
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5674232/publications.pdf Version: 2024-02-01

FDIK A RICHTED

#	Article	IF	CITATIONS
1	GDF15 in Appetite and Exercise: Essential Player or Coincidental Bystander?. Endocrinology, 2022, 163, .	2.8	26
2	Personalized phosphoproteomics identifies functional signaling. Nature Biotechnology, 2022, 40, 576-584.	17.5	44
3	Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells. Nature Communications, 2022, 13, 22.	12.8	15
4	Exercise increases phosphorylation of the putative mTORC2 activity readout NDRG1 in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E63-E73.	3.5	4
5	Nutritional optimization for female elite football players—topical review. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 81-104.	2.9	12
6	An exercise-inducible metabolite that suppresses feeding and obesity. Nature, 2022, 606, 785-790.	27.8	96
7	Is GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake?. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E240-E243.	3.5	30
8	Small Amounts of Dietary Medium-Chain Fatty Acids Protect Against Insulin Resistance During Caloric Excess in Humans. Diabetes, 2021, 70, 91-98.	0.6	18
9	Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nature Communications, 2021, 12, 1041.	12.8	69
10	The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metabolism, 2021, 33, 758-780.	16.2	124
11	Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nature Communications, 2021, 12, 304.	12.8	79
12	Interactions between insulin and exercise. Biochemical Journal, 2021, 478, 3827-3846.	3.7	31
13	Growth Factor-Dependent and -Independent Activation of mTORC2. Trends in Endocrinology and Metabolism, 2020, 31, 13-24.	7.1	31
14	Insulinâ€induced membrane permeability to glucose in human muscles at rest and following exercise. Journal of Physiology, 2020, 598, 303-315.	2.9	35
15	Glucometabolic consequences of acute and prolonged inhibition of fatty acid oxidation. Journal of Lipid Research, 2020, 61, 10-19.	4.2	23
16	Mechanisms Underlying Absent Training-Induced Improvement in Insulin Action in Lean, Hyperandrogenic Women With Polycystic Ovary Syndrome. Diabetes, 2020, 69, 2267-2280.	0.6	13
17	The insulinâ€sensitizing effect of a single exercise bout is similar in type I and type II human muscle fibres. Journal of Physiology, 2020, 598, 5687-5699.	2.9	13
18	Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nature Reviews Endocrinology, 2020, 16, 683-696.	9.6	74

#	Article	IF	CITATIONS
19	pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell, 2020, 183, 62-75.e17.	28.9	129
20	Insulinâ€stimulated glucose uptake partly relies on p21â€activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. Journal of Physiology, 2020, 598, 5351-5377.	2.9	15
21	Quantification of exerciseâ€regulated ubiquitin signaling in human skeletal muscle identifies protein modification cross talk via NEDDylation. FASEB Journal, 2020, 34, 5906-5916.	0.5	23
22	Housing temperature influences exercise training adaptations in mice. Nature Communications, 2020, 11, 1560.	12.8	52
23	Pharmacological targeting of α3β4 nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia, 2020, 63, 1236-1247.	6.3	9
24	Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E311-E312.	3.5	4
25	Circulating Follistatin and Activin A and Their Regulation by Insulin in Obesity and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1343-1354.	3.6	23
26	A Single Bout of One-Legged Exercise to Local Exhaustion Decreases Insulin Action in Nonexercised Muscle Leading to Decreased Whole-Body Insulin Action. Diabetes, 2020, 69, 578-590.	0.6	21
27	The Importance of Fatty Acids as Nutrients during Post-Exercise Recovery. Nutrients, 2020, 12, 280.	4.1	29
28	Cancer causes metabolic perturbations associated with reduced insulin-stimulated glucose uptake in peripheral tissues and impaired muscle microvascular perfusion. Metabolism: Clinical and Experimental, 2020, 105, 154169.	3.4	22
29	Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Molecular Metabolism, 2020, 39, 100998.	6.5	29
30	The p21â€activated kinase 2 (PAK2), but not PAK1, regulates contractionâ€stimulated skeletal muscle glucose transport. Physiological Reports, 2020, 8, e14460.	1.7	9
31	Does Acute Exercise Increase Insulinâ€Stimulated Skeletal Muscle Glucose Uptake, Blood Flow And Insulin Signalling In Response To A Meal?. FASEB Journal, 2020, 34, 1-1.	0.5	0
32	Mechanisms involved in follistatinâ€induced hypertrophy and increased insulin action in skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1241-1257.	7.3	47
33	Phosphoproteomics reveals conserved exerciseâ€stimulated signaling and AMPK regulation of storeâ€operated calcium entry. EMBO Journal, 2019, 38, e102578.	7.8	54
34	Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nature Communications, 2019, 10, 4623.	12.8	128
35	Fatty acid type–specific regulation of SIRT1 does not affect insulin sensitivity in human skeletal muscle. FASEB Journal, 2019, 33, 5510-5519.	0.5	4
36	Current advances in our understanding of exercise as medicine in metabolic disease. Current Opinion in Physiology, 2019, 12, 12-19.	1.8	41

#	Article	IF	CITATIONS
37	Dietary Fuels in Athletic Performance. Annual Review of Nutrition, 2019, 39, 45-73.	10.1	23
38	Molecular Mechanisms in Skeletal Muscle Underlying Insulin Resistance in Women Who Are Lean With Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1841-1854.	3.6	50
39	Effect of bariatric surgery on plasma GDF15 in humans. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E615-E621.	3.5	25
40	Metformin does not compromise energy status in human skeletal muscle at rest or during acute exercise: A randomised, crossover trial. Physiological Reports, 2019, 7, e14307.	1.7	18
41	ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes, 2019, 68, 502-514.	0.6	20
42	Exercise training reduces the insulinâ€sensitizing effect of a single bout of exercise in human skeletal muscle. Journal of Physiology, 2019, 597, 89-103.	2.9	41
43	Mechanisms Preserving Insulin Action during High Dietary Fat Intake. Cell Metabolism, 2019, 29, 50-63.e4.	16.2	50
44	Exercise increases circulating GDF15 in humans. Molecular Metabolism, 2018, 9, 187-191.	6.5	109
45	Extracellular Vesicles Provide a Means for Tissue Crosstalk during Exercise. Cell Metabolism, 2018, 27, 237-251.e4.	16.2	426
46	NOX2 is a major ROS source in exercising muscle regulating glucose uptake. Free Radical Biology and Medicine, 2018, 120, S30.	2.9	1
47	Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Molecular Metabolism, 2018, 16, 24-34.	6.5	58
48	Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training. Scientific Reports, 2018, 8, 10723.	3.3	44
49	Rac1 muscle knockout exacerbates the detrimental effect of highâ€fat diet on insulinâ€stimulated muscle glucose uptake independently of Akt. Journal of Physiology, 2018, 596, 2283-2299.	2.9	41
50	Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Trends in Endocrinology and Metabolism, 2018, 29, 18-30.	7.1	100
51	Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise. Diabetes, 2017, 66, 1548-1559.	0.6	48
52	Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. Journal of Physiology, 2017, 595, 4845-4855.	2.9	43
53	Variable reliability of surrogate measures of insulin sensitivity after Roux-en-Y gastric bypass. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R797-R805.	1.8	15
54	Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Molecular and Cellular Endocrinology, 2017, 440, 44-56.	3.2	83

