of Cleaner Production, 2021, 314, 127966.	9.3	21
186	A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water. Environmental Research, 2021, 200, 111371.	7. 5	65
187	Superior fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: Synthesis, catalytic performance, and mechanism. Separation and Purification Technology, 2021, 270, 118773.	7.9	71
188	Ambient NO2 adsorption removal by Mg–Al layered double hydroxides and derived mixed metal oxides. Journal of Cleaner Production, 2021, 313, 127956.	9.3	25
189	Current progress in electrochemical anodic-oxidation of pharmaceuticals: Mechanisms, influencing factors, and new technique. Journal of Hazardous Materials, 2021, 418, 126313.	12.4	50
190	Chemical and photo-initiated aging enhances transport risk of microplastics in saturated soils: Key factors, mechanisms, and modeling. Water Research, 2021, 202, 117407.	11.3	59
191	Chrysanthemum flower like silica with highly dispersed Cu nanoparticles as a high-performance NO2 adsorbent. Journal of Hazardous Materials, 2021, 418, 126400.	12.4	20
192	High-efficiency degradation of p-arsanilic acid and arsenic immobilization with iron encapsulated B/N-doped carbon nanotubes at natural solution pH. Science of the Total Environment, 2021, 785, 147152.	8.0	9
193	Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresource Technology, 2021, 338, 125555.	9.6	74
194	Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration. Environmental Pollution, 2021, 287, 117566.	7. 5	48
195	Enhanced trichloroethylene biodegradation: Roles of biochar-microbial collaboration beyond adsorption. Science of the Total Environment, 2021, 792, 148451.	8.0	36
196	Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. Environment International, 2021, 155, 106600.	10.0	74
197	Boron application mitigates Cd toxicity in leaves of rice by subcellular distribution, cell wall adsorption and antioxidant system. Ecotoxicology and Environmental Safety, 2021, 222, 112540.	6.0	19
198	GenX is not always a better fluorinated organic compound than PFOA: A critical review on aqueous phase treatability by adsorption and its associated cost. Water Research, 2021, 205, 117683.	11.3	20

#	Article	IF	Citations
199	Is froth flotation a potential scheme for microplastics removal? Analysis on flotation kinetics and surface characteristics. Science of the Total Environment, 2021, 792, 148345.	8.0	28
200	Fast hydropyrolysis of biomass Conversion: A comparative review. Bioresource Technology, 2021, 342, 126067.	9.6	44
201	Further reuse of phosphorus-laden biochar for lead sorption from aqueous solution: Isotherm, kinetics, and mechanism. Science of the Total Environment, 2021, 792, 148550.	8.0	18
202	The effect of oxygen on in-situ evolution of chemical structures during the autothermal process of tobacco. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105321.	5.5	13
203	Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants – A critical review. Journal of Hazardous Materials, 2021, 419, 126455.	12.4	212
204	Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste. Bioresource Technology, 2021, 338, 125531.	9.6	59
205	Preparation of ammonium-modified cassava waste-derived biochar and its evaluation for synergistic adsorption of ternary antibiotics from aqueous solution. Journal of Environmental Management, 2021, 298, 113530.	7.8	26
206	Anti-mold activity and reaction mechanism of bamboo modified with laccase-mediated thymol. Industrial Crops and Products, 2021, 172, 114067.	5.2	13
207	Sustainable biochar/MgFe2O4 adsorbent for levofloxacin removal: Adsorption performances and mechanisms. Bioresource Technology, 2021, 340, 125698.	9.6	106
208	Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. Chemical Engineering Journal, 2021, 424, 130387.	12.7	167
209	Phosphorus acquisition strategy of Vallisneria natans in sediment based on in situ imaging techniques. Environmental Research, 2021, 202, 111635.	7.5	8
210	Mesoporous ball-milling iron-loaded biochar for enhanced sorption of reactive red: Performance and mechanisms. Environmental Pollution, 2021, 290, 117992.	7. 5	21
211	Stimulation of pyrolytic carbon materials as electron shuttles on the anaerobic transformation of recalcitrant organic pollutants: A review. Science of the Total Environment, 2021, 801, 149696.	8.0	19
212	Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresource Technology, 2021, 341, 125811.	9.6	121
213	Sustainable management and recycling of food waste anaerobic digestate: A review. Bioresource Technology, 2021, 341, 125915.	9.6	150
214	Unraveling iron speciation on Fe-biochar with distinct arsenic removal mechanisms and depth distributions of As and Fe. Chemical Engineering Journal, 2021, 425, 131489.	12.7	63
215	Experimental and DFT investigation on N-functionalized biochars for enhanced removal of Cr(VI). Environmental Pollution, 2021, 291, 118244.	7.5	15
216	Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renewable and Sustainable Energy Reviews, 2021, 152, 111722.	16.4	86

#	Article	IF	Citations
217	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	9.1	306
218	Effects of modified biochar on As-contaminated water and soil: A recent update. Advances in Chemical Pollution, Environmental Management and Protection, 2021, 7, 107-136.	0.5	2
219	Rice husk biochar modified-CuCo2O4 as an efficient peroxymonosulfate activator for non-radical degradation of organic pollutants from aqueous environment. RSC Advances, 2021, 11, 39467-39475.	3.6	5
220	Research on the Mechanical Strengths and the Following Corrosion Resistance of Inner Steel Bars of RPC with Rice Husk Ash and Waste Fly Ash. Coatings, 2021, 11, 1480.	2.6	13
221	Influence of Waste Fly Ash on the Rheological Properties of Fresh Cement Paste and the Following Electrical Performances and Mechanical Strengths of Hardened Specimens. Coatings, 2021, 11, 1558.	2.6	7
222	Spatial distribution and molecular speciation of copper in indigenous plants from contaminated mine sites: Implication for phytostabilization. Journal of Hazardous Materials, 2020, 381, 121208.	12.4	33
223	Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. Science of the Total Environment, 2020, 698, 134112.	8.0	139
224	A green biochar/iron oxide composite for methylene blue removal. Journal of Hazardous Materials, 2020, 384, 121286.	12.4	315
225	Simultaneous oxidation and adsorption of arsenic by one-step fabrication of alum sludge and graphitic carbon nitride (g-C3N4). Journal of Hazardous Materials, 2020, 383, 121138.	12.4	37
226	Struvite pyrolysate cycling technology assisted by thermal hydrolysis pretreatment to recover ammonium nitrogen from composting leachate. Journal of Cleaner Production, 2020, 242, 118442.	9.3	60
227	Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. Journal of Hazardous Materials, 2020, 383, 121240.	12.4	266
228	Geochemical fractionation of thallium in contaminated soils near a large-scale Hg-Tl mineralised area. Chemosphere, 2020, 239, 124775.	8.2	32
229	Comparative investigation of homogeneous and heterogeneous BrÃ,nsted base catalysts for the isomerization of glucose to fructose in aqueous media. Applied Catalysis B: Environmental, 2020, 261, 118126.	20.2	52
230	Tuneable functionalities in layered double hydroxide catalysts for thermochemical conversion of biomass-derived glucose to fructose. Chemical Engineering Journal, 2020, 383, 122914.	12.7	28
231	Development of ozonation and reactive electrochemical membrane coupled process: Enhanced tetracycline mineralization and toxicity reduction. Chemical Engineering Journal, 2020, 383, 123149.	12.7	81
232	Waste-derived compost and biochar amendments for stormwater treatment in bioretention column: Co-transport of metals and colloids. Journal of Hazardous Materials, 2020, 383, 121243.	12.4	75
233	Synthesis of shape and structure-dependent hydroxyapatite nanostructures as a superior adsorbent for removal of U(VI). Chemical Engineering Journal, 2020, 384, 123262.	12.7	83
234	Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application. Journal of Cleaner Production, 2020, 244, 118853.	9.3	85

#	Article	IF	Citations
235	Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. Journal of Hazardous Materials, 2020, 391, 121147.	12.4	132
236	Thallium isotopic fractionation in industrial process of pyrite smelting and environmental implications. Journal of Hazardous Materials, 2020, 384, 121378.	12.4	73
237	Suppressed formation of polycyclic aromatic hydrocarbons (PAHs) during pyrolytic production of Fe-enriched composite biochar. Journal of Hazardous Materials, 2020, 382, 121033.	12.4	43
238	Recent advances in mitigating membrane biofouling using carbon-based materials. Journal of Hazardous Materials, 2020, 382, 120976.	12.4	67
239	Use of CO2 curing to enhance the properties of cold bonded lightweight aggregates (CBLAs) produced with concrete slurry waste (CSW) and fine incineration bottom ash (IBA). Journal of Hazardous Materials, 2020, 381, 120951.	12.4	72
240	Novel carbon based Fe-Co oxides derived from Prussian blue analogues activating peroxymonosulfate: Refractory drugs degradation without metal leaching. Chemical Engineering Journal, 2020, 379, 122274.	12.7	133
241	Microwave-assisted production of CO2-activated biochar from sugarcane bagasse for electrochemical desalination. Journal of Hazardous Materials, 2020, 383, 121192.	12.4	58
242	Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer. Science of the Total Environment, 2020, 698, 134240.	8.0	69
243	New insights into CO2 sorption on biochar/Fe oxyhydroxide composites: Kinetics, mechanisms, and in situ characterization. Chemical Engineering Journal, 2020, 384, 123289.	12.7	28
244	Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment, 2020, 701, 134751.	8.0	249
245	Distribution, source apportionment, and health risk assessment of polycyclic aromatic hydrocarbons in urban soils from Shenyang, China. Environmental Geochemistry and Health, 2020, 42, 1817-1832.	3.4	22
246	Temporal sedimentary record of thallium pollution in an urban lake: An emerging thallium pollution source from copper metallurgy. Chemosphere, 2020, 242, 125172.	8.2	73
247	Participation of soil active components in the reduction of Cr(VI) by biochar: Differing effects of iron mineral alone and its combination with organic acid. Journal of Hazardous Materials, 2020, 384, 121455.	12.4	43
248	Microwave-assisted depolymerization of various types of waste lignins over two-dimensional CuO/BCN catalysts. Green Chemistry, 2020, 22, 725-736.	9.0	52
249	Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over a Rh-loaded carbon catalyst in aqueous solution under mild conditions. Sustainable Energy and Fuels, 2020, 4, 293-301.	4.9	47
250	(Im)mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar. Environment International, 2020, 135, 105376.	10.0	63
251	Stabilization treatment of arsenic-alkali residue (AAR): Effect of the coexisting soluble carbonate on arsenic stabilization. Environment International, 2020, 135, 105406.	10.0	33
252	Sustainable conversion of contaminated dredged river sediment into eco-friendly foamed concrete. Journal of Cleaner Production, 2020, 252, 119799.	9.3	38

