List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5674083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature, 2021, 592, 450-456.	27.8	649
2	Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nature Communications, 2016, 7, 13404.	12.8	613
3	Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 2021, 594, 246-252.	27.8	475
4	Leukemia-Associated Somatic Mutations Drive Distinct Patterns of Age-Related Clonal Hemopoiesis. Cell Reports, 2015, 10, 1239-1245.	6.4	443
5	Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 2018, 554, 62-68.	27.8	328
6	Selective Requirement of PI3K/PDK1 Signaling for Kras Oncogene-Driven Pancreatic Cell Plasticity and Cancer. Cancer Cell, 2013, 23, 406-420.	16.8	291
7	Platelet CPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine, 2019, 25, 641-655.	30.7	259
8	CD25+/Foxp3+ T Cells Regulate Gastric Inflammation and Helicobacter pylori Colonization In Vivo. Gastroenterology, 2006, 131, 525-537.	1.3	251
9	Tissue-specific tumorigenesis: context matters. Nature Reviews Cancer, 2017, 17, 239-253.	28.4	234
10	Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature, 2021, 592, 444-449.	27.8	233
11	<i>PiggyBac</i> Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice. Science, 2010, 330, 1104-1107.	12.6	217
12	PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature, 2017, 552, 121-125.	27.8	199
13	Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nature Genetics, 2011, 43, 470-475.	21.4	194
14	A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nature Medicine, 2014, 20, 1340-1347.	30.7	188
15	A Genetic Progression Model of BrafV600E-Induced Intestinal Tumorigenesis Reveals Targets for Therapeutic Intervention. Cancer Cell, 2013, 24, 15-29.	16.8	183
16	Synergistic Effect of <i>Helicobacter pylori</i> Virulence Factors and Interleukinâ€1 Polymorphisms for the Development of Severe Histological Changes in the Gastric Mucosa. Journal of Infectious Diseases, 2003, 188, 272-281.	4.0	175
17	CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13982-13987.	7.1	172
18	The <i>Helicobacter pylori</i> Blood Group Antigen-Binding Adhesin Facilitates Bacterial Colonization and Augments a Nonspecific Immune Response. Journal of Immunology, 2002, 168, 3033-3041.	0.8	166

#	Article	IF	CITATIONS
19	Extracellular and Intracellular Pattern Recognition Receptors Cooperate in the Recognition of Helicobacter pylori. Gastroenterology, 2009, 136, 2247-2257.	1.3	162
20	Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nature Communications, 2016, 7, 10770.	12.8	145
21	RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells. Cancer Cell, 2016, 30, 75-91.	16.8	144
22	Kupffer Cell-Derived Tnf Triggers Cholangiocellular Tumorigenesis through JNK due to Chronic Mitochondrial Dysfunction and ROS. Cancer Cell, 2017, 31, 771-789.e6.	16.8	140
23	A Synergistic Interaction between Chk1- and MK2 Inhibitors in KRAS-Mutant Cancer. Cell, 2015, 162, 146-159.	28.9	100
24	Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Reports, 2019, 26, 1854-1868.e5.	6.4	91
25	Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics. Nature Communications, 2021, 12, 3346.	12.8	90
26	Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nature Immunology, 2018, 19, 1341-1351.	14.5	82
27	Toll-Like Receptor–Dependent Activation of Antigen-Presenting Cells Affects Adaptive Immunity to Helicobacter pylori. Gastroenterology, 2007, 133, 150-163.e3.	1.3	80
28	Chromatin Landscapes of Retroviral and Transposon Integration Profiles. PLoS Genetics, 2014, 10, e1004250.	3.5	80
29	RIG-I activation is critical for responsiveness to checkpoint blockade. Science Immunology, 2019, 4, .	11.9	80
30	A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nature Genetics, 2015, 47, 47-56.	21.4	77
31	Characterisation of worldwide <i>Helicobacter pylori</i> strains reveals genetic conservation and essentiality of serine protease HtrA. Molecular Microbiology, 2016, 99, 925-944.	2.5	70
32	The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated β-catenin by sequestering TCF4 to the nuclear membrane. Science Signaling, 2015, 8, ra90.	3.6	67
33	Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood, 2017, 130, 1911-1922.	1.4	63
34	SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nature Communications, 2018, 9, 5378.	12.8	60
35	A single-copy Sleeping Beauty transposon mutagenesis screen identifies new PTEN-cooperating tumor suppressor genes. Nature Genetics, 2017, 49, 730-741.	21.4	53
36	Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell, 2021, 28, 1105-1124.e19.	11.1	53