#	Article	IF	CITATIONS
55	Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects. Journal of Physiology, 2017, 595, 5557-5571.	2.9	21
56	Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes, 2017, 66, 1501-1510.	0.6	120
57	Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome. Molecular and Cellular Proteomics, 2017, 16, 2055-2068.	3.8	56
58	Opposite Regulation of Insulin Sensitivity by Dietary Lipid Versus Carbohydrate Excess. Diabetes, 2017, 66, 2583-2595.	0.6	46
59	Exercise-stimulated glucose uptake — regulation and implications for glycaemic control. Nature Reviews Endocrinology, 2017, 13, 133-148.	9.6	312
60	Nearâ€normalization of glycaemic control with glucagonâ€like peptideâ€1 receptor agonist treatment combined with exercise in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2017, 19, 172-180.	4.4	36
61	Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates. Molecular Metabolism, 2017, 6, 22-29.	6.5	95
62	Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. Journal of Physiology, 2016, 594, 745-761.	2.9	78
63	Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E706-E719.	3.5	53
64	The Cancer Drug Dasatinib Increases PGC-1α in Adipose Tissue but Has Adverse Effects on Glucose Tolerance in Obese Mice. Endocrinology, 2016, 157, 4184-4191.	2.8	5
65	Decreased spontaneous activity in AMPK α2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism. Physiology and Behavior, 2016, 164, 300-305.	2.1	5
66	Rac1 in Muscle Is Dispensable for Improved Insulin Action After Exercise in Mice. Endocrinology, 2016, 157, 3009-3015.	2.8	13
67	Partial Disruption of Lipolysis Increases Postexercise Insulin Sensitivity in Skeletal Muscle Despite Accumulation of DAG. Diabetes, 2016, 65, 2932-2942.	0.6	19
68	mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular Metabolism, 2016, 5, 646-655.	6.5	44
69	Rac1 governs exerciseâ€stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. Journal of Physiology, 2016, 594, 4997-5008.	2.9	87
70	Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cellular Signalling, 2016, 28, 663-674.	3.6	62
71	Globular adiponectin controls insulin-mediated vasoreactivity in muscle through AMPKα2. Vascular Pharmacology, 2016, 78, 24-35.	2.1	26
72	Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R510-R524.	1.8	42

#	Article	IF	CITATIONS
73	Reply from Lykke Sylow, Lisbeth L. V. MÃ,ller, Maximilian Kleinert, Erik A. Richter and Thomas E. Jensen. Journal of Physiology, 2015, 593, 2239-2240.	2.9	0
74	5â€2â€AMP activated protein kinase α ₂ controls substrate metabolism during postâ€exercise recovery via regulation of pyruvate dehydrogenase kinaseÂ4. Journal of Physiology, 2015, 593, 4765-4780.	2.9	39
75	PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain. Biochemical Journal, 2015, 467, 461-472.	3.7	47
76	AMPKα is critical for enhancing skeletal muscle fatty acid utilization during <i>in vivo</i> exercise in mice. FASEB Journal, 2015, 29, 1725-1738.	0.5	68
77	New Nordic Diet–Induced Weight Loss Is Accompanied by Changes in Metabolism and AMPK Signaling in Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3509-3519.	3.6	39
78	Differential effects of glucagonâ€like peptideâ€1 on microvascular recruitment and glucose metabolism in short―and longâ€ŧerm insulin resistance. Journal of Physiology, 2015, 593, 2185-2198.	2.9	20
79	Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E142-E153.	3.5	28
80	Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.	16.2	333
81	Stretchâ€ s timulated glucose transport in skeletal muscle is regulated by Rac1. Journal of Physiology, 2015, 593, 645-656.	2.9	58
82	Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle: effect of a 3-day, high-fat diet. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1136-R1145.	1.8	11
83	Rac1 – a novel regulator of contractionâ€stimulated glucose uptake in skeletal muscle. Experimental Physiology, 2014, 99, 1574-1580.	2.0	58
84	Novel regulatory mechanisms in muscle metabolism during exercise. Experimental Physiology, 2014, 99, 1559-1561.	2.0	0
85	Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. Journal of Physiology, 2014, 592, 351-375.	2.9	95
86	Exercise physiology: From performance studies to muscle physiology and cardiovascular adaptations. Journal of Applied Physiology, 2014, 117, 943-944.	2.5	2
87	Early Enhancements of Hepatic and Later of Peripheral Insulin Sensitivity Combined With Increased Postprandial Insulin Secretion Contribute to Improved Glycemic Control After Roux-en-Y Gastric Bypass. Diabetes, 2014, 63, 1725-1737.	0.6	220
88	Regulation of exerciseâ€induced lipid metabolism in skeletal muscle. Experimental Physiology, 2014, 99, 1586-1592.	2.0	31
89	GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E355-E362.	3.5	51
90	Is contractionâ€ s timulated glucose transport feedforward regulated by Ca ²⁺ ?. Experimental Physiology, 2014, 99, 1562-1568.	2.0	11