#	Article	IF	Citations
253	Interactions of CeO2 nanoparticles with natural colloids and electrolytes impact their aggregation kinetics and colloidal stability. Journal of Hazardous Materials, 2020, 386, 121973.	12.4	33
254	Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. Journal of Hazardous Materials, 2020, 390, 121649.	12.4	110
255	Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 2020, 134, 105046.	10.0	701
256	Synergistic utilization of inherent halides and alcohols in hydraulic fracturing wastewater for radical-based treatment: A case study of di-(2-ethylhexyl) phthalate removal. Journal of Hazardous Materials, 2020, 384, 121321.	12.4	16
257	Metal organic framework-derived 3D nanostructured cobalt oxide as an effective catalyst for soot oxidation. Journal of Colloid and Interface Science, 2020, 561, 83-92.	9.4	23
258	Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions. Journal of Hazardous Materials, 2020, 387, 122005.	12.4	87
259	Release of toxic elements in fishpond sediments under dynamic redox conditions: Assessing the potential environmental risk for a safe management of fisheries systems and degraded waterlogged sediments. Journal of Environmental Management, 2020, 255, 109778.	7.8	29
260	Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Science of the Total Environment, 2020, 713, 135292.	8.0	84
261	Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment, 2020, 707, 136080.	8.0	184
262	Influence of green solvent on levulinic acid production from lignocellulosic paper waste. Bioresource Technology, 2020, 298, 122544.	9.6	66
263	Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms. Science of the Total Environment, 2020, 709, 136079.	8.0	187
264	Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. Cement and Concrete Composites, 2020, 106, 103489.	10.7	108
265	Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chemical Engineering Journal, 2020, 385, 123842.	12.7	176
266	Investigation of cold bonded lightweight aggregates produced with incineration sewage sludge ash (ISSA) and cementitious waste. Journal of Cleaner Production, 2020, 251, 119709.	9.3	41
267	Thallium contamination, health risk assessment and source apportionment in common vegetables. Science of the Total Environment, 2020, 703, 135547.	8.0	73
268	The amelioration effects of canola straw biochar on Ultisol acidity varied with the soil in which the feedstock crop was cultivated. Journal of Soils and Sediments, 2020, 20, 1424-1434.	3.0	8
269	Activation of persulfate by stability-enhanced magnetic graphene oxide for the removal of 2,4-dichlorophenol. Science of the Total Environment, 2020, 707, 135656.	8.0	30
270	Prussian Blue Analogue-derived co/fe bimetallic nanoparticles immobilized on S/N-doped carbon sheet as a magnetic heterogeneous catalyst for activating peroxymonosulfate in water. Chemosphere, 2020, 244, 125444.	8.2	43

#	Article	IF	CITATIONS
271	Tailoring acidity and porosity of alumina catalysts via transition metal doping for glucose conversion in biorefinery. Science of the Total Environment, 2020, 704, 135414.	8.0	13
272	Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresource Technology, 2020, 297, 122497.	9.6	225
273	Remediation of cadmium-contaminated soils using Brassica napus: Effect of nitrogen fertilizers. Journal of Environmental Management, 2020, 255, 109885.	7.8	55
274	Hyperaccumulation and transport mechanism of thallium and arsenic in brake ferns (Pteris vittata L.): A case study from mining area. Journal of Hazardous Materials, 2020, 388, 121756.	12.4	58
275	Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 2020, 119, 109582.	16.4	212
276	Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media. Science of the Total Environment, 2020, 706, 135725.	8.0	76
277	Adsorption of acetone and cyclohexane onto CO2 activated hydrochars. Chemosphere, 2020, 245, 125664.	8.2	43
278	A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies. Renewable and Sustainable Energy Reviews, 2020, 134, 110365.	16.4	83
279	Health risks of metal(loid)s in maize (Zea mays L.) in an artisanal zinc smelting zone and source fingerprinting by lead isotope. Science of the Total Environment, 2020, 742, 140321.	8.0	39
280	Evidences of starch–microwave interactions under hydrolytic and pyrolytic conditions. Green Chemistry, 2020, 22, 7109-7118.	9.0	14
281	Singlet oxygen mediated the selective removal of oxytetracycline in C/Fe3C/Fe0 system as compared to chloramphenicol. Environment International, 2020, 143, 105899.	10.0	34
282	Comparison of pollutant source tracking approaches: Heavy metals deposited on urban road surfaces as a case study. Environmental Pollution, 2020, 266, 115253.	7.5	13
283	NaCl-promoted phase transition and glycosidic bond cleavage under microwave heating for energy-efficient biorefinery of rice starch. Green Chemistry, 2020, 22, 7355-7365.	9.0	18
284	Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures. Journal of Cleaner Production, 2020, 273, 122915.	9.3	94
285	Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: A critical review. Science of the Total Environment, 2020, 746, 140967.	8.0	82
286	Disinfection techniques of human norovirus in municipal wastewater: Challenges and future perspectives. Current Opinion in Environmental Science and Health, 2020, 17, 29-34.	4.1	8
287	\hat{I}^3 -ray induced formation of oxygen vacancies and Ti3+ defects in anatase TiO2 for efficient photocatalytic organic pollutant degradation. Science of the Total Environment, 2020, 747, 141533.	8.0	53
288	Effects of aging and weathering on immobilization of trace metals/metalloids in soils amended with biochar. Environmental Sciences: Processes and Impacts, 2020, 22, 1790-1808.	3.5	29

#	Article	IF	Citations
289	Biorefinery-assisted soil management for enhancing food security. Journal of Soils and Sediments, 2020, 20, 4007-4010.	3.0	3
290	Short- and Long-Term Biochar Cadmium and Lead Immobilization Mechanisms. Environments - MDPI, 2020, 7, 53.	3.3	6
291	The role of zinc in metakaolin-based geopolymers. Cement and Concrete Research, 2020, 136, 106194.	11.0	108
292	Quantitative isotopic fingerprinting of thallium associated with potentially toxic elements (PTEs) in fluvial sediment cores with multiple anthropogenic sources. Environmental Pollution, 2020, 266, 115252.	7.5	30
293	Persistent thallium contamination in river sediments, source apportionment and environmental implications. Ecotoxicology and Environmental Safety, 2020, 202, 110874.	6.0	28
294	Efficient Depolymerization of Cellulosic Paper Towel Waste Using Organic Carbonate Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 13100-13110.	6.7	18
295	Evaluating the environmental impact of contaminated sediment column stabilized by deep cement mixing. Chemosphere, 2020, 261, 127755.	8.2	10
296	Synergistic effects of Pt-embedded, MIL-53-derived catalysts (Pt@Al2O3) and NaBH4 for water-mediated hydrogenolysis of biomass-derived furfural to 1,5-pentanediol at near-ambient temperature. Journal of Catalysis, 2020, 390, 46-56.	6.2	43
297	Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land. Environment International, 2020, 144, 106040.	10.0	54
298	Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, And Implications for Field Applications. Environmental Science & Environmental Science	10.0	273
299	Synthesis of FeCo–N@N-doped carbon oxygen reduction catalysts ⟨i⟩via⟨ i⟩ microwave-assisted ammoxidation. Catalysis Science and Technology, 2020, 10, 3949-3958.	4.1	14
300	Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Industrial & Engineering Chemistry Research, 2020, 59, 16957-16969.	3.7	76
301	Green remediation by using low-carbon cement-based stabilization/solidification approaches. , 2020, , 93-118.		11
302	Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology, 2020, 312, 123613.	9.6	293
303	Simultaneous degradation of p-arsanilic acid and inorganic arsenic removal using M-rGO/PS Fenton-like system under neutral conditions. Journal of Hazardous Materials, 2020, 399, 123032.	12.4	49
304	Simultaneous removal of iron and manganese from acid mine drainage by acclimated bacteria. Journal of Hazardous Materials, 2020, 396, 122631.	12.4	53
305	Sustainable impact of tartaric acid as electron shuttle on hierarchical iron-incorporated biochar. Chemical Engineering Journal, 2020, 395, 125138.	12.7	46
306	Tailored design of graphitic biochar for high-efficiency and chemical-free microwave-assisted removal of refractory organic contaminants. Chemical Engineering Journal, 2020, 398, 125505.	12.7	96

#	Article	lF	Citations
307	One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: Arsenic immobilization associated with iron transformation. Journal of Hazardous Materials, 2020, 398, 122901.	12.4	109
308	Sustainable soil use and management: An interdisciplinary and systematic approach. Science of the Total Environment, 2020, 729, 138961.	8.0	138
309	N-doped porous carbon derived from polypyrrole for CO2 capture from humid flue gases. Chemical Engineering Journal, 2020, 396, 125376.	12.7	62
310	Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chemical Science, 2020, 11, 6670-6681.	7.4	130
311	Water resistance of magnesium oxychloride cement wood board with the incorporation of supplementary cementitious materials. Construction and Building Materials, 2020, 255, 119145.	7.2	26
312	Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts. Journal of Cleaner Production, 2020, 268, 122378.	9.3	14
313	Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources. Renewable and Sustainable Energy Reviews, 2020, 130, 109944.	16.4	128
314	Coupling mixture reference models with DGT-perceived metal flux for deciphering the nonadditive effects of rare earth mixtures to wheat in soils. Environmental Research, 2020, 188, 109736.	7.5	3
315	Microbial insights into the biogeochemical features of thallium occurrence: A case study from polluted river sediments. Science of the Total Environment, 2020, 739, 139957.	8.0	58
316	Valorization of plastics and paper mill sludge into carbon composite and its catalytic performance for acarbon material consisted of the multi-layerzo dye oxidation. Journal of Hazardous Materials, 2020, 398, 123173.	12.4	16
317	Adsorption of As(V) and Ni(II) by Fe-Biochar composite fabricated by co-pyrolysis of orange peel and red mud. Environmental Research, 2020, 188, 109809.	7.5	59
318	Editorial: New Research on Soil Degradation and Restoration. Journal of Environmental Management, 2020, 269, 110851.	7.8	4
319	Characteristics of denitrification genes and relevant enzyme activities in heavy-metal polluted soils remediated by biochar and compost. Science of the Total Environment, 2020, 739, 139987.	8.0	57
320	Processed Bamboo as a Novel Formaldehyde-Free High-Performance Furniture Biocomposite. ACS Applied Materials & Distribution (2008) 12, 30824-30832.	8.0	74
321	A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. Journal of Hazardous Materials, 2020, 400, 123242.	12.4	149
322	Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry. Science of the Total Environment, 2020, 739, 139845.	8.0	91
323	Microplastics as pollutants in agricultural soils. Environmental Pollution, 2020, 265, 114980.	7.5	359
324	Critical Review on Biocharâ€Supported Catalysts for Pollutant Degradation and Sustainable Biorefinery. Advanced Sustainable Systems, 2020, 4, 1900149.	5.3	93

