Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5673454/publications.pdf

Version: 2024-02-01

55	1,667	17 h-index	40
papers	citations		g-index
56	56	56	1442
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	40-user fully connected entanglement-based quantum key distribution network without trusted node. PhotoniX, 2022, 3, .	13.5	21
2	Hetero-Optomechanical Crystal Zipper Cavity for Multimode Optomechanics. Photonics, 2022, 9, 78.	2.0	7
3	Measurement-Device-Independent Quantum Key Distribution of Frequency-Nondegenerate Photons. Physical Review Applied, 2022, 17, .	3.8	3
4	Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica, 2022, 9, 461.	9.3	65
5	Generation and dynamic manipulation of frequency degenerate polarization entangled Bell states by a silicon quantum photonic circuit., 2022, 1, 100001.		5
6	Ultraspectral Imaging Based on Metasurfaces with Freeform Shaped Metaâ€Atoms. Laser and Photonics Reviews, 2022, 16, .	8.7	40
7	Nonsuspended optomechanical crystal cavities using As ₂ S ₃ chalcogenide glass. Photonics Research, 2021, 9, 893.	7.0	6
8	Phonon lasing in a hetero optomechanical crystal cavity. Photonics Research, 2021, 9, 937.	7.0	13
9	Impact of fiber dispersion on the performance of entanglement-based dispersive optics quantum key distribution. Journal of Electronic Science and Technology, 2021, 19, 100119.	3.6	2
10	All-optical image identification with programmable matrix transformation. Optics Express, 2021, 29, 26474.	3.4	7
11	Generating heralded single photons with a switchable orbital angular momentum mode. Photonics Research, 2021, 9, 1865.	7.0	2
12	Fully Connected Entanglement-based Quantum Communication Network without Trusted Node. , 2021, , .		