#	Article	IF	CITATIONS
91	Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release. Molecular Metabolism, 2014, 3, 742-753.	6.5	65
92	Acute mTOR inhibition induces insulin resistance and alters substrate utilization inÂvivo. Molecular Metabolism, 2014, 3, 630-641.	6.5	68
93	Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cellular Signalling, 2014, 26, 323-331.	3.6	117
94	Perivascular Adipose Tissue Control of Insulin-Induced Vasoreactivity in Muscle Is Impaired in db/db Mice. Diabetes, 2013, 62, 590-598.	0.6	105
95	AMPâ€activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle. Journal of Physiology, 2013, 591, 5207-5220.	2.9	81
96	Exercise, GLUT4, and Skeletal Muscle Glucose Uptake. Physiological Reviews, 2013, 93, 993-1017.	28.8	900
97	LKB1 Regulates Lipid Oxidation During Exercise Independently of AMPK. Diabetes, 2013, 62, 1490-1499.	0.6	66
98	Rac1 Is a Novel Regulator of Contraction-Stimulated Glucose Uptake in Skeletal Muscle. Diabetes, 2013, 62, 1139-1151.	0.6	126
99	Regulation of glycogen synthase in muscle and its role in Type 2 diabetes. Diabetes Management, 2013, 3, 81-90.	O.5	8
100	Akt2 influences glycogen synthase activity in human skeletal muscle through regulation of NH ₂ -terminal (sites 2 + 2a) phosphorylation. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E631-E639.	3.5	17
101	Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation, and ceramide content in skeletal muscles of men but not women. Journal of Applied Physiology, 2013, 114, 592-601.	2.5	32
102	Rac1 Signaling Is Required for Insulin-Stimulated Glucose Uptake and Is Dysregulated in Insulin-Resistant Murine and Human Skeletal Muscle. Diabetes, 2013, 62, 1865-1875.	0.6	159
103	AMPK and Insulin Action - Responses to Ageing and High Fat Diet. PLoS ONE, 2013, 8, e62338.	2.5	28
104	Exerciseâ€induced upâ€regulation of skeletal muscle Nampt protein is independent of α2 AMPâ€activated protein kinase. FASEB Journal, 2013, 27, lb806.	0.5	0
105	Exercise Alleviates Lipid-Induced Insulin Resistance in Human Skeletal Muscle–Signaling Interaction at the Level of TBC1 Domain Family Member 4. Diabetes, 2012, 61, 2743-2752.	0.6	92
106	Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake. Frontiers in Physiology, 2012, 3, 361.	2.8	8
107	Overexpression of Monocarboxylate Transporter-1 (<i>Slc16a1</i>) in Mouse Pancreatic β-Cells Leads to Relative Hyperinsulinism During Exercise. Diabetes, 2012, 61, 1719-1725.	0.6	86
108	Regulation of glucose and glycogen metabolism during and after exercise. Journal of Physiology, 2012, 590, 1069-1076.	2.9	203

#	Article	IF	CITATIONS
109	Endurance Training <i>Per Se</i> Increases Metabolic Health in Young, Moderately Overweight Men. Obesity, 2012, 20, 2202-2212.	3.0	61
110	EMG-Normalised Kinase Activation during Exercise Is Higher in Human Gastrocnemius Compared to Soleus Muscle. PLoS ONE, 2012, 7, e31054.	2.5	22
111	5′-AMP Activated Protein Kinase is Involved in the Regulation of Myocardial β-Oxidative Capacity in Mice. Frontiers in Physiology, 2012, 3, 33.	2.8	12
112	Randomized and double-blinded pilot clinical study of the safety and anti-diabetic efficacy of the Rauvolfia-Citrus tea, as used in Nigerian Traditional Medicine. Journal of Ethnopharmacology, 2011, 133, 402-411.	4.1	22
113	When less is more: a simple Western blotting amendment allowing data acquisition on human single fibers. Journal of Applied Physiology, 2011, 110, 583-584.	2.5	1
114	Current understanding of increased insulin sensitivity after exercise – emerging candidates. Acta Physiologica, 2011, 202, 323-335.	3.8	85
115	Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cellular Signalling, 2011, 23, 1546-1554.	3.6	118
116	Na,K-ATPase Activity in Mouse Muscle is Regulated by AMPK and PGC-1α. Journal of Membrane Biology, 2011, 242, 1-10.	2.1	26
117	Lipid-Induced Insulin Resistance Affects Women Less Than Men and Is Not Accompanied by Inflammation or Impaired Proximal Insulin Signaling. Diabetes, 2011, 60, 64-73.	0.6	106
118	AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16092-16097.	7.1	357
119	Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E761-E770.	3.5	70
120	Protein kinase Cα activity is important for contraction-induced FXYD1 phosphorylation in skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1808-R1814.	1.8	21
121	A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging in humans and rat. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H450-H458.	3.2	71
122	Differential aetiology and impact of phosphoinositide 3-kinase (PI3K) and Akt signalling in skeletal muscle on in vivo insulin action. Diabetologia, 2010, 53, 1998-2007.	6.3	14
123	Exerciseâ€induced TBC1D1 Ser237 phosphorylation and 14â€3â€3 protein binding capacity in human skeletal muscle. Journal of Physiology, 2010, 588, 4539-4548.	2.9	58
124	FAT/CD36 is localized in sarcolemma and in vesicle-like structures in subsarcolemma regions but not in mitochondria. Journal of Lipid Research, 2010, 51, 1504-1512.	4.2	28
125	Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15541-15546.	7.1	82
126	Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E257-E269.	3.5	107

#	Article	IF	CITATIONS
127	Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E215-E224.	3.5	40
128	Dissociation between Skeletal Muscle Inhibitor-κB Kinase/Nuclear Factor-κB Pathway Activity and Insulin Sensitivity in Nondiabetic Twins. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 414-421.	3.6	11
129	The balancing act between the cellular processes of protein synthesis and breakdown: exercise as a model to understand the molecular mechanisms regulating muscle mass. Journal of Applied Physiology, 2009, 106, 1365-1366.	2.5	9
130	Knockout of the predominant conventional PKC isoform, PKCα, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E340-E348.	3.5	21
131	Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E445-E453.	3.5	112
132	Regulatory mechanisms of skeletal muscle protein turnover during exercise. Journal of Applied Physiology, 2009, 106, 1702-1711.	2.5	50
133	Higher intramuscular triacylglycerol in women does not impair insulin sensitivity and proximal insulin signaling. Journal of Applied Physiology, 2009, 107, 824-831.	2.5	62
134	Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E665-E675.	3.5	136
135	Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E787-E795.	3.5	18
136	Effects of contraction on localization of GLUT4 and v-SNARE isoforms in rat skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1228-R1237.	1.8	31
137	Genetic impairment of AMPKα2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E924-E934.	3.5	78
138	Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R326-R333.	1.8	53
139	AMPK and the biochemistry of exercise: implications for human health and disease. Biochemical Journal, 2009, 418, 261-275.	3.7	375
140	Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle. Diabetologia, 2009, 52, 891-900.	6.3	109
141	A Ca ²⁺ –calmodulin–eEF2K–eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions. Journal of Physiology, 2009, 587, 1547-1563.	2.9	85
142	Multiple signalling pathways redundantly control glucose transporter <i>GLUT4</i> gene transcription in skeletal muscle. Journal of Physiology, 2009, 587, 4319-4327.	2.9	42
143	Improved Insulin Sensitivity After Exercise: Focus on Insulin Signaling. Obesity, 2009, 17, S15-20.	3.0	94
144	AMPâ€activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?. Acta Physiologica, 2009, 196, 155-174.	3.8	67