#	Article	IF	Citations
325	Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt). Environmental Pollution, 2020, 262, 114312.	7.5	77
326	Immobilization of hazardous municipal solid waste incineration fly ash by novel alternative binders derived from cementitious waste. Journal of Hazardous Materials, 2020, 393, 122386.	12.4	63
327	Biochar technology in wastewater treatment: A critical review. Chemosphere, 2020, 252, 126539.	8.2	482
328	Valorization of biomass from plant microbial fuel cells into levulinic acid by using liquid/solid acids and green solvents. Journal of Cleaner Production, 2020, 260, 121097.	9.3	20
329	Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 6990-7001.	6.7	63
330	Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture. Chemical Engineering Journal, 2020, 393, 124666.	12.7	85
331	Acidic seawater improved 5-hydroxymethylfurfural yield from sugarcane bagasse under microwave hydrothermal liquefaction. Environmental Research, 2020, 184, 109340.	7. 5	49
332	Soil and geologic formations as antidotes for CO 2 sequestration?. Soil Use and Management, 2020, 36, 355-357.	4.9	9
333	Recent advances in carbon nanotube sponge–based sorption technologies for mitigation of marine oil spills. Journal of Colloid and Interface Science, 2020, 570, 411-422.	9.4	69
334	Contrasting abiotic As(III) immobilization by undissolved and dissolved fractions of biochar in Ca2+-rich groundwater under anoxic conditions. Water Research, 2020, 183, 116106.	11.3	42
335	Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil. Journal of Hazardous Materials, 2020, 400, 123317.	12.4	106
336	Mechanisms and modelling of phosphorus solid–liquid transformation during the hydrothermal processing of swine manure. Green Chemistry, 2020, 22, 5628-5638.	9.0	68
337	Customised fabrication of nitrogen-doped biochar for environmental and energy applications. Chemical Engineering Journal, 2020, 401, 126136.	12.7	158
338	River water irrigation with heavy metal load influences soil biological activities and risk factors. Journal of Environmental Management, 2020, 270, 110517.	7.8	25
339	Novel ball-milled biochar-vermiculite nanocomposites effectively adsorb aqueous As(â) Chemosphere, 2020, 260, 127566.	8.2	28
340	Efficacy of green alternatives and carbon dioxide curing in reactive magnesia cement-bonded particleboards. Journal of Cleaner Production, 2020, 258, 120997.	9.3	25
341	Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 2020, 1, 366-381.	29.7	493
342	Scavenger-free and self-powered photocathodic sensing system for aqueous hydrogen peroxide monitoring by CuO/ZnO nanostructure. Chemical Engineering Science, 2020, 226, 115886.	3.8	16

#	Article	IF	Citations
343	Critical insight and indication on particle size effects towards uranium release from uranium mill tailings: Geochemical and mineralogical aspects. Chemosphere, 2020, 250, 126315.	8.2	37
344	The shuttling effects and associated mechanisms of different types of iron oxide nanoparticles for Cu(II) reduction by Geobacter sulfurreducens. Journal of Hazardous Materials, 2020, 393, 122390.	12.4	13
345	The mechanism of supplementary cementitious materials enhancing the water resistance of magnesium oxychloride cement (MOC): A comparison between pulverized fuel ash and incinerated sewage sludge ash. Cement and Concrete Composites, 2020, 109, 103562.	10.7	31
346	Effects and mechanisms of mineral amendment on thallium mobility in highly contaminated soils. Journal of Environmental Management, 2020, 262, 110251.	7.8	27
347	Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of Cleaner Production, 2020, 258, 120678.	9.3	180
348	Quantitative source tracking of heavy metals contained in urban road deposited sediments. Journal of Hazardous Materials, 2020, 393, 122362.	12.4	59
349	Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review. Science of the Total Environment, 2020, 719, 137405.	8.0	130
350	Fabrication of L-cysteine stabilized \hat{l} ±-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb2+ removal. Science of the Total Environment, 2020, 720, 137415.	8.0	54
351	Application of enhanced bioreduction for hexavalent chromium-polluted groundwater cleanup: Microcosm and microbial diversity studies. Environmental Research, 2020, 184, 109296.	7.5	18
352	Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication. Renewable and Sustainable Energy Reviews, 2020, 124, 109785.	16.4	107
353	Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Science of the Total Environment, 2020, 720, 137584.	8.0	110
354	Recovery of the biological function of ethylenediaminetetraacetic acid-washed soils: Roles of environmental variations and microbes. Science of the Total Environment, 2020, 715, 137032.	8.0	16
355	Evaluation of the BCR sequential extraction scheme for trace metal fractionation of alkaline municipal solid waste incineration fly ash. Chemosphere, 2020, 249, 126115.	8.2	43
356	Catalytically active interfaces in titania nanorod-supported copper catalysts for CO oxidation. Nano Research, 2020, 13, 533-542.	10.4	18
357	Effects of external additives: Biochar, bentonite, phosphate, on co-composting for swine manure and corn straw. Chemosphere, 2020, 248, 125927.	8.2	120
358	Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway. Environmental Research, 2020, 183, 109156.	7.5	61
359	Effects of Zn in sludge-derived biochar on Cd immobilization and biological uptake by lettuce. Science of the Total Environment, 2020, 714, 136721.	8.0	19
360	Phosphorus (P)Ârecovery and reuse as fertilizer from incinerated sewage sludge ash (ISSA). , 2020, , 263-288.		0

#	Article	IF	CITATIONS
361	Applications of carbonaceous adsorbents in the remediation of polycyclic aromatic hydrocarbon-contaminated sediments: A review. Journal of Cleaner Production, 2020, 255, 120263.	9.3	60
362	Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of the Total Environment, 2020, 717, 136894.	8.0	121
363	Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity. Environmental Research, 2020, 183, 109152.	7.5	60
364	Different alkaline minerals interacted with biomass carbon during pyrolysis: Which one improved biochar carbon sequestration?. Journal of Cleaner Production, 2020, 255, 120162.	9.3	60
365	Molecular and microbial insights towards understanding the effects of hydrochar on methane emission from paddy soil. Science of the Total Environment, 2020, 714, 136769.	8.0	43
366	The roles of suspended solids in persulfate/Fe2+ treatment of hydraulic fracturing wastewater: Synergistic interplay of inherent wastewater components. Chemical Engineering Journal, 2020, 388, 124243.	12.7	29
367	Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment, 2020, 716, 137116.	8.0	299
368	Magnetic solid phase extraction using Fe ₃ O ₄ @β-cyclodextrin–lipid bilayers as adsorbents followed by GC-QTOF-MS for the analysis of nine pesticides. New Journal of Chemistry, 2020, 44, 7727-7739.	2.8	16
369	Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects. Environmental Pollution, 2020, 264, 114687.	7.5	71
370	Sustainable carbohydrate-derived building materials. , 2020, , 285-304.		0
371	A new DGT technique comprised in a hybrid sensor for the simultaneous measurement of ammonium, nitrate, phosphorus and dissolved oxygen. Science of the Total Environment, 2020, 725, 138447.	8.0	24
372	Hydrochar-Facilitated Anaerobic Digestion: Evidence for Direct Interspecies Electron Transfer Mediated through Surface Oxygen-Containing Functional Groups. Environmental Science & Emp; Technology, 2020, 54, 5755-5766.	10.0	190
373	Sustainable remediation with an electroactive biochar system: mechanisms and perspectives. Green Chemistry, 2020, 22, 2688-2711.	9.0	109
374	Constructing a robust chrome-free leather tanned by biomass-derived polyaldehyde via crosslinking with chitosan derivatives. Journal of Hazardous Materials, 2020, 396, 122771.	12.4	45
375	Swine manure valorization for phosphorus and nitrogen recovery by catalytic–thermal hydrolysis and struvite crystallization. Science of the Total Environment, 2020, 729, 138999.	8.0	53
376	Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production, 2020, 263, 121500.	9.3	145
377	Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 2020, 186, 109547.	7.5	280
378	New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management, 2020, 36, 358-386.	4.9	200

#	Article	IF	CITATIONS
379	Vacuum ultraviolet irradiation for mitigating dissolved organic nitrogen and formation of haloacetonitriles. Environmental Research, 2020, 185, 109454.	7.5	8
380	Novel CuCo ₂ O ₄ Composite Spinel with a Meso-Macroporous Nanosheet Structure for Sulfate Radical Formation and Benzophenone-4 Degradation: Interface Reaction, Degradation Pathway, and DFT Calculation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20522-20535.	8.0	83
381	Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation. Chemosphere, 2020, 256, 127158.	8.2	39
382	Evaluating the environmental impacts of stabilization and solidification technologies for managing hazardous wastes through life cycle assessment: A case study of Hong Kong. Environment International, 2020, 145, 106139.	10.0	38
383	Growth inhibition of sulfate-reducing bacteria for trichloroethylene dechlorination enhancement. Environmental Research, 2020, 187, 109629.	7.5	17
384	Ball-milled, solvent-free Sn-functionalisation of wood waste biochar for sugar conversion in food waste valorisation. Journal of Cleaner Production, 2020, 268, 122300.	9.3	20
385	Roles of the mineral constituents in sludge-derived biochar in persulfate activation for phenol degradation. Journal of Hazardous Materials, 2020, 398, 122861.	12.4	65
386	Engineering and microstructure properties of contaminated marine sediments solidified by high content of incinerated sewage sludge ash. Journal of Rock Mechanics and Geotechnical Engineering, 2020, , .	8.1	12
387	Cadmium isotopes as tracers in environmental studies: A review. Science of the Total Environment, 2020, 736, 139585.	8.0	66
388	Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: current practices and future prospects. Applied Biological Chemistry, 2020, 63, .	1.9	129
389	Theory of planned behavior on food waste recycling. , 2020, , 221-239.		2
390	Life-cycle assessment of food waste recycling. , 2020, , 481-513.		2
391	Integrated Soil Remediation by Chemical-Enhanced Extraction and Biochar Immobilization for Potentially Toxic Elements., 2020,, 201-211.		O
392	Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. International Materials Reviews, 2019, 64, 216-247.	19.3	355
393	Multimedia modeling of the PAH concentration and distribution in the Yangtze River Delta and human health risk assessment. Science of the Total Environment, 2019, 647, 962-972.	8.0	47
394	Enhanced irreversible fixation of cesium by wetting and drying cycles in soil. Environmental Geochemistry and Health, 2019, 41, 149-157.	3.4	10
395	Single and simultaneous adsorption of pefloxacin and Cu(II) ions from aqueous solutions by oxidized multiwalled carbon nanotube. Science of the Total Environment, 2019, 646, 29-36.	8.0	116
396	Exposure to nickel oxide nanoparticles insinuates physiological, ultrastructural and oxidative damage: A life cycle study on Eisenia fetida. Environmental Pollution, 2019, 254, 113032.	7.5	65

