Jakub O Westholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5673924/publications.pdf

Version: 2024-02-01

279487 414034 5,334 33 23 citations h-index papers

g-index 38 38 38 9121 docs citations times ranked citing authors all docs

32

#	Article	IF	CITATIONS
1	Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 2016, 353, 78-82.	6.0	1,983
2	Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation. Cell Reports, 2014, 9, 1966-1980.	2.9	866
3	Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biology, 2011, 12, 221.	13.9	393
4	Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Research, 2013, 23, 812-825.	2.4	308
5	Mirtrons: microRNA biogenesis via splicing. Biochimie, 2011, 93, 1897-1904.	1.3	246
6	Deep annotation of <i>Drosophila melanogaster</i> microRNAs yields insights into their processing, modification, and emergence. Genome Research, 2011, 21, 203-215.	2.4	207
7	Discovery of hundreds of mirtrons in mouse and human small RNA data. Genome Research, 2012, 22, 1634-1645.	2.4	169
8	Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Scientific Reports, 2018, 8, 10813.	1.6	118
9	Endocan is a VEGF-A and PI3K regulated gene with increased expression in human renal cancer. Experimental Cell Research, 2007, 313, 1285-1294.	1.2	112
10	Transcriptional profiling reveals a critical role for tyrosine phosphatase VEâ€PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. FASEB Journal, 2009, 23, 1490-1502.	0.2	98
11	Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Science Advances, 2018, 4, eaar8590.	4.7	86
12	Computational and experimental identification of mirtrons in <i>Drosophila melanogaster</i> and <i>Caenorhabditis elegans</i> Genome Research, 2011, 21, 286-300.	2.4	71
13	The BEN domain is a novel sequence-specific DNA-binding domain conserved in neural transcriptional repressors. Genes and Development, 2013, 27, 602-614.	2.7	70
14	Diversity of miRNAs, siRNAs, and piRNAs across 25 <i>Drosophila</i> cell lines. Genome Research, 2014, 24, 1236-1250.	2.4	66
15	Common and distinct patterns of terminal modifications to mirtrons and canonical microRNAs. Rna, 2012, 18, 177-192.	1.6	64
16	Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants. PLoS Genetics, 2012, 8, e1002515.	1.5	48
17	Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nature Neuroscience, 2022, 25, 285-294.	7.1	48
18	Massive and parallel expression profiling using microarrayed single-cell sequencing. Nature Communications, 2016, 7, 13182.	5.8	44

#	Article	IF	CITATIONS
19	Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family. Genes and Development, 2015, 29, 48-62.	2.7	41
20	Comprehensive RNA-Sequencing Analysis in Serum and Muscle Reveals Novel Small RNA Signatures with Biomarker Potential for DMD. Molecular Therapy - Nucleic Acids, 2018, 13, 1-15.	2.3	41
21	Histone modifications influence mediator interactions with chromatin. Nucleic Acids Research, 2011, 39, 8342-8354.	6.5	39
22	Gis1 and Rph1 Regulate Glycerol and Acetate Metabolism in Glucose Depleted Yeast Cells. PLoS ONE, 2012, 7, e31577.	1.1	32
23	Building blocks are synthesized on demand during the yeast cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7575-7583.	3.3	32
24	Characterization of the nuclear and cytosolic transcriptomes in human brain tissue reveals new insights into the subcellular distribution of RNA transcripts. Scientific Reports, 2021, 11, 4076.	1.6	27
25	Genome-wide identification of Grainy head targets in <i>Drosophila</i> reveals regulatory interactions with the POU-domain transcription factor, Vvl. Development (Cambridge), 2017, 144, 3145-3155.	1.2	24
26	Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila. Nucleic Acids Research, 2014, 42, 1987-2002.	6.5	23
27	Expression profiling and in situ screening of circular RNAs in human tissues. Scientific Reports, 2018, 8, 16953.	1.6	21
28	Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation. BMC Bioinformatics, 2008, 9, 484.	1.2	17
29	Nitrogen depletion in the fission yeast Schizosaccharomyces pombe causes nucleosome loss in both promoters and coding regions of activated genes. Genome Research, 2010, 20, 361-371.	2.4	16
30	Profiling of Extracellular Small RNAs Highlights a Strong Bias towards Non-Vesicular Secretion. Cells, 2021, 10, 1543.	1.8	11
31	Acute sleep loss alters circulating fibroblast growth factor 21 levels in humans: A randomised crossover trial. Journal of Sleep Research, 2022, 31, e13472.	1.7	6
32	The Histone Demethylase Activity of Rph1 is Not Essential for Its Role in the Transcriptional Response to Nutrient Signaling. PLoS ONE, 2014, 9, e95078.	1.1	3
33	Global gene expression analysis by combinatorial optimization. In Silico Biology, 2004, 4, 225-41.	0.4	0