#	Article	IF	CITATIONS
145	Crucial role for LKB1 to AMPKα2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytesâ~†. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 212-219.	2.4	83
146	Newton's force as countermeasure for disuse atrophy. Journal of Applied Physiology, 2009, 107, 6-7.	2.5	1
147	Can Exercise Mimetics Substitute for Exercise?. Cell Metabolism, 2008, 8, 96-98.	16.2	23
148	Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. Journal of Applied Physiology, 2008, 104, 1045-1055.	2.5	113
149	PGC-1α: important for exercise performance?. Journal of Applied Physiology, 2008, 104, 1264-1265.	2.5	14
150	AMPK α1 Activation Is Required for Stimulation of Glucose Uptake by Twitch Contraction, but Not by H2O2, in Mouse Skeletal Muscle. PLoS ONE, 2008, 3, e2102.	2.5	77
151	Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E428-E434.	3.5	32
152	AS160 phosphorylation is associated with activation of α2β2γ1- but not α2β2γ3-AMPK trimeric complex in skeletal muscle during exercise in humans. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E715-E722.	3.5	115
153	Caffeine-induced Ca2+ release increases AMPK-dependent glucose uptake in rodent soleus muscle. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E286-E292.	3.5	119
154	Low Birth Weight and Zygosity Status Is Associated With Defective Muscle Glycogen and Glycogen Synthase Regulation in Elderly Twins. Diabetes, 2007, 56, 2710-2714.	0.6	11
155	Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1308-E1317.	3.5	177
156	Fiber type-specific muscle glycogen sparing due to carbohydrate intake before and during exercise. Journal of Applied Physiology, 2007, 102, 183-188.	2.5	40
157	Altered Skeletal Muscle Fiber Composition and Size Precede Whole-Body Insulin Resistance in Young Men with Low Birth Weight. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1530-1534.	3.6	122
158	Effects of Endurance Exercise Training on Insulin Signaling in Human Skeletal Muscle. Diabetes, 2007, 56, 2093-2102.	0.6	162
159	Role of AMPKα2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E331-E339.	3.5	147
160	Role of AMPK in skeletal muscle gene adaptation in relation to exercise. Applied Physiology, Nutrition and Metabolism, 2007, 32, 904-911.	1.9	27
161	Regulation and function of Ca2+-calmodulin-dependent protein kinase II of fast-twitch rat skeletal muscle. Journal of Physiology, 2007, 580, 993-1005.	2.9	30
162	Muscle metabolism during graded quadriceps exercise in man. Journal of Physiology, 2007, 581, 1247-1258.	2.9	35

#	Article	IF	CITATIONS
163	Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase C and interacts with insulin signalling to peptide elongation in human skeletal muscle. Journal of Physiology, 2007, 582, 1289-1301.	2.9	37
164	Effect of endurance exercise training on Ca ²⁺ –calmodulinâ€dependent protein kinase II expression and signalling in skeletal muscle of humans. Journal of Physiology, 2007, 583, 785-795.	2.9	69
165	Absence of humoral mediated 5′AMPâ€activated protein kinase activation in human skeletal muscle and adipose tissue during exercise. Journal of Physiology, 2007, 585, 897-909.	2.9	23
166	Glucose phosphorylation is/is not a significant barrier to muscle glucose uptake by the working muscle. Journal of Applied Physiology, 2006, 101, 1809-1809.	2.5	1
167	Higher skeletal muscle α2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. Journal of Physiology, 2006, 574, 125-138.	2.9	167
168	Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. Journal of Physiology, 2006, 574, 17-31.	2.9	196
169	Ca ²⁺ –calmodulinâ€dependent protein kinase expression and signalling in skeletal muscle during exercise. Journal of Physiology, 2006, 574, 889-903.	2.9	198
170	AMPK-Mediated AS160 Phosphorylation in Skeletal Muscle Is Dependent on AMPK Catalytic and Regulatory Subunits. Diabetes, 2006, 55, 2051-2058.	0.6	239
171	Skeletal Muscle Lipid Metabolism in Exercise and Insulin Resistance. Physiological Reviews, 2006, 86, 205-243.	28.8	392
172	Effects of acute exercise and training on insulin action and sensitivity: focus on molecular mechanisms in muscle. Essays in Biochemistry, 2006, 42, 31-46.	4.7	79
173	Glycogenin activity and mRNA expression in response to volitional exhaustion in human skeletal muscle. Journal of Applied Physiology, 2005, 99, 957-962.	2.5	20
174	Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. Journal of Physiology, 2005, 564, 649-660.	2.9	111
175	Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. Journal of Physiology, 2005, 569, 223-228.	2.9	83
176	The effect of caffeine on glucose kinetics in humans - influence of adrenaline. Journal of Physiology, 2005, 569, 347-355.	2.9	35
177	Increases in glycogenin and glycogenin mRNA accompany glycogen resynthesis in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E508-E514.	3.5	24
178	Impact of Genetic Versus Environmental Factors on the Control of Muscle Glycogen Synthase Activation in Twins. Diabetes, 2005, 54, 1289-1296.	0.6	27
179	Effects of αâ€AMPK knockout on exerciseâ€induced gene activation in mouse skeletal muscle. FASEB Journal, 2005, 19, 1146-1148.	0.5	248
180	AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation. Journal of Applied Physiology, 2005, 98, 1228-1233.	2.5	24