#	Article	IF	CITATIONS
397	Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review. Environment International, 2019, 131, 105015.	10.0	65
398	A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. Chemosphere, 2019, 237, 124464.	8.2	127
399	Planar optode: A two-dimensional imaging technique for studying spatial-temporal dynamics of solutes in sediment and soil. Earth-Science Reviews, 2019, 197, 102916.	9.1	44
400	Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: Evaluation on characteristics, mechanisms and performance. Environmental Pollution, 2019, 254, 112891.	7.5	62
401	Effect of Solvent, Role of Formic Acid and Rh/C Catalyst for the Efficient Liquefaction of Lignin. ChemCatChem, 2019, 11, 4604-4616.	3.7	43
402	Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H2O2 for ciprofloxacin removal from aqueous solution. Journal of Hazardous Materials, 2019, 380, 120848.	12.4	119
403	Potentially toxic elements in solid waste streams: Fate and management approaches. Environmental Pollution, 2019, 253, 680-707.	7.5	79
404	Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource Technology, 2019, 291, 121878.	9.6	177
405	Optimizing the synthesis of Fe/Al (Hydr)oxides-Biochars to maximize phosphate removal via response surface model. Journal of Cleaner Production, 2019, 237, 117770.	9.3	119
406	A sustainable biochar catalyst synergized with copper heteroatoms and CO ₂ for singlet oxygenation and electron transfer routes. Green Chemistry, 2019, 21, 4800-4814.	9.0	188
407	pH Dependence of Arsenic Oxidation by Rice-Husk-Derived Biochar: Roles of Redox-Active Moieties. Environmental Science & Environmental Science & Envir	10.0	175
408	Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations. Chemosphere, 2019, 235, 825-831.	8.2	107
409	A system dynamics approach to determine construction waste disposal charge in Hong Kong. Journal of Cleaner Production, 2019, 241, 118309.	9.3	59
410	Coupling carbon dioxide and magnetite for the enhanced thermolysis of polyvinyl chloride. Science of the Total Environment, 2019, 696, 133951.	8.0	15
411	Effects of elevated CO2 on the phytoremediation efficiency of Noccaea caerulescens. Environmental Pollution, 2019, 255, 113169.	7.5	16
412	Molecular and microbial insights towards understanding the anaerobic digestion of the wastewater from hydrothermal liquefaction of sewage sludge facilitated by granular activated carbon (GAC). Environment International, 2019, 133, 105257.	10.0	92
413	Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue. Applied Energy, 2019, 254, 113803.	10.1	20
414	Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environment International, 2019, 133, 105247.	10.0	91

#	Article	IF	CITATIONS
415	Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. Journal of Molecular Liquids, 2019, 295, 111684.	4.9	131
416	Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. Renewable and Sustainable Energy Reviews, 2019, 115, 109359.	16.4	191
417	Current progress in treatment techniques of triclosan from wastewater: A review. Science of the Total Environment, 2019, 696, 133990.	8.0	39
418	Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: A comparison between raw and modified biochar. Science of the Total Environment, 2019, 697, 134115.	8.0	78
419	Catalytic pyrolysis of low-rank coal using Fe-carbon composite as a catalyst. Energy Conversion and Management, 2019, 199, 111978.	9.2	20
420	Engineered Nitrogen-Decorated Carbon Networks for the Metal-Free Catalytic Isomerization of Glucose to Fructose. ACS Sustainable Chemistry and Engineering, 2019, 7, 16959-16963.	6.7	12
421	Identifying the best materials for the removal of airborne toluene based on performance metrics - A critical review. Journal of Cleaner Production, 2019, 241, 118408.	9.3	59
422	Spatial variation of sediment bacterial community in an acid mine drainage contaminated area and surrounding river basin. Journal of Environmental Management, 2019, 251, 109542.	7.8	25
423	Silica Supported MgO as An Adsorbent for Precombustion CO ₂ Capture. ACS Applied Nano Materials, 2019, 2, 6565-6574.	5.0	17
424	High contamination risks of thallium and associated metal(loid)s in fluvial sediments from a steel-making area and implications for environmental management. Journal of Environmental Management, 2019, 250, 109513.	7.8	43
425	Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.). Journal of Environmental Management, 2019, 251, 109610.	7.8	65
426	Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis. Environment International, 2019, 124, 320-328.	10.0	262
427	Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources. Science of the Total Environment, 2019, 661, 685-695.	8.0	126
428	Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environment International, 2019, 124, 521-532.	10.0	384
429	Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environmental Research, 2019, 171, 356-364.	7.5	163
430	Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Critical Reviews in Environmental Science and Technology, 2019, 49, 1386-1423.	12.8	96
431	Catalytic thermolysis of oak sawdust using Fe-based catalyst and CO2. Journal of CO2 Utilization, 2019, 32, 269-275.	6.8	17
432	The roles of biochar as green admixture for sediment-based construction products. Cement and Concrete Composites, 2019, 104, 103348.	10.7	144

#	Article	IF	Citations
433	Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 2019, 375, 121983.	12.7	218
434	Corn stover–derived biochar for efficient adsorption of oxytetracycline from wastewater. Journal of Materials Research, 2019, 34, 3050-3060.	2.6	57
435	Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor. Biochemical Engineering Journal, 2019, 149, 107249.	3.6	34
436	Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar. Chemosphere, 2019, 232, 273-280.	8.2	82
437	Risk evaluation of biochars produced from Cd-contaminated rice straw and optimization of its production for Cd removal. Chemosphere, 2019, 233, 149-156.	8.2	54
438	Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(VI) reduction. Journal of Hazardous Materials, 2019, 378, 120705.	12.4	90
439	Different mechanisms between biochar and activated carbon for the persulfate catalytic degradation of sulfamethoxazole: Roles of radicals in solution or solid phase. Chemical Engineering Journal, 2019, 375, 121908.	12.7	113
440	Mechanistic insight into efficient removal of tetracycline from water by Fe/graphene. Chemical Engineering Journal, 2019, 373, 821-830.	12.7	78
441	Properties of recycled concrete aggregates strengthened by different types of pozzolan slurry. Construction and Building Materials, 2019, 216, 632-647.	7.2	96
442	Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. Green Chemistry, 2019, 21, 4341-4353.	9.0	80
443	Editorial of the VSI "Antibiotics and heavy metals in the environment: Facing the challenge― Science of the Total Environment, 2019, 678, 30-32.	8.0	6
444	Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. Journal of Environmental Management, 2019, 241, 319-327.	7.8	91
445	Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes. Journal of Hazardous Materials, 2019, 374, 412-419.	12.4	188
446	Cryptic footprints of rare earth elements on natural resources and living organisms. Environment International, 2019, 127, 785-800.	10.0	159
447	Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: Catalyzed Fenton-like reaction at natural pH. Environment International, 2019, 128, 77-88.	10.0	70
448	Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal, 2019, 372, 992-1006.	12.7	259
449	Production of bioplastic through food waste valorization. Environment International, 2019, 127, 625-644.	10.0	328
450	Exfoliated Ni-Al LDH 2D nanosheets for intermediate temperature CO2 capture. Journal of Hazardous Materials, 2019, 374, 365-371.	12.4	55

#	Article	IF	Citations
451	Functionalized zeolite-solvent catalytic systems for microwave-assisted dehydration of fructose to 5-hydroxymethylfurfural. Microporous and Mesoporous Materials, 2019, 284, 43-52.	4.4	32
452	Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin. Energy, 2019, 177, 136-143.	8.8	17
453	Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. Journal of Environmental Management, 2019, 241, 458-467.	7.8	249
454	Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils. Environment International, 2019, 126, 791-801.	10.0	52
455	Thallium pollution in China and removal technologies for waters: A review. Environment International, 2019, 126, 771-790.	10.0	180
456	Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. Environment International, 2019, 126, 717-726.	10.0	59
457	Novel M (Mg/Ni/Cu)-Al-CO3 layered double hydroxides synthesized by aqueous miscible organic solvent treatment (AMOST) method for CO2 capture. Journal of Hazardous Materials, 2019, 373, 285-293.	12.4	38
458	Emulsified polycolloid substrate biobarrier for benzene and petroleum-hydrocarbon plume containment and migration control – A field-scale study. Science of the Total Environment, 2019, 666, 839-848.	8.0	18
459	Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. Journal of Cleaner Production, 2019, 222, 335-343.	9.3	177
460	Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution, 2019, 248, 906-915.	7. 5	122
461	Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area. Environmental Pollution, 2019, 248, 916-928.	7.5	70
462	A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 2019, 227, 345-365.	8.2	204
463	Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment. Science of the Total Environment, 2019, 668, 32-39.	8.0	40
464	Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 2019, 672, 551-562.	8.0	143
465	Beneficial use of CO2 in pyrolysis of chicken manure to fabricate a sorptive material for CO2. Applied Thermal Engineering, 2019, 154, 469-475.	6.0	13
466	Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. Journal of Cleaner Production, 2019, 226, 540-549.	9.3	139
467	Peak Chromium Pollution in Summer and Winter Caused by High Mobility of Chromium in Sediment of a Eutrophic Lake: In Situ Evidence from High Spatiotemporal Sampling. Environmental Science & Eamp; Technology, 2019, 53, 4755-4764.	10.0	43
468	Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement. Scientific Reports, 2019, 9, 5514.	3.3	69

#	Article	IF	Citations
469	Soil lead immobilization by biochars in short-term laboratory incubation studies. Environment International, 2019, 127, 190-198.	10.0	70
470	Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. Environment International, 2019, 127, 276-290.	10.0	92
471	Valorization of concrete slurry waste (CSW) and fine incineration bottom ash (IBA) into cold bonded lightweight aggregates (CBLAs): Feasibility and influence of binder types. Journal of Hazardous Materials, 2019, 368, 689-697.	12.4	56
472	Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. Bioresource Technology, 2019, 281, 457-468.	9.6	251
473	Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environment International, 2019, 126, 336-345.	10.0	249
474	Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres. Journal of Hazardous Materials, 2019, 371, 397-405.	12.4	119
475	Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. Journal of Environmental Management, 2019, 237, 128-138.	7.8	266
476	Tin-Functionalized Wood Biochar as a Sustainable Solid Catalyst for Glucose Isomerization in Biorefinery. ACS Sustainable Chemistry and Engineering, 2019, 7, 4851-4860.	6.7	59
477	Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions. Science of the Total Environment, 2019, 664, 312-321.	8.0	92
478	A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction. Environment International, 2019, 125, 452-469.	10.0	112
479	Adsorptive and Reductive Removal of Chlorophenol from Wastewater by Biomass-Derived Mesoporous Carbon-Supported Sulfide Nanoscale Zerovalent Iron. Nanomaterials, 2019, 9, 1786.	4.1	15
480	Aluminium-biochar composites as sustainable heterogeneous catalysts for glucose isomerisation in a biorefinery. Green Chemistry, 2019, 21, 1267-1281.	9.0	157
481	Supercritical Carbon Dioxide Extraction of Value-Added Products and Thermochemical Synthesis of Platform Chemicals from Food Waste. ACS Sustainable Chemistry and Engineering, 2019, 7, 2821-2829.	6.7	23
482	Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions. Environmental Pollution, 2019, 246, 472-481.	7.5	53
483	Organic Acid-Regulated Lewis Acidity for Selective Catalytic Hydroxymethylfurfural Production from Rice Waste: An Experimental–Computational Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 1437-1446.	6.7	28
484	Seasonal antimony pollution caused by high mobility of antimony in sediments: In situ evidence and mechanical interpretation. Journal of Hazardous Materials, 2019, 367, 427-436.	12.4	29
485	Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria) Tj ETQq1 1 0.784314 rg 273, 251-258.	gBT /Overl	ock 10 Tf 50 146
486	Transforming waterworks sludge into controlled low-strength material: Bench-scale optimization and field test validation. Journal of Environmental Management, 2019, 232, 254-263.	7.8	29