#	Article	IF	CITATIONS
37	Disruption of the PRKCD–FBXO25–HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis. Nature Medicine, 2014, 20, 1401-1409.	30.7	50
38	Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood, 2016, 128, e1-e9.	1.4	49
39	Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer. Gut, 2021, 70, 743-760.	12.1	49
40	Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf ^{â^'/â^'} mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3151-3156.	7.1	48
41	In vivo functional screening for systems-level integrative cancer genomics. Nature Reviews Cancer, 2020, 20, 573-593.	28.4	44
42	Selective multi-kinase inhibition sensitizes mesenchymal pancreatic cancer to immune checkpoint blockade by remodeling the tumor microenvironment. Nature Cancer, 2022, 3, 318-336.	13.2	42
43	Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nature Protocols, 2017, 12, 289-309.	12.0	41
44	PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nature Communications, 2019, 10, 1415.	12.8	37
45	MTOR inhibitor-based combination therapies for pancreatic cancer. British Journal of Cancer, 2018, 118, 366-377.	6.4	35
46	Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nature Immunology, 2021, 22, 880-892.	14.5	34
47	Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia. Nature Communications, 2021, 12, 3526.	12.8	34
48	Preclinical Evaluation of the Hsp70 Peptide Tracer TPP-PEG24-DFO[89Zr] for Tumor-Specific PET/CT Imaging. Cancer Research, 2018, 78, 6268-6281.	0.9	32
49	Tumor Imaging and Targeting Potential of an Hsp70-Derived 14-Mer Peptide. PLoS ONE, 2014, 9, e105344.	2.5	29
50	The NFIBâ€ERO1A axis promotes breast cancer metastatic colonization of disseminated tumour cells. EMBO Molecular Medicine, 2021, 13, e13162.	6.9	27
51	Notch2-mediated plasticity between marginal zone and follicular B cells. Nature Communications, 2021, 12, 1111.	12.8	26
52	Engineering CRISPR mouse models of cancer. Current Opinion in Genetics and Development, 2019, 54, 88-96.	3.3	25
53	Analysis pipelines for cancer genome sequencing in mice. Nature Protocols, 2020, 15, 266-315.	12.0	25
54	Angiocrine Hepatocyte Growth Factor Signaling Controls Physiological Organ and Body Size and Dynamic Hepatocyte Proliferation to Prevent Liver Damage during Regeneration. American Journal of Pathology, 2020, 190, 358-371.	3.8	24

#	Article	IF	CITATIONS
55	DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways. Clinical Epigenetics, 2019, 11, 196.	4.1	22
56	Oncogenic Amplification of Zygotic Dux Factors in Regenerating p53-Deficient Muscle Stem Cells Defines a Molecular Cancer Subtype. Cell Stem Cell, 2018, 23, 794-805.e4.	11.1	21
57	Identification of treatmentâ€induced vulnerabilities in pancreatic cancer patients using functional model systems. EMBO Molecular Medicine, 2022, 14, e14876.	6.9	20
58	Brief homogeneous TCR signals instruct common iNKT progenitors whose effector diversification is characterized by subsequent cytokine signaling. Immunity, 2021, 54, 2497-2513.e9.	14.3	19
59	PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas. Genome Biology, 2020, 21, 181.	8.8	18
60	Genetic alterations of the SUMO isopeptidase SENP6 drive lymphomagenesis and genetic instability in diffuse large B-cell lymphoma. Nature Communications, 2022, 13, 281.	12.8	18
61	XIAP restrains TNF-driven intestinal inflammation and dysbiosis by promoting innate immune responses of Paneth and dendritic cells. Science Immunology, 2021, 6, eabf7235.	11.9	17
62	Novel role for CRK adaptor proteins as essential components of SRC/FAK signaling for epithelial–mesenchymal transition and colorectal cancer aggressiveness. International Journal of Cancer, 2020, 147, 1715-1731.	5.1	14
63	Spontaneous activity of the mitochondrial apoptosis pathway drives chromosomal defects, the appearance of micronuclei and cancer metastasis through the Caspase-Activated DNAse. Cell Death and Disease, 2022, 13, 315.	6.3	14
64	Targeting the ubiquitinâ€proteasome system in a pancreatic cancer subtype with hyperactive MYC. Molecular Oncology, 2020, 14, 3048-3064.	4.6	13
65	A novel Cereblon E3 ligase modulator with antitumor activity in gastrointestinal cancer. Bioorganic Chemistry, 2022, 119, 105505.	4.1	13
66	CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver. Nature Protocols, 2022, 17, 1142-1188.	12.0	13
67	Genetic Screens Identify a Context-Specific PI3K/p27Kip1 Node Driving Extrahepatic Biliary Cancer. Cancer Discovery, 2021, 11, 3158-3177.	9.4	12
68	Clonal Expansion Analysis of Transposon Insertions by High-Throughput Sequencing Identifies Candidate Cancer Genes in a PiggyBac Mutagenesis Screen. PLoS ONE, 2013, 8, e72338.	2.5	12
69	Tutorial: design and execution of CRISPR in vivo screens. Nature Protocols, 2022, 17, 1903-1925.	12.0	12
70	c-Rel gain in B cells drives germinal center reactions and autoantibody production. Journal of Clinical Investigation, 2020, 130, 3270-3286.	8.2	11
71	Disease Modeling on Tumor Organoids Implicates AURKA as a Therapeutic Target in Liver Metastatic Colorectal Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 517-540.	4.5	11
72	Mir34a constrains pancreatic carcinogenesis. Scientific Reports, 2020, 10, 9654.	3.3	10