#	Article	IF	CITATIONS
181	Skeletal Muscle Glucose Uptake During Exercise: How is it Regulated?. Physiology, 2005, 20, 260-270.	3.1	265
182	Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E133-E142.	3.5	143
183	Exercise in rats does not alter hypothalamic AMP-activated protein kinase activity. Biochemical and Biophysical Research Communications, 2005, 329, 719-725.	2.1	30
184	Knockout of the α2 but Not α1 5′-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranosidebut Not Contraction-induced Glucose Uptake in Skeletal Muscle. Journal of Biological Chemistry, 2004, 279, 1070-1079.	3.4	484
185	The Â2-5'AMP-Activated Protein Kinase Is a Site 2 Glycogen Synthase Kinase in Skeletal Muscle and Is Responsive to Glucose Loading. Diabetes, 2004, 53, 3074-3081.	0.6	215
186	Regulation of plasma long-chain fatty acid oxidation in relation to uptake in human skeletal muscle during exercise. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E696-E705.	3.5	33
187	5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E411-E417.	3.5	133
188	Interstitial glycerol concentrations in human skeletal muscle and adipose tissue during graded exercise. Acta Physiologica Scandinavica, 2004, 180, 367-377.	2.2	22
189	Regulation of hormone-sensitive lipase activity and Ser563and Ser565phosphorylation in human skeletal muscle during exercise. Journal of Physiology, 2004, 560, 551-562.	2.9	80
190	Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signal-regulated protein kinase in skeletal muscle. Journal of Physiology, 2004, 560, 909-918.	2.9	36
191	Muscle- and fibre type-specific expression of glucose transporter 4, glycogen synthase and glycogen phosphorylase proteins in human skeletal muscle. Pflugers Archiv European Journal of Physiology, 2004, 447, 452-456.	2.8	38
192	Exercise signalling to glucose transport in skeletal muscle. Proceedings of the Nutrition Society, 2004, 63, 211-216.	1.0	44
193	AMPK activity and isoform protein expression are similar in muscle of obese subjects with and without type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E239-E244.	3.5	76
194	Insulin signalling: effects of prior exercise. Acta Physiologica Scandinavica, 2003, 178, 321-328.	2.2	58
195	Signalling to glucose transport in skeletal muscle during exercise. Acta Physiologica Scandinavica, 2003, 178, 329-335.	2.2	21
196	Regulation of glycogen synthase in skeletal muscle during exercise. Acta Physiologica Scandinavica, 2003, 178, 309-319.	2.2	65
197	The effect of graded exercise on ILâ€6 release and glucose uptake in human skeletal muscle. Journal of Physiology, 2003, 546, 299-305.	2.9	164
198	Increased atypical PKC activity in endurance-trained human skeletal muscle. Biochemical and Biophysical Research Communications, 2003, 312, 1147-1153.	2.1	40

#	Article	IF	CITATIONS
199	Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans. Journal of Applied Physiology, 2003, 94, 1910-1916.	2.5	73
200	Increased Phosphorylation of Skeletal Muscle Glycogen Synthase at NH2-Terminal Sites During Physiological Hyperinsulinemia in Type 2 Diabetes. Diabetes, 2003, 52, 1393-1402.	0.6	118
201	5′-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. Journal of Applied Physiology, 2003, 94, 631-641.	2.5	129
202	Effects of creatine supplementation and exercise training on fitness in men 55–75 yr old. Journal of Applied Physiology, 2003, 95, 818-828.	2.5	79
203	Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E813-E822.	3.5	281
204	Interleukin-6 release from human skeletal muscle during exercise: relation to AMPK activity. Journal of Applied Physiology, 2003, 95, 2273-2277.	2.5	81
205	A possible role for AMP-activated protein kinase in exercise-induced glucose utilization: insights from humans and transgenic animals. Biochemical Society Transactions, 2003, 31, 186-190.	3.4	11
206	Prior exercise increases basal and insulin-induced p38 mitogen-activated protein kinase phosphorylation in human skeletal muscle. Journal of Applied Physiology, 2003, 94, 2337-2341.	2.5	20
207	The AMP-activated protein kinase $\hat{l}\pm 2$ catalytic subunit controls whole-body insulin sensitivity. Journal of Clinical Investigation, 2003, 111, 91-98.	8.2	444
208	Glycogen-Dependent Effects of 5-Aminoimidazole-4-Carboxamide (AICA)-Riboside on AMP-Activated Protein Kinase and Glycogen Synthase Activities in RatSkeletal Muscle. Diabetes, 2002, 51, 284-292.	0.6	238
209	Myocellular triacylglycerol breakdown in females but not in males during exercise. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E634-E642.	3.5	179
210	Invited Review: Effect of acute exercise on insulin signaling and action in humans. Journal of Applied Physiology, 2002, 93, 384-392.	2.5	103
211	Caffeine-Induced Impairment of Insulin Action but Not Insulin Signaling in Human Skeletal Muscle Is Reduced by Exercise. Diabetes, 2002, 51, 583-590.	0.6	148
212	Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E435-E447.	3.5	207
213	New creatine transporter assay and identification of distinct creatine transporter isoforms in muscle. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E390-E401.	3.5	27
214	GLUT4-containing vesicles are released from membranes by phospholipase D cleavage of a GPI anchor. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E374-E382.	3.5	28
215	Partial restoration of dietary fat induced metabolic adaptations to training by 7 days of carbohydrate diet. Journal of Applied Physiology, 2002, 93, 1797-1805.	2.5	16
216	Decreased insulin action in skeletal muscle from patients with McArdle's disease. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E1267-E1275.	3.5	33

#	Article	IF	CITATIONS
217	Timing of post-exercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. Scandinavian Journal of Medicine and Science in Sports, 2002, 12, 60-60.	2.9	3
218	Role of 5′AMPâ€activated protein kinase in glycogen synthase activity and glucose utilization: insights from patients with McArdle's disease. Journal of Physiology, 2002, 541, 979-989.	2.9	76
219	Creatine Supplementation: Exploring the Role of the Creatine Kinase/Phosphocreatine System in Human Muscle. Applied Physiology, Nutrition, and Metabolism, 2001, 26, S79-S102.	1.7	40
220	Effect of Oral Creatine Supplementation on Human Muscle GLUT4 Protein Content After Immobilization. Diabetes, 2001, 50, 18-23.	0.6	133
221	GLUT-4 translocation in skeletal muscle studied with a cell-free assay: involvement of phospholipase D. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E608-E618.	3.5	25
222	Regulation of Muscle Glucose Transport during Exercise. International Journal of Sport Nutrition and Exercise Metabolism, 2001, 11, S71-S77.	2.1	10
223	Effect of creatine supplementation on creatine and glycogen content in rat skeletal muscle. Acta Physiologica Scandinavica, 2001, 171, 169-176.	2.2	68
224	Relationship between muscle fibre composition, glucose transporter protein 4 and exercise training: possible consequences in non-insulin-dependent diabetes mellitus. Acta Physiologica Scandinavica, 2001, 171, 267-276.	2.2	79
225	Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. Journal of Physiology, 2001, 535, 301-311.	2.9	442
226	Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. Journal of Physiology, 2001, 536, 625-633.	2.9	257
227	Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content. Journal of Physiology, 2001, 531, 757-769.	2.9	113
228	Glucose, exercise and insulin: emerging concepts. Journal of Physiology, 2001, 535, 313-322.	2.9	198
229	Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise. Free Radical Biology and Medicine, 2001, 31, 1313-1322.	2.9	70
230	Regulation of Glycogen Synthase Kinase-3 in Human Skeletal Muscle: Effects of Food Intake and Bicycle Exercise. Diabetes, 2001, 50, 265-269.	0.6	76
231	Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. Journal of Physiology, 2001, 537, 1009-1020.	2.9	60
232	Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. Journal of Physiology, 2001, 537, 1009-1020.	2.9	140
233	Pro- and macroglycogenolysis in contracting rat skeletal muscle. Acta Physiologica Scandinavica, 2000, 169, 291-296.	2.2	24
234	Muscle contractions induce interleukinâ€6 mRNA production in rat skeletal muscles. Journal of Physiology, 2000, 528, 157-163.	2.9	210