#	Article	IF	CITATIONS
487	Hydrothermal Carbonization for Hydrochar Production and Its Application. , 2019, , 275-294.		27
488	Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. Journal of Hazardous Materials, 2019, 365, 684-694.	12.4	156
489	Sludge-Derived Biochar and Its Application in Soil Fixation. , 2019, , 239-253.		2
490	Biochar as an (Im)mobilizing Agent for the Potentially Toxic Elements in Contaminated Soils. , 2019, , 255-274.		13
491	Novel Application of Biochar in Stormwater Harvesting. , 2019, , 319-347.		4
492	Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. Journal of Hazardous Materials, 2019, 365, 695-706.	12.4	151
493	Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery. Journal of Hazardous Materials, 2019, 365, 665-673.	12.4	216
494	A novel electrochemical modification combined with one-step pyrolysis for preparation of sustainable thorn-like iron-based biochar composites. Bioresource Technology, 2019, 274, 379-385.	9.6	89
495	Effect of production temperature on lead removal mechanisms by rice straw biochars. Science of the Total Environment, 2019, 655, 751-758.	8.0	214
496	The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. Journal of Cleaner Production, 2019, 214, 1061-1070.	9.3	161
497	Recycling and regeneration of carbonaceous and porous materials through thermal or solvent treatment. Chemical Engineering Journal, 2019, 364, 514-529.	12.7	69
498	Application of an emulsified polycolloid substrate biobarrier to remediate petroleum-hydrocarbon contaminated groundwater. Chemosphere, 2019, 219, 444-455.	8.2	14
499	Exploring the arsenic removal potential of various biosorbents from water. Environment International, 2019, 123, 567-579.	10.0	130
500	Adsorption characteristics of cesium on the clay minerals: Structural change under wetting and drying condition. Geoderma, 2019, 340, 49-54.	5.1	30
501	Concurrent adsorption and micro-electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environmental Pollution, 2019, 247, 410-420.	7.5	145
502	Porous biochar composite assembled with ternary needle-like iron-manganese-sulphur hybrids for high-efficiency lead removal. Bioresource Technology, 2019, 272, 415-420.	9.6	78
503	Synthesis of functionalised biochar using red mud, lignin, and carbon dioxide as raw materials. Chemical Engineering Journal, 2019, 361, 1597-1604.	12.7	68
504	Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production. Journal of Hazardous Materials, 2019, 365, 137-145.	12.4	86

#	Article	IF	CITATIONS
505	Extended theory of planned behaviour for promoting construction waste recycling in Hong Kong. Waste Management, 2019, 83, 161-170.	7.4	118
506	Efficacy and limitations of low-cost adsorbents for in-situ stabilisation of contaminated marine sediment. Journal of Cleaner Production, 2019, 212, 420-427.	9.3	23
507	Engineered biochar composite fabricated from red mud and lipid waste and synthesis of biodiesel using the composite. Journal of Hazardous Materials, 2019, 366, 293-300.	12.4	31
508	High-performance materials for effective sorptive removal of formaldehyde in air. Journal of Hazardous Materials, 2019, 366, 452-465.	12.4	228
509	Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environment International, 2019, 122, 357-362.	10.0	164
510	Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 2019, 337, 536-554.	5.1	571
511	Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood. Journal of Cleaner Production, 2019, 207, 391-399.	9.3	61
512	Metal organic frameworks as potent treatment media for odorants and volatiles in air. Environmental Research, 2019, 168, 336-356.	7.5	44
513	Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresource Technology, 2019, 272, 570-581.	9.6	236
514	Stacking MFI zeolite structures for improved Sonogashira coupling reactions. Microporous and Mesoporous Materials, 2019, 276, 147-153.	4.4	10
515	Preparation of nitrogen-doped Cu-biochar and its application into catalytic reduction of p-nitrophenol. Environmental Geochemistry and Health, 2019, 41, 1729-1737.	3.4	25
516	Corn waste valorization to generate activated hydrochar to recover ammonium nitrogen from compost leachate by hydrothermal assisted pretreatment. Journal of Environmental Management, 2019, 236, 108-117.	7.8	88
517	Fabrication of spherical biochar by a two-step thermal process from waste potato peel. Science of the Total Environment, 2018, 626, 478-485.	8.0	35
518	Potential Utility of Metal–Organic Framework-Based Platform for Sensing Pesticides. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8797-8817.	8.0	177
519	A novel type of controlled low strength material derived from alum sludge and green materials. Construction and Building Materials, 2018, 165, 792-800.	7.2	75
520	Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catalysis Today, 2018, 314, 52-61.	4.4	92
521	Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils. Science of the Total Environment, 2018, 630, 618-629.	8.0	60
522	Photocatalytic reduction of CO2 to hydrocarbons using bio-templated porous TiO2 architectures under UV and visible light. Chemical Engineering Journal, 2018, 347, 64-73.	12.7	39

#	Article	IF	Citations
523	Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps. Chemical Engineering Journal, 2018, 347, 379-397.	12.7	287
524	Environmental and technical feasibility study of upcycling wood waste into cement-bonded particleboard. Construction and Building Materials, 2018, 173, 474-480.	7.2	59
525	Combined application of EDDS and EDTA for removal of potentially toxic elements under multiple soil washing schemes. Chemosphere, 2018, 205, 178-187.	8.2	62
526	Propylene carbonate and \hat{i}^3 -valerolactone as green solvents enhance Sn($\langle scp \rangle iv \langle scp \rangle$)-catalysed hydroxymethylfurfural (HMF) production from bread waste. Green Chemistry, 2018, 20, 2064-2074.	9.0	85
527	Selection criteria for oxidation method in total organic carbon measurement. Chemosphere, 2018, 199, 453-458.	8.2	36
528	Development of a two-stage biotransformation system for mercury-contaminated soil remediation. Chemosphere, 2018, 200, 266-273.	8.2	22
529	Continuous leaching modifies the surface properties and metal(loid) sorption of sludge-derived biochar. Science of the Total Environment, 2018, 625, 731-737.	8.0	31
530	A field study of bioavailable polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and biochar amended soils. Journal of Hazardous Materials, 2018, 349, 27-34.	12.4	50
531	Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. Science of the Total Environment, 2018, 625, 1644-1658.	8.0	165
532	Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent. Science of the Total Environment, 2018, 627, 235-244.	8.0	418
533	Synergistic adsorption of phosphorus by iron in lanthanum modified bentonite (Phoslock®): New insight into sediment phosphorus immobilization. Water Research, 2018, 134, 32-43.	11.3	98
534	Bamboo- and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. Chemosphere, 2018, 198, 450-459.	8.2	121
535	Chemical transformation of food and beverage waste-derived fructose to hydroxymethylfurfural as a value-added product. Catalysis Today, 2018, 314, 70-77.	4.4	47
536	Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degradation and Development, 2018, 29, 2162-2171.	3.9	89
537	Cu(II)-catalyzed degradation of ampicillin: effect of pH and dissolved oxygen. Environmental Science and Pollution Research, 2018, 25, 4279-4288.	5.3	19
538	A novel process for obtaining high quality cellulose acetate from green landscaping waste. Journal of Cleaner Production, 2018, 176, 338-347.	9.3	31
539	Sorption, mobility, and bioavailability of PBDEs in the agricultural soils: Roles of co-existing metals, dissolved organic matter, and fertilizers. Science of the Total Environment, 2018, 619-620, 1153-1162.	8.0	23
540	Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes. Science of the Total Environment, 2018, 625, 147-154.	8.0	75

#	Article	IF	Citations
541	Size dependence of nanosheet BiVO4 with oxygen vacancies and exposed {0 0 1} facets on the photodegradation of oxytetracycline. Chemical Engineering Journal, 2018, 337, 684-696.	12.7	100
542	Enhanced bioremediation of TCE-contaminated groundwater using gamma poly-glutamic acid as the primary substrate. Journal of Cleaner Production, 2018, 178, 108-118.	9.3	34
543	Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron. Chemosphere, 2018, 196, 9-17.	8.2	45
544	Enhanced adsorption of arsenic onto alum sludge modified by calcination. Journal of Cleaner Production, 2018, 176, 54-62.	9.3	91
545	Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology. Journal of Cleaner Production, 2018, 178, 572-579.	9.3	41
546	Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations. Science of the Total Environment, 2018, 625, 1567-1573.	8.0	190
547	Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the Total Environment, 2018, 625, 872-884.	8.0	225
548	Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils. Science of the Total Environment, 2018, 625, 987-993.	8.0	65
549	Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresource Technology, 2018, 252, 76-82.	9.6	132
550	Biochar-based functional materials in the purification of agricultural wastewater: Fabrication, application and future research needs. Chemosphere, 2018, 197, 165-180.	8.2	119
551	Formation of composite sorbent by P. chrysogenum strain F1 and ferrihydrite in water for arsenic removal. International Biodeterioration and Biodegradation, 2018, 132, 208-215.	3.9	10
552	Simultaneous application of oxalic acid and dithionite for enhanced extraction of arsenic bound to amorphous and crystalline iron oxides. Journal of Hazardous Materials, 2018, 354, 91-98.	12.4	24
553	Corn straw-derived biochar impregnated with $\hat{l}\pm$ -FeOOH nanorods for highly effective copper removal. Chemical Engineering Journal, 2018, 348, 191-201.	12.7	160
554	Effects of calcium carbonate on pyrolysis of sewage sludge. Energy, 2018, 153, 726-731.	8.8	126
555	Interactions of food waste compost with metals and metal-chelant complexes during soil remediation. Journal of Cleaner Production, 2018, 192, 199-206.	9.3	29
556	Metal(loid) immobilization in soils with biochars pyrolyzed in N2 and CO2 environments. Science of the Total Environment, 2018, 630, 1103-1114.	8.0	48
557	Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation. Chemical Engineering Journal, 2018, 348, 74-83.	12.7	92
558	Three-dimensional spatial variability of arsenic-containing soil from geogenic source in Hong Kong: Implications on sampling strategies. Science of the Total Environment, 2018, 633, 836-847.	8.0	14