#	Article	IF	CITATIONS
73	SETBP1 overexpression acts in the place of class-defining mutations to drive FLT3-ITD–mutant AML. Blood Advances, 2021, 5, 2412-2425.	5.2	10
74	Whole Exome Sequencing of Biliary Tubulopapillary Neoplasms Reveals Common Mutations in Chromatin Remodeling Genes. Cancers, 2021, 13, 2742.	3.7	10
75	AGR2-Dependent Nuclear Import of RNA Polymerase II Constitutes a Specific Target of Pancreatic Ductal Adenocarcinoma in the Context of Wild-Type p53. Gastroenterology, 2021, 161, 1601-1614.e23.	1.3	10
76	Targeting c-MYC through Interference with NAMPT and SIRT1 and Their Association to Oncogenic Drivers in Murine Serrated Intestinal Tumorigenesis. Neoplasia, 2019, 21, 974-988.	5.3	9
77	MondoA drives malignancy in B-ALL through enhanced adaptation to metabolic stress. Blood, 2022, 139, 1184-1197.	1.4	7
78	Functional analysis of peripheral and intratumoral neoantigen-specific TCRs identified in a patient with melanoma. , 2021, 9, e002754.		7
79	High-Fructose Diet Alters Intestinal Microbial Profile and Correlates with Early Tumorigenesis in a Mouse Model of Barrett's Esophagus. Microorganisms, 2021, 9, 2432.	3.6	7
80	PiggyBac Transposon-Based Insertional Mutagenesis in Mice. Methods in Molecular Biology, 2019, 1907, 171-183.	0.9	6
81	Genetically Engineered Mouse Models of Liver Tumorigenesis Reveal a Wide Histological Spectrum of Neoplastic and Non-Neoplastic Liver Lesions. Cancers, 2020, 12, 2265.	3.7	5
82	Anti-inflammatory chemoprevention attenuates the phenotype in a mouse model of esophageal adenocarcinoma. Carcinogenesis, 2021, 42, 1068-1078.	2.8	4
83	IL-24 intrinsically regulates Th17 cell pathogenicity in mice. Journal of Experimental Medicine, 2022, 219,	8.5	4
84	Generation of An Endogenous FGFR2–BICC1 Gene Fusion/58 Megabase Inversion Using Single-Plasmid CRISPR/Cas9 Editing in Biliary Cells. International Journal of Molecular Sciences, 2020, 21, 2460.	4.1	3
85	Important role of Nfkb2 in the KrasG12D-driven carcinogenesis in the pancreas. Pancreatology, 2021, 21, 912-919.	1.1	3
86	Comparative Study of the Role of Interepithelial Mucosal Mast Cells in the Context of Intestinal Adenoma-Carcinoma Progression. Cancers, 2022, 14, 2248.	3.7	3
87	siRNA-coupled nanoparticles for improved therapeutic targeting of pancreatic cancer. Gut, 2016, 65, 1780-1781.	12.1	1
88	Editorial overview: Functionalizing cancer genomes in the era of big data. Current Opinion in Genetics and Development, 2019, 54, iii-vi.	3.3	1
89	Linkage of genetic drivers and strain-specific germline variants confound mouse cancer genome analyses. Nature Communications, 2020, 11, 4474.	12.8	1
90	IFN-Gamma Producing Regulatory T Cells Counterbalance T Cell-Mediated Injury to the Intestinal Stem Cell Compartment in Mice and Humans. Blood, 2021, 138, 89-89.	1.4	1

#	ARTICLE	IF	CITATIONS
91	Indirect targeting of MYC sensitizes pancreatic cancer cells to mechanistic target of rapamycin (mTOR) inhibition. Cancer Communications, 2022, , .	9.2	1
92	Analyse von Krebsgenen: Schnelle Suche nach der â \in žNadel im Heuhaufenâ \in œ. , 0, , .		0
93	<i>Setbp1</i> Overexpression Acts in the Place of Class-Defining Somatic Mutations to Drive Mouse and Human <i>FLT3-ITD</i> -Mutant AMLs. Blood, 2020, 136, 31-32.	1.4	0
94	Abstract 2514: Pancreatic cancer subtype-specific secreted factors determine the immunosuppressive tumor microenvironment. Cancer Research, 2022, 82, 2514-2514.	0.9	0