#	Article	IF	CITATIONS
235	Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. Journal of Physiology, 2000, 529, 837-847.	2.9	174
236	lsoformâ€specific and exercise intensityâ€dependent activation of 5′â€AMPâ€activated protein kinase in huma skeletal muscle. Journal of Physiology, 2000, 528, 221-226.	an 2.9	378
237	Training and natural immunity: effects of diets rich in fat or carbohydrate. European Journal of Applied Physiology, 2000, 82, 98-102.	2.5	26
238	Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. Journal of Applied Physiology, 2000, 89, 1151-1158.	2.5	62
239	No limiting role for glycogenin in determining maximal attainable glycogen levels in rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E398-E404.	3.5	29
240	DOPA, dopamine, and DOPAC concentrations in the rat gastrointestinal tract decrease during fasting. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E815-E822.	3.5	34
241	Muscle glycogen content affects insulin-stimulated glucose transport and protein kinase B activity. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E947-E955.	3.5	83
242	Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes, 2000, 49, 1281-1287.	0.6	152
243	Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes, 2000, 49, 325-331.	0.6	321
244	Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. Diabetes, 2000, 49, 1295-1300.	0.6	113
245	Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training Diabetes, 2000, 49, 1092-1095.	0.6	144
246	Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E1103-E1110.	3.5	58
247	Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E724-E732.	3.5	48
248	Muscle fiber characteristics in postmenopausal women with normal or impaired glucose tolerance. Diabetes Care, 1999, 22, 1330-1338.	8.6	27
249	Insulin action in growth hormone-deficient and age-matched control rats: effect of growth hormone treatment. Journal of Endocrinology, 1999, 160, 127-135.	2.6	17
250	Effect of 6 months of GH treatment on myosin heavy chain composition in GH-deficient patients. European Journal of Endocrinology, 1999, 141, 342-349.	3.7	21
251	Regulation of glycogen breakdown by glycogen level in contracting rat muscle. Acta Physiologica Scandinavica, 1999, 165, 307-314.	2.2	12
252	AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. Journal of Physiology, 1999, 520, 909-920.	2.9	139

#	Article	IF	CITATIONS
253	Glycogen concentration in human skeletal muscle: effect of prolonged insulin and glucose infusion. Scandinavian Journal of Medicine and Science in Sports, 1999, 9, 209-213.	2.9	19
254	Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise. Journal of Physiology, 1998, 509, 305-313.	2.9	55
255	Growth hormone induces muscle fibre type transformation in growth hormoneâ€deficient rats. Acta Physiologica Scandinavica, 1998, 164, 119-126.	2.2	23
256	Clucose utilization during exercise: influence of endurance training. Acta Physiologica Scandinavica, 1998, 162, 351-358.	2.2	18
257	Hypoxia and contractions do not utilize the same signaling mechanism in stimulating skeletal muscle glucose transport. Biochimica Et Biophysica Acta - General Subjects, 1998, 1380, 396-404.	2.4	46
258	Biochemical and functional characterization of the GLUT5 fructose transporter in rat skeletal muscle. Biochemical Journal, 1998, 336, 361-366.	3.7	36
259	Sarcolemmal glucose transport and GLUT-4 translocation during exercise are diminished by endurance training. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E89-E95.	3.5	46
260	Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E332-E337.	3.5	165
261	Extracellular-regulated protein kinase cascades are activated in response to injury in human skeletal muscle. American Journal of Physiology - Cell Physiology, 1998, 275, C555-C561.	4.6	71
262	Perfused rat hindlimb is suitable for skeletal muscle glucose transport measurements. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E184-E191.	3.5	14
263	Training Effects on Muscle Glucose Transport during Exercise. Advances in Experimental Medicine and Biology, 1998, 441, 107-116.	1.6	10
264	GLUT5 Expression and Fructose Transport in Human Skeletal Muscle. Advances in Experimental Medicine and Biology, 1998, 441, 35-45.	1.6	22
265	Role of Adenosine in Regulation of Carbohydrate Metabolism in Contracting Muscle. Advances in Experimental Medicine and Biology, 1998, 441, 97-106.	1.6	19
266	Insulin Signaling in Human Skeletal Muscle: Time Course and Effect of Exercise. Diabetes, 1997, 46, 1775-1781.	0.6	179
267	Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation Journal of Physiology, 1997, 498, 239-248.	2.9	186
268	Membrane Associated Fatty Acid Binding Protein (FABPpm) in Human Skeletal Muscle Is Increased by Endurance Training. Biochemical and Biophysical Research Communications, 1997, 231, 463-465.	2.1	129
269	Muscle glycogen synthesis in recovery from intense exercise in humans. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E416-E424.	3.5	25
270	Adenosine exerts a glycogen-sparing action in contracting rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 1997, 272, E762-E768.	3.5	8