#	Article	IF	CITATIONS
559	Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization. Science of the Total Environment, 2018, 631-632, 1321-1327.	8.0	97
560	Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests. Science of the Total Environment, 2018, 631-632, 1486-1494.	8.0	51
561	Life-cycle cost-benefit analysis on sustainable food waste management: The case of Hong Kong International Airport. Journal of Cleaner Production, 2018, 187, 751-762.	9.3	69
562	Antimony contamination, consequences and removal techniques: A review. Ecotoxicology and Environmental Safety, 2018, 156, 125-134.	6.0	199
563	Biofiltration of hydrogen sulfide: Trends and challenges. Journal of Cleaner Production, 2018, 187, 131-147.	9.3	105
564	Cadmium phytoremediation potential of Brassica crop species: A review. Science of the Total Environment, 2018, 631-632, 1175-1191.	8.0	275
565	Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: a case study from eastern China. Environmental Science and Pollution Research, 2018, 25, 34-42.	5. 3	46
566	Carbon dioxide assisted thermal decomposition of cattle excreta. Science of the Total Environment, 2018, 615, 70-77.	8.0	7
567	Successful control of internal phosphorus loading after sediment dredging for 6 years: A field assessment using high-resolution sampling techniques. Science of the Total Environment, 2018, 616-617, 927-936.	8.0	25
568	Engineered/designer biochar for the removal of phosphate in water and wastewater. Science of the Total Environment, 2018, 616-617, 1242-1260.	8.0	254
569	Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environmental Pollution, 2018, 232, 375-384.	7.5	83
570	Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous Brønsted acid. Bioresource Technology, 2018, 247, 387-394.	9.6	55
571	Environmental transformations and ecological effects of iron-based nanoparticles. Environmental Pollution, 2018, 232, 10-30.	7.5	249
572	Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution or soil stabilization. Science of the Total Environment, 2018, 612, 1463-1472.	8.0	60
573	Organic contamination and remediation in the agricultural soils of China: A critical review. Science of the Total Environment, 2018, 615, 724-740.	8.0	250
574	Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment. Science of the Total Environment, 2018, 615, 498-507.	8.0	55
575	Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. Chemosphere, 2018, 190, 90-96.	8.2	158
576	Synthesis of zeolite A using sewage sludge ash for application in warm mix asphalt. Journal of Cleaner Production, 2018, 172, 686-695.	9.3	41

#	Article	IF	CITATIONS
577	The potential value of biochar in the mitigation of gaseous emission of nitrogen. Science of the Total Environment, 2018, 612, 257-268.	8.0	69
578	Synthesis of cobalt-impregnated carbon composite derived from a renewable resource: Characterization and catalytic performance evaluation. Science of the Total Environment, 2018, 612, 103-110.	8.0	40
579	Quantification of volatile fatty acids from cattle manure via non-catalytic esterification for odour indication. Science of the Total Environment, 2018, 610-611, 992-996.	8.0	7
580	Reactivation of phosphorus in sediments after calcium-rich mineral capping: Implication for revising the laboratory testing scheme for immobilization efficiency. Chemical Engineering Journal, 2018, 331, 720-728.	12.7	23
581	Combined toxicity of endosulfan and phenanthrene mixtures and induced molecular changes in adult Zebrafish (Danio rerio). Chemosphere, 2018, 194, 30-41.	8.2	35
582	Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 2018, 619-620, 815-826.	8.0	429
583	In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil. Science of the Total Environment, 2018, 619-620, 665-671.	8.0	58
584	Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics. Science of the Total Environment, 2018, 619-620, 311-318.	8.0	78
585	Source identification and ecological impact evaluation of PAHs in urban river sediments: A case study in Taiwan. Chemosphere, 2018, 194, 666-674.	8.2	42
586	A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Science of the Total Environment, 2018, 616-617, 572-582.	8.0	146
587	Upcycling wood waste into fibre-reinforced magnesium phosphate cement particleboards. Construction and Building Materials, 2018, 159, 54-63.	7.2	77
588	Biochar/MnAl-LDH composites for Cu $(\hat{l}^{\text{TM}}\hat{l}^{\text{TM}})$ removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 443-450.	4.7	90
589	Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cement and Concrete Composites, 2018, 86, 98-109.	10.7	87
590	Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). Chemosphere, 2018, 193, 278-287.	8.2	99
591	Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production, 2018, 174, 977-987.	9.3	513
592	An integrated approach for simultaneous immobilization of lead in both contaminated soil and groundwater: Laboratory test and numerical modeling. Journal of Hazardous Materials, 2018, 342, 107-113.	12.4	41
593	Towards practical application of gasification: a critical review from syngas and biochar perspectives. Critical Reviews in Environmental Science and Technology, 2018, 48, 1165-1213.	12.8	64
594	Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: Key roles of Fe3O4 and persistent free radicals. Environmental Pollution, 2018, 243, 1302-1309.	7.5	162

#	Article	IF	Citations
595	Contrasting Roles of Maleic Acid in Controlling Kinetics and Selectivity of Sn(IV)- and Cr(III)-Catalyzed Hydroxymethylfurfural Synthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 14264-14274.	6.7	28
596	Chiral pharmaceuticals: Environment sources, potential human health impacts, remediation technologies and future perspective. Environment International, 2018, 121, 523-537.	10.0	82
597	Different Influences of Bacterial Communities on Fe (III) Reduction and Phosphorus Availability in Sediments of the Cyanobacteria- and Macrophyte-Dominated Zones. Frontiers in Microbiology, 2018, 9, 2636.	3.5	39
598	Selective Glucose Isomerization to Fructose via a Nitrogen-doped Solid Base Catalyst Derived from Spent Coffee Grounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 16113-16120.	6.7	86
599	Emerging Thallium Pollution in China and Source Tracing by Thallium Isotopes. Environmental Science & Emp; Technology, 2018, 52, 11977-11979.	10.0	52
600	Promoting food waste recycling in the commercial and industrial sector by extending the Theory of Planned Behaviour: A Hong Kong case study. Journal of Cleaner Production, 2018, 204, 1034-1043.	9.3	56
601	Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin. Bioresource Technology, 2018, 270, 223-229.	9.6	58
602	Thermochemical conversion of cobalt-loaded spent coffee grounds for production of energy resource and environmental catalyst. Bioresource Technology, 2018, 270, 346-351.	9.6	33
603	Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Science of the Total Environment, 2018, 636, 1241-1248.	8.0	111
604	Kaolinite Enhances the Stability of the Dissolvable and Undissolvable Fractions of Biochar via Different Mechanisms. Environmental Science & Environme	10.0	84
605	Synthesis of nanomaterials from various wastes and their new age applications. Journal of Cleaner Production, 2018, 197, 1190-1209.	9.3	104
606	Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chemical Engineering Journal, 2018, 351, 418-427.	12.7	174
607	The utilization of zinc recovered from alkaline battery waste as metal precursor in the synthesis of metal-organic framework. Journal of Cleaner Production, 2018, 199, 995-1006.	9.3	25
608	Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Science of the Total Environment, 2018, 645, 1444-1455.	8.0	96
609	Two-stage multi-fraction first-order kinetic modeling for soil Cd extraction by EDTA. Chemosphere, 2018, 211, 1035-1042.	8.2	11
610	Life-cycle assessment on food waste valorisation to value-added products. Journal of Cleaner Production, 2018, 199, 840-848.	9.3	71
611	Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. Journal of Hazardous Materials, 2018, 359, 396-407.	12.4	164
612	Photo-Fenton abatement of aqueous organics using metal-organic frameworks: An advancement from benchmark zeolite. Science of the Total Environment, 2018, 644, 389-397.	8.0	17

#	Article	IF	Citations
613	Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Bioresource Technology, 2018, 267, 242-248.	9.6	114
614	Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma, 2018, 332, 100-108.	5.1	206
615	Carbon dioxide sequestration on composites based on waste wood. , 2018, , 431-450.		3
616	Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. Journal of Cleaner Production, 2018, 199, 69-76.	9.3	109
617	Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems. Bioresource Technology, 2018, 263, 385-392.	9.6	181
618	Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coordination Chemistry Reviews, 2018, 368, 93-114.	18.8	69
619	Controlling generation of benzenes and polycyclic aromatic hydrocarbons in thermolysis of polyvinyl chloride in CO2. Energy Conversion and Management, 2018, 164, 453-459.	9.2	39
620	Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils. Environmental Pollution, 2018, 242, 1362-1370.	7.5	127
621	Pb(II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556, 177-184.	4.7	80
622	Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Bioresource Technology, 2018, 269, 465-475.	9.6	298
623	Ferric-enhanced chemical remediation of dredged marine sediment contaminated by metals and petroleum hydrocarbons. Environmental Pollution, 2018, 243, 87-93.	7.5	8
624	One step fabrication of carbon supported cobalt pentlandite (Co9S8) via the thermolysis of lignin and Co3O4. Journal of CO2 Utilization, 2018, 27, 196-203.	6.8	16
625	Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil. Science of the Total Environment, 2018, 640-641, 704-713.	8.0	110
626	Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environment International, 2018, 119, 1-19.	10.0	212
627	Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresource Technology, 2018, 265, 490-497.	9.6	267
628	Effects of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted paddy soil and Cd absorption in rice. Science of the Total Environment, 2018, 640-641, 736-745.	8.0	45
629	Contribution of pyrolytic gas medium to the fabrication of co-impregnated biochar. Journal of CO2 Utilization, 2018, 26, 476-486.	6.8	17
630	Biochar Effects on Rice Paddy: Meta-analysis. Advances in Agronomy, 2018, , 1-32.	5.2	35

#	Article	IF	Citations
631	Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments, 2017, 17, 717-730.	3.0	211
632	Risk mitigation by waste-based permeable reactive barriers for groundwater pollution control at e-waste recycling sites. Environmental Geochemistry and Health, 2017, 39, 75-88.	3.4	24
633	Effects of carbon dioxide on pyrolysis of peat. Energy, 2017, 120, 929-936.	8.8	40
634	New insights into the activity of a biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions. RSC Advances, 2017, 7, 8755-8761.	3.6	50
635	CO 2 curing and fibre reinforcement for green recycling of contaminated wood into high-performance cement-bonded particleboards. Journal of CO2 Utilization, 2017, 18, 107-116.	6.8	47
636	Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 2017, 174, 593-603.	8.2	245
637	Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity. Bioresource Technology, 2017, 237, 222-230.	9.6	121
638	Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment. International Biodeterioration and Biodegradation, 2017, 118, 73-81.	3.9	141
639	Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere, 2017, 178, 110-118.	8.2	231
640	Sustainability likelihood of remediation options for metal-contaminated soil/sediment. Chemosphere, 2017, 174, 421-427.	8.2	19
641	Roles of Phosphoric Acid in Biochar Formation: Synchronously Improving Carbon Retention and Sorption Capacity. Journal of Environmental Quality, 2017, 46, 393-401.	2.0	123
642	Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater. Chemosphere, 2017, 176, 315-323.	8.2	93
643	N doped cobalt-carbon composite for reduction of p-nitrophenol and pendimethaline. Journal of Alloys and Compounds, 2017, 703, 118-124.	5.5	49
644	Simultaneous removal of atrazine and copper using polyacrylic acid-functionalized magnetic ordered mesoporous carbon from water: adsorption mechanism. Scientific Reports, 2017, 7, 43831.	3.3	49
645	Enhancing anti-microbial properties of wood-plastic composites produced from timber and plastic wastes. Environmental Science and Pollution Research, 2017, 24, 12227-12237.	5.3	16
646	Effect of pulverized fuel ash and CO 2 curing on the water resistance of magnesium oxychloride cement (MOC). Cement and Concrete Research, 2017, 97, 115-122.	11.0	118
647	Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 2017, 238, 716-732.	9.6	400
648	Electrocatalytic properties of N-doped graphite felt in electro-Fenton process and degradation mechanism of levofloxacin. Chemosphere, 2017, 182, 306-315.	8.2	176

#	Article	lF	Citations
649	Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. Chemosphere, 2017, 182, 31-39.	8.2	117
650	Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC). Construction and Building Materials, 2017, 147, 519-524.	7.2	82
651	Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong. Science of the Total Environment, 2017, 599-600, 679-688.	8.0	96
652	A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 2017, 182, 90-105.	8.2	352
653	Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO 2 as reaction medium. Energy Conversion and Management, 2017, 145, 1-9.	9.2	80
654	Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: Metal/metalloid bioaccessibility, Microtox bioassay, and enzyme activities. Science of the Total Environment, 2017, 579, 1419-1426.	8.0	54
655	Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technology, 2017, 241, 887-899.	9.6	239
656	Effects of atmospheric ageing under different temperatures on surface properties of sludge-derived biochar and metal/metalloid stabilization. Chemosphere, 2017, 184, 176-184.	8.2	70
657	Reduction of Bromate by Cobalt-Impregnated Biochar Fabricated via Pyrolysis of Lignin Using CO ₂ as a Reaction Medium. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13142-13150.	8.0	50
658	Effects of individual and combined toxicity of bisphenol A, dibutyl phthalate and cadmium on oxidative stress and genotoxicity in HepG 2Âcells. Food and Chemical Toxicology, 2017, 105, 73-81.	3.6	58
659	Insights into the subsurface transport of As(V) and Se(VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China. Environmental Pollution, 2017, 223, 449-456.	7.5	25
660	Transformation of heavy metal fraction distribution in contaminated river sediment treated by chemical-enhanced washing. Journal of Soils and Sediments, 2017, 17, 1208-1218.	3.0	14
661	Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: The effect of environmental conditions and reaction mechanism. Water Research, 2017, 117, 175-186.	11.3	169
662	Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. Chemosphere, 2017, 178, 301-308.	8.2	104
663	Insight into highly efficient co-removal of p-nitrophenol and lead by nitrogen-functionalized magnetic ordered mesoporous carbon: Performance and modelling. Journal of Hazardous Materials, 2017, 333, 80-87.	12.4	167
664	Synthesis of Pd/Au bimetallic nanoparticle-loaded ultrathin graphitic carbon nitride nanosheets for highly efficient catalytic reduction of p-nitrophenol. Journal of Colloid and Interface Science, 2017, 490, 834-843.	9.4	85
665	Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresource Technology, 2017, 245, 266-273.	9.6	553
666	Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresource Technology, 2017, 245, 1184-1193.	9.6	209

#	Article	IF	Citations
667	Antibiotics in the agricultural soils from the Yangtze River Delta, China. Chemosphere, 2017, 189, 301-308.	8.2	143
668	Co-pyrolysis of paper mill sludge and spend coffee ground using CO2 as reaction medium. Journal of CO2 Utilization, 2017, 21, 572-579.	6.8	31
669	Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications. Chemosphere, 2017, 189, 224-238.	8.2	320
670	Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China. Scientific Reports, 2017, 7, 7971.	3.3	168
671	Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. Bioresource Technology, 2017, 245, 456-462.	9.6	71
672	Transforming wood waste into water-resistant magnesia-phosphate cement particleboard modified by alumina and red mud. Journal of Cleaner Production, 2017, 168, 452-462.	9.3	74
673	Effects of lead mineralogy on soil washing enhanced by ferric salts as extracting and oxidizing agents. Chemosphere, 2017, 185, 501-508.	8.2	21
674	Recycling contaminated sediment into eco-friendly paving blocks by a combination of binary cement and carbon dioxide curing. Journal of Cleaner Production, 2017, 164, 1279-1288.	9.3	72
675	First observation of labile arsenic stratification in aluminum sulfate-amended sediments using high resolution Zr-oxide DGT. Science of the Total Environment, 2017, 609, 304-310.	8.0	19
676	Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl 3 -pretreated spent coffee ground. Environmental Pollution, 2017, 229, 942-949.	7.5	92
677	Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. Environmental Pollution, 2017, 230, 927-935.	7.5	32
678	Bio-mimicking TiO ₂ architectures for enhanced photocatalytic activity under UV and visible light. RSC Advances, 2017, 7, 39098-39108.	3.6	9
679	Fate of metals before and after chemical extraction of incinerated sewage sludge ash. Chemosphere, 2017, 186, 350-359.	8.2	28
680	Mobile phosphorus stratification in sediments by aluminum immobilization. Chemosphere, 2017, 186, 644-651.	8.2	48
681	Biodiesel synthesis using chicken manure biochar and waste cooking oil. Bioresource Technology, 2017, 244, 810-815.	9.6	49
682	Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification. Environmental Science and Pollution Research, 2017, 24, 27822-27832.	5.3	26
683	Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: Temperature and solvent effects. Chemical Engineering Journal, 2017, 327, 328-335.	12.7	99
684	Mixture Design and Reaction Sequence for Recycling Construction Wood Waste into Rapid-Shaping Magnesia†Phosphate Cement Particleboard. Industrial & Engineering Chemistry Research, 2017, 56, 6645-6654.	3.7	26

#	Article	IF	CITATIONS
685	Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chemical Engineering Journal, 2017, 328, 246-273.	12.7	196
686	Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresource Technology, 2017, 246, 69-75.	9.6	129
687	Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis. Chemosphere, 2017, 184, 1099-1107.	8.2	58
688	A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 2017, 246, 254-270.	9.6	398
689	Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere, 2017, 184, 197-206.	8.2	127
690	International Conference on Heavy Metals in the Environment (ICHMET). Chemosphere, 2017, 185, 94-95.	8.2	1
691	A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology, 2017, 246, 242-253.	9.6	263
692	Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Applied Energy, 2017, 185, 214-222.	10.1	198
693	Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere, 2017, 169, 89-98.	8.2	107
694	A highly active and anti-coking Pd-Pt/SiO 2 catalyst for catalytic combustion of toluene at low temperature. Applied Catalysis A: General, 2017, 529, 60-67.	4.3	91
695	Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks. Environmental Geochemistry and Health, 2017, 39, 369-378.	3.4	60
696	Metal immobilization by sludge-derived biochar: roles of mineral oxides and carbonized organic compartment. Environmental Geochemistry and Health, 2017, 39, 379-389.	3.4	27
697	Impact of natural and calcined starfish (Asterina pectinifera) on the stabilization of Pb, Zn and As in contaminated agricultural soil. Environmental Geochemistry and Health, 2017, 39, 431-441.	3.4	18
698	Synthesis and application of iron and zinc doped biochar for removal of p-nitrophenol in wastewater and assessment of the influence of co-existed Pb(II). Applied Surface Science, 2017, 392, 391-401.	6.1	148
699	Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing. Chemosphere, 2017, 167, 163-170.	8.2	33
700	Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment. Chemosphere, 2017, 166, 489-496.	8.2	94
701	Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 2017, 47, 2275-2330.	12.8	194
702	Chemical Characterization of Mine Sites. , 2017, , 17-32.		2

#	Article	IF	CITATIONS
703	Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environmental Pollution, 2016, 213, 533-540.	7.5	140
704	The photodegradation of polybrominated diphenyl ethers (PBDEs) in various environmental matrices: Kinetics and mechanisms. Chemical Engineering Journal, 2016, 297, 74-96.	12.7	88
705	Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chemical Engineering Journal, 2016, 298, 183-190.	12.7	194
706	Biodiesel Conversion via Thermal Assisted in-Situ Transesterification of Bovine Fat Using Dimethyl Carbonate as an Acyl Acceptor. ACS Sustainable Chemistry and Engineering, 2016, 4, 5600-5605.	6.7	13
707	Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea) Tj ETQq1 1 Management, 2016, 184, 85-93.	0.784314 7.8	rgBT /Overlo
708	Polychlorinated biphenyls in agricultural soils from the Yangtze River Delta of China: Regional contamination characteristics, combined ecological effects and human health risks. Chemosphere, 2016, 163, 422-428.	8.2	40
709	Pyrolysis of FeCl3-pretreated spent coffee grounds using CO2 as a reaction medium. Energy Conversion and Management, 2016, 127, 437-442.	9.2	41
710	Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Construction and Building Materials, 2016, 125, 316-325.	7.2	106
711	Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. Journal of Cleaner Production, 2016, 137, 861-870.	9.3	116
712	Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps. Bioresource Technology, 2016, 219, 338-347.	9.6	98
713	Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition. Chemosphere, 2016, 161, 438-445.	8.2	28
714	Fabrication of a novel magnetic carbon nanocomposite adsorbent via pyrolysis of sugar. Chemosphere, 2016, 163, 305-312.	8.2	34
715	Phytomanagement of heavy metals in contaminated soils using sunflower: A review. Critical Reviews in Environmental Science and Technology, 2016, 46, 1498-1528.	12.8	105
716	Role of Inherent Inorganic Constituents in SO ₂ Sorption Ability of Biochars Derived from Three Biomass Wastes. Environmental Science & Envi	10.0	36
717	Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nature Communications, 2016, 7, 11580.	12.8	198
718	Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site. Chemosphere, 2016, 159, 426-432.	8.2	65
719	Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 2016, 148, 276-291.	8.2	959
720	Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Advances, 2016, 6, 5871-5880.	3.6	82

#	Article	IF	Citations
721	Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Science of the Total Environment, 2016, 544, 670-676.	8.0	155
722	Transformation of Tetracycline Antibiotics and Fe(II) and Fe(III) Species Induced by Their Complexation. Environmental Science & Environmental Science	10.0	145
723	Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution. Water Research, 2016, 95, 103-112.	11.3	326
724	Using a high biomass plant Pennisetum hydridum to phyto-treat fresh municipal sewage sludge. Bioresource Technology, 2016, 217, 252-256.	9.6	23
725	Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar. Chemosphere, 2016, 149, 263-271.	8.2	116
726	Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption. Journal of Soils and Sediments, 2016, 16, 889-895.	3.0	51
727	Copyrolysis of Biomass with Phosphate Fertilizers To Improve Biochar Carbon Retention, Slow Nutrient Release, and Stabilize Heavy Metals in Soil. ACS Sustainable Chemistry and Engineering, 2016, 4, 1630-1636.	6.7	170
728	Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo. Bioresource Technology, 2016, 205, 199-204.	9.6	116
729	The Interfacial Behavior between Biochar and Soil Minerals and Its Effect on Biochar Stability. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental	10.0	268
730	Effective removal of $Cr(\langle scp \rangle vi\langle scp \rangle)$ using \hat{l}^2 -cyclodextrinâ \in chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Advances, 2016, 6, 94-104.	3.6	221
731	Sludge-Derived Biochar for Arsenic(III) Immobilization: Effects of Solution Chemistry on Sorption Behavior. Journal of Environmental Quality, 2015, 44, 1119-1126.	2.0	67
732	Reduction of Nitrate in Groundwater by Fe(0)/Magnetite Nanoparticles Entrapped in Ca-Alginate Beads. Water, Air, and Soil Pollution, 2015, 226, 1 .	2.4	27
733	The roles of halides in the acetaminophen degradation by UV/H2O2 treatment: Kinetics, mechanisms, and products analysis. Chemical Engineering Journal, 2015, 271, 214-222.	12.7	80
734	Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Science of the Total Environment, 2015, 527-528, 375-383.	8.0	208
735	Short-term effects of rice straw biochar on sorption, emission, and transformation of soil NH4 +-N. Environmental Science and Pollution Research, 2015, 22, 9184-9192.	5.3	49
736	Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry. Environmental Technology (United Kingdom), 2015, 36, 3094-3102.	2.2	84
737	Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground. Bioresource Technology, 2015, 189, 1-6.	9.6	81
738	The roles of humic substances in the interactions of phenanthrene and heavy metals on the bentonite surface. Journal of Soils and Sediments, 2015, 15, 1463-1472.	3.0	33