#	Article	IF	CITATIONS
271	Impaired muscle glycogen resynthesis after a marathon is not caused by decreased muscle GLUT-4 content. Journal of Applied Physiology, 1997, 83, 1482-1485.	2.5	25
272	Progressive increase in glucose transport and GLUT-4 in human sarcolemmal vesicles during moderate exercise. American Journal of Physiology - Endocrinology and Metabolism, 1997, 272, E385-E389.	3.5	30
273	Prolonged submaximal eccentric exercise is associated with increased levels of plasma IL-6. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E85-E91.	3.5	52
274	Eccentric contractions decrease glucose transporter transcription rate, mRNA, and protein in skeletal muscle. American Journal of Physiology - Cell Physiology, 1997, 272, C1734-C1738.	4.6	27
275	Oxidation of urate in human skeletal muscle during exercise. Free Radical Biology and Medicine, 1997, 22, 169-174.	2.9	116
276	Effect of endurance training on ammonia and amino acid metabolism in humans. Medicine and Science in Sports and Exercise, 1997, 29, 646-653.	0.4	34
277	Insulin signaling in human skeletal muscle: time course and effect of exercise. Diabetes, 1997, 46, 1775-1781.	0.6	38
278	Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1282, 71-75.	2.6	17
279	Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle. American Journal of Physiology - Endocrinology and Metabolism, 1996, 270, E197-E201.	3.5	40
280	Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1996, 271, R477-R482.	1.8	15
281	Decreased insulin action on muscle glucose transport after eccentric contractions in rats. Journal of Applied Physiology, 1996, 81, 1924-1928.	2.5	30
282	Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle. Journal of Applied Physiology, 1996, 81, 1501-1509.	2.5	92
283	Ammonia uptake in inactive muscles during exercise in humans. American Journal of Physiology - Endocrinology and Metabolism, 1996, 270, E101-E106.	3.5	9
284	Interaction of training and diet on metabolism and endurance during exercise in man Journal of Physiology, 1996, 492, 293-306.	2.9	138
285	Eccentric exercise decreases maximal insulin action in humans: muscle and systemic effects Journal of Physiology, 1996, 494, 891-898.	2.9	78
286	Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates in humans. American Journal of Clinical Nutrition, 1996, 63, 47-53.	4.7	163
287	Inhibition of muscle glycogen synthase activity and non-oxidative glucose disposal during hypoglycaemia in normal man. Diabetologia, 1996, 39, 226-234.	6.3	16
288	Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man Journal of Physiology, 1996, 495, 587-596.	2.9	175

#	Article	IF	CITATIONS
289	Significance of Insulin for Glucose Metabolism in Skeletal Muscle During Contractions. Diabetes, 1996, 45, S99-S104.	0.6	22
290	No effect of glycogen level on glycogen metabolism during high intensity exercise. Medicine and Science in Sports and Exercise, 1995, 27, 1278???1283.	0.4	29
291	Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle Journal of Physiology, 1995, 482, 705-712.	2.9	109
292	Lactate and H+ uptake in inactive muscles during intense exercise in man Journal of Physiology, 1995, 488, 219-229.	2.9	50
293	Effect of eccentric exercise on natural killer cell activity. Journal of Applied Physiology, 1995, 78, 1442-1446.	2.5	26
294	Effect of blood flow on muscle lactate release studied in perfused rat hindlimb. American Journal of Physiology - Endocrinology and Metabolism, 1995, 269, E1044-E1051.	3.5	11
295	Eccentric muscle damage transiently decreases rat skeletal muscle GLUT-4 protein. Journal of Applied Physiology, 1995, 79, 1338-1345.	2.5	49
296	Important Role of Insulin and Flow in Stimulating Glucose Uptake in Contracting Skeletal Muscle. Diabetes, 1995, 44, 210-215.	0.6	57
297	Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes, 1995, 44, 210-215.	0.6	20
298	Impaired plasma FFA oxidation imposed by extreme CHO deficiency in contracting rat skeletal muscle. Journal of Applied Physiology, 1994, 77, 517-525.	2.5	13
299	Effect of diet and plasma fatty acid composition on immune status in elderly men. American Journal of Clinical Nutrition, 1994, 59, 572-577.	4.7	43
300	Glucose–fatty acid cycle operates in humans at the levels of both whole body and skeletal muscle during low and high physiological plasma insulin concentrations. European Journal of Endocrinology, 1994, 130, 70-79.	3.7	33
301	Effect of glucoseâ€6â€phosphate and pH on glucose transport in skeletal muscle plasma membrane giant vesicles. Acta Physiologica Scandinavica, 1994, 150, 227-233.	2.2	13
302	Differences in glycaemia, hormonal response and energy expenditure after a meal rich in mono―and disaccharides compared to a meal rich in polysaccharides in physically fit and sedentary subjects. Clinical Physiology, 1994, 14, 267-280.	0.7	21
303	Biphasic response of plasma endothelinâ€1 concentration to exhausting submaximal exercise in man. Clinical Physiology, 1994, 14, 379-384.	0.7	9
304	Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle Journal of Clinical Investigation, 1994, 93, 974-981.	8.2	148
305	Glucose transport and transporters in muscle giant vesicles: differential effects of insulin and contractions. American Journal of Physiology - Endocrinology and Metabolism, 1993, 264, E270-E278.	3.5	50
306	Metabolic Responses to Exercise: Effects of endurance training and implications for diabetes. Diabetes Care, 1992, 15, 1767-1776.	8.6	51

#	Article	IF	CITATIONS
307	Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle. Biochemical Journal, 1992, 284, 777-780.	3.7	57
308	Serum sex hormones and endurance performance after a lacto-ovo vegetarian and a mixed diet. Medicine and Science in Sports and Exercise, 1992, 24, 1290???1297.	0.4	44
309	Effects of glucose and insulin on development of impaired insulin action in muscle. American Journal of Physiology - Endocrinology and Metabolism, 1992, 262, E440-E446.	3.5	15
310	Interaction of Fuels in Muscle Metabolism during Exercise. Medicine and Sport Science, 1992, 37, 252-261.	1.4	0
311	Effect of arm-cranking on leg blood flow and noradrenaline spillover during leg exercise in man. Acta Physiologica Scandinavica, 1992, 144, 9-14.	2.2	37
312	Effect of acute hyperglycemia on glucose metabolism in skeletal muscles in IDDM patients. Diabetes, 1992, 41, 174-182.	0.6	5
313	Saturation kinetics of palmitate uptake in perfused skeletal muscle. FEBS Letters, 1991, 279, 327-329.	2.8	83
314	Protein kinase C activity in rat skeletal muscle Apparent relation to body weight and muscle growth. FEBS Letters, 1991, 289, 83-85.	2.8	11
315	Effects of hyperinsulinemia and hyperglycemia on insulin receptor function and glycogen synthase activation in skeletal muscle of normal man. Metabolism: Clinical and Experimental, 1991, 40, 830-835.	3.4	20
316	Influence of active muscle mass on glucose homeostasis during exercise in humans. Journal of Applied Physiology, 1991, 71, 552-557.	2.5	103
317	Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body. Journal of Applied Physiology, 1991, 70, 1245-1254.	2.5	104
318	Impaired left-ventricular function in insulin-dependent diabetic patients with increased urinary albumin excretion. Scandinavian Journal of Clinical and Laboratory Investigation, 1991, 51, 467-473.	1.2	18
319	Effect of the antilipolytic nicotinic acid analogue acipimox on whole-body and skeletal muscle glucose metabolism in patients with non-insulin-dependent diabetes mellitus Journal of Clinical Investigation, 1991, 88, 1282-1290.	8.2	105
320	Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations Journal of Physiology, 1990, 427, 347-359.	2.9	93
321	Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders. Acta Physiologica Scandinavica, 1990, 140, 175-180.	2.2	63
322	Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes. European Journal of Applied Physiology and Occupational Physiology, 1990, 61, 467-472.	1.2	47
323	Effect of exercise on insulin action in human skeletal muscle. Journal of Applied Physiology, 1989, 66, 876-885.	2.5	326
324	Insulin action in human thighs after one-legged immobilization. Journal of Applied Physiology, 1989, 67, 19-23.	2.5	70