#	Article	IF	CITATIONS
739	Highly effective degradation of sodium dodecylbenzene sulphonate and synthetic greywater by Fenton-like reaction over zerovalent iron-based catalyst. Environmental Technology (United) Tj ETQq1 1 0.784314	ægBT ∕Ove	e ds ck 10 T
740	Toxicity characteristic leaching procedure over- or under-estimates leachability of lead in phosphate-amended contaminated soils. Chemosphere, 2015, 138, 744-750.	8.2	31
741	Adsorption of cadmium ions from aqueous solutions by activated carbon with oxygen-containing functional groups. Chinese Journal of Chemical Engineering, 2015, 23, 1705-1711.	3.5	50
742	Removal of Sulfur Compounds by a Copper-Based Metal Organic Framework under Ambient Conditions. Energy & Samp; Fuels, 2015, 29, 298-304.	5.1	98
743	Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification. Chemosphere, 2015, 122, 257-264.	8.2	102
744	Propene oligomerization to high-quality liquid fuels over Ni/HZSM-5. Fuel, 2015, 144, 9-14.	6.4	59
745	Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation. Chemosphere, 2015, 119, 1255-1261.	8.2	100
746	Mixture design and treatment methods for recycling contaminated sediment. Journal of Hazardous Materials, 2015, 283, 623-632.	12.4	82
747	Soil Washing Enhanced by Humic Substances and Biodegradable Chelating Agents. Soil and Sediment Contamination, 2014, 23, 599-613.	1.9	31
748	Influence of Natural Organic Matter on Contaminant Removal by Permeable Reactive Barrier. , 2014, , 19-40.		6
749	Comparing chemical-enhanced washing and waste-based stabilisation approach for soil remediation. Journal of Soils and Sediments, 2014, 14, 936-947.	3.0	46
750	Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater. Environmental Science and Pollution Research, 2014, 21, 4665-4674.	5.3	95
751	Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances. Environmental Science and Pollution Research, 2014, 21, 3987-3995.	5.3	71
752	Distribution and evolution of organic matter phases during biochar formation and their importance in carbon loss and pore structure. Chemical Engineering Journal, 2014, 250, 240-247.	12.7	75
753	Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 2014, 2, 4739-4750.	10.3	325
754	Interaction of organic and inorganic fractions of biochar with Pb(<scp>ii</scp>) ion: further elucidation of mechanisms for Pb(<scp>ii</scp>) removal by biochar. RSC Advances, 2014, 4, 44930-44937.	3.6	90
755	Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales. Bioresource Technology, 2014, 171, 159-167.	9.6	63
756	Requirements for effective photocatalytic oxidative desulfurization of a thiophene-containing solution using TiO2. Journal of Environmental Chemical Engineering, 2014, 2, 1947-1955.	6.7	44

#	Article	IF	Citations
757	Effects of Mineral Additives on Biochar Formation: Carbon Retention, Stability, and Properties. Environmental Science & Enviro	10.0	233
758	Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost. Environmental Science and Pollution Research, 2014, 21, 10194-10204.	5.3	63
7 59	Catalytic consequences of charge-balancing cations in zeolite during photo-Fenton oxidation of formaldehyde in alkaline conditions. Separation and Purification Technology, 2014, 125, 269-274.	7.9	14
760	Review of biotreatment techniques for volatile sulfur compounds with an emphasis on dimethyl sulfide. Process Biochemistry, 2014, 49, 1543-1554.	3.7	51
761	Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere, 2014, 111, 296-303.	8.2	123
762	Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere, 2013, 92, 955-961.	8.2	408
763	Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 2013, 20, 358-368.	5.3	460
764	Remediation of an electroplating contaminated soil by EDTA flushing: chromium release and soil dissolution. Journal of Soils and Sediments, 2013, 13, 354-363.	3.0	38
765	Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents. Journal of Environmental Sciences, 2013, 25, 2291-2298.	6.1	43
766	Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching. Chemosphere, 2013, 93, 2839-2847.	8.2	68
767	Acid Mine Drainage Treatment Assisted by Lignite-Derived Humic Substances. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	14
768	Residual leachability of CCA-contaminated soil after treatment with biodegradable chelating agents and lignite-derived humic substances. Journal of Soils and Sediments, 2013, 13, 895-905.	3.0	48
769	Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 2013, 256-257, 1-9.	12.4	287
770	Conceptual framework and mathematical model for the transport of metal–chelant complexes during in situ soil remediation. Chemosphere, 2013, 91, 1281-1288.	8.2	18
771	Lignite-Derived Humic Substances for Treatment of Acid Mine Drainage. Environmental Engineering Science, 2013, 30, 638-645.	1.6	1
772	Applications of Citric Acid Industrial Wastewater and Phosphonates for Soil Remediation: Effects on Temporal Change of Cadmium Distribution. Soil and Sediment Contamination, 2013, 22, 876-889.	1.9	6
773	Mechanisms of EDDS Adsorption on Goethite and Hematite Under Aqueous and Dehydrated Conditions. Environmental Engineering Science, 2013, 30, 733-741.	1.6	3
774	Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater. Environmental Technology (United Kingdom), 2013, 34, 3177-3182.	2.2	25

#	Article	IF	CITATIONS
775	Short-term effects of raw rice straw and its derived biochar on greenhouse gas emission in five typical soils in China. Soil Science and Plant Nutrition, 2013, 59, 800-811.	1.9	60
776	Mineral Constituents Profile of Biochar Derived from Diversified Waste Biomasses: Implications for Agricultural Applications. Journal of Environmental Quality, 2013, 42, 545-552.	2.0	87
777	Nickel and Zinc Removal from Acid Mine Drainage: Roles of Sludge Surface Area and Neutralising Agents. Journal of Mining, 2013, 2013, 1-5.	0.1	13
778	Design, Implementation, and Economic/Societal Considerations of Chelant-Enhanced Soil Washing., 2012, , 1-26.		4
779	Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil. Environmental Science and Pollution Research, 2012, 19, 1659-1667.	5. 3	78
780	Enhancement of phenanthrene adsorption on a clayey soil and clay minerals by coexisting lead or cadmium. Chemosphere, 2011, 83, 302-310.	8.2	74
781	Significance of metal exchange in EDDS-flushing column experiments. Chemosphere, 2011, 83, 7-13.	8.2	31
782	Conceptual model and sensitivity analysis for simulating the extraction kinetics of soil washing. Journal of Soils and Sediments, 2011, 11, 1221-1233.	3.0	13
783	Influence of injection conditions on EDDS-flushing of metal-contaminated soil. Journal of Hazardous Materials, 2011, 192, 667-675.	12.4	35
784	Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment, 2010, 408, 1069-1075.	8.0	670
785	Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: Significance of humic acid and chelant mixture. Chemosphere, 2010, 80, 416-421.	8.2	60
786	Interactions of chelating agents with Pb-goethite at the solid–liquid interface: Pb extraction and re-adsorption. Chemosphere, 2010, 81, 415-421.	8.2	40
787	Contamination and Congener Profiles of Polychlorinated Biphenyls from different agricultural top soils in a county of the Tailake Region, China. Journal of Hazardous Materials, 2010, 176, 1027-1031.	12.4	18
788	Influence of EDDS-to-metal molar ratio, solution pH, and soil-to-solution ratio on metal extraction under EDDS deficiency. Journal of Hazardous Materials, 2010, 178, 890-894.	12.4	37
789	Selective Removal of Naphthalene from Non-Ionic and Anionic Surfactants Using Activated Carbon. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
790	Empirical modeling of heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils. Chemosphere, 2009, 74, 301-307.	8.2	46
791	Humic acid aggregation in zero-valent iron systems and its effects on trichloroethylene removal. Chemosphere, 2009, 75, 1338-1343.	8.2	66
792	Kinetic Interactions of EDDS with Soils. 1. Metal Resorption and Competition under EDDS Deficiency. Environmental Science & En	10.0	75

#	Article	IF	CITATIONS
793	Kinetic Interactions of EDDS with Soils. 2. Metalâ^'EDDS Complexes in Uncontaminated and Metal-Contaminated Soils. Environmental Science & Education (2009), 43, 837-842.	10.0	71
794	Perchloroethene and Chromium Removal from Humic Acid-Containing Groundwater by Zero-Valent Iron Systems. , 2009, , .		0
795	Removal of Pb by EDTA-washing in the presence of hydrophobic organic contaminants or anionic surfactant. Journal of Hazardous Materials, 2008, 155, 433-439.	12.4	37
796	Chromium(VI) Reduction Kinetics by Zero-Valent Iron in Moderately Hard Water with Humic Acid: Iron Dissolution and Humic Acid Adsorption. Environmental Science & Environmental Science & 2008, 42, 2092-2098.	10.0	155
797	Adsorption of Methylene Blue and Phenol by Wood Waste Derived Activated Carbon. Journal of Environmental Engineering, ASCE, 2008, 134, 338-345.	1.4	28
798	Renewable Energy Generation by Full-Scale Biomass Gasification System Using Agricultural and Forestal Residues. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2007, 11, 177-183.	0.4	12
799	Disparity of Cadmium Transport Behavior in Soils at Different Temperatures. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2007, 11, 97-105.	0.4	1
800	Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron. Chemosphere, 2007, 66, 858-865.	8.2	122
801	Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing. Chemosphere, 2007, 66, 2025-2034.	8.2	54
802	Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils. Chemosphere, 2007, 68, 234-243.	8.2	105
803	Modeling the Transport of Metals with Rate-Limited EDTA-Promoted Extraction and Dissolution during EDTA-Flushing of Copper-Contaminated Soils. Environmental Science & Echnology, 2007, 41, 3660-3666.	10.0	37
804	Modeling Cadmium Transport in Soils Using Sequential Extraction, Batch, and Miscible Displacement Experiments. Soil Science Society of America Journal, 2007, 71, 674-681.	2.2	30
805	Activated Carbon Produced from Waste Wood Pallets: Adsorption of Three Classes of Dyes. Water, Air, and Soil Pollution, 2007, 184, 141-155.	2.4	86
806	Competitive Cu and Cd Sorption and Transport in Soils:Â A Combined Batch Kinetics, Column, and Sequential Extraction Study. Environmental Science & Expression (2006), 40, 6655-6661.	10.0	88
807	Influence of Pore-Water Velocity on Transport Behavior of Cadmium: Equilibrium versus Nonequilibrium. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2006, 10, 162-170.	0.4	11
808	Enhancement of barrier and corrosion protection performance of epoxy coatings through adding ecoâ€friendly lamellar biochar. Materials and Corrosion - Werkstoffe Und Korrosion, 0, , .	1.5	0