#	Article	IF	CITATIONS
325	Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action Journal of Clinical Investigation, 1989, 84, 1124-1129.	8.2	163
326	Vasopressin and angiotensin II stimulate oxygen uptake in the perfused rat hindlimb. Life Sciences, 1988, 43, 1747-1754.	4.3	55
327	Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake. Biochemical Journal, 1988, 252, 733-737.	3.7	85
328	Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion. BMJ: British Medical Journal, 1988, 296, 1352-1354.	2.3	17
329	Na+,K+-ATPase concentration in rodent and human heart and skeletal muscle: apparent relation to muscle performance. Cardiovascular Research, 1988, 22, 95-100.	3.8	43
330	Skeletal muscle glucose uptake during dynamic exercise in humans: role of muscle mass. American Journal of Physiology - Endocrinology and Metabolism, 1988, 254, E555-E561.	3.5	59
331	Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Letters, 1987, 217, 232-236.	2.8	103
332	Kinetics of glucose transport in rat muscle: effects of insulin and contractions. American Journal of Physiology - Endocrinology and Metabolism, 1987, 253, E12-E20.	3.5	71
333	Noradrenaline spillover during exercise in active versus resting skeletal muscle in man. Acta Physiologica Scandinavica, 1987, 131, 507-515.	2.2	85
334	α-Adrenergic receptors in rat skeletal muscle. Biochemical and Biophysical Research Communications, 1986, 136, 1071-1077.	2.1	32
335	Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle. Biochimica Et Biophysica Acta - Biomembranes, 1986, 860, 708-712.	2.6	81
336	Diabetes, Insulin and Exercise. Sports Medicine, 1986, 3, 275-288.	6.5	15
337	GLUCOSE TRANSPORT IN SKELETAL MUSCLE. Medicine and Science in Sports and Exercise, 1985, 17, 241.	0.4	0
338	The effect of training on responses of ?-endorphin and other pituitary hormones to insulin-induced hypoglycemia. European Journal of Applied Physiology and Occupational Physiology, 1985, 54, 476-479.	1.2	6
339	Skeletal muscle and hormonal adaptation to physical training in the rat: role of the sympathoâ€adrenal system. Acta Physiologica Scandinavica, 1985, 123, 127-138.	2.2	27
340	Role of liver nerves and adrenal medulla in glucose turnover of running rats. Journal of Applied Physiology, 1985, 59, 1640-1646.	2.5	62
341	Increased muscle glucose uptake after exercise. No need for insulin during exercise. Diabetes, 1985, 34, 1041-1048.	0.6	26
342	Enhanced muscle glucose metabolism after exercise in the rat: the two phases. American Journal of Physiology - Endocrinology and Metabolism, 1984, 246, E471-E475.	3.5	126

#	Article	IF	CITATIONS
343	Enhanced muscle glucose metabolism after exercise: modulation by local factors. American Journal of Physiology - Endocrinology and Metabolism, 1984, 246, E476-E482.	3.5	124
344	Increased muscle glucose uptake during contractions: no need for insulin. American Journal of Physiology - Endocrinology and Metabolism, 1984, 247, E726-E731.	3.5	96
345	Muscle and liver glycogen, protein, and triglyceride in the rat. European Journal of Applied Physiology and Occupational Physiology, 1984, 52, 346-350.	1.2	14
346	Endurance training augments the stimulatory effect of epinephrine on oxygen consumption in perfused skeletal muscle. Acta Physiologica Scandinavica, 1984, 120, 613-615.	2.2	19
347	INCREASED MUSCLE GLUCOSE UPTAKE DURING CONTRACTIONS. Medicine and Science in Sports and Exercise, 1984, 16, 173.	0.4	1
348	Is there a medial nucleus of the trapezoid body in humans?. American Journal of Anatomy, 1983, 168, 157-166.	1.0	55
349	THE INFLUENCE OF TRAINING ON GLUCOSE TURNOVER AND HORMONAL RESPONSES IN INSULIN-INDUCED HYPOGLYCEMIA. Medicine and Science in Sports and Exercise, 1982, 14, 150.	0.4	Ο
350	Alpha and Beta adrenergic effects on metabolism in contracting, perfused muscle. Acta Physiologica Scandinavica, 1982, 116, 215-222.	2.2	77
351	Muscle Glucose Metabolism following Exercise in the Rat. Journal of Clinical Investigation, 1982, 69, 785-793.	8.2	435
352	Diabetes and exercise. American Journal of Medicine, 1981, 70, 201-209.	1.5	104
353	INFLUENCE OF THE SYMPATHOâ€ADRENAL SYSTEM ON MUSCLE METABOLISM DURING EXERCISE. Clinical Physiology, 1981, 1, 54-59.	0.7	0
354	Role of epinephrine for muscular glycogenolysis and pancreatic hormonal secretion in running rats. American Journal of Physiology - Endocrinology and Metabolism, 1981, 240, E526-E532.	3.5	30
355	Significance of Glucagon for Insulin Secretion and Hepatic Glycogenolysis during Exercise in Rats. Hormone and Metabolic Research, 1981, 13, 323-326.	1.5	23
356	Adrenal medullary control of muscular and hepatic glycogenolysis and of pancreatic hormonal secretion in exercising rats. Acta Physiologica Scandinavica, 1980, 108, 235-242.	2.2	59
357	Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats. Acta Physiologica Scandinavica, 1979, 107, 269-272.	2.2	21
358	Catecholamines and Exercise. Diabetes, 1979, 28, 58-62.	0.6	138
359	Sympathetic control of metabolic and hormonal responses to exercise in rats. Acta Physiologica Scandinavica, 1978, 102, 441-449.	2.2	50
360	Neutralization of Glucagon by Antiserum as a Tool in Glucagon Physiology. Journal of Clinical Investigation, 1978, 62, 182-190.	8.2	23

#	Article	IF	CITATIONS
361	Diminished hormonal responses to exercise in trained rats. Journal of Applied Physiology, 1977, 43, 953-958.	2.5	98
362	Lack of influence of glucagon on glucose homeostasis after prolonged exercise in rats. Pflugers Archiv European Journal of Physiology, 1977, 369, 21-25.	2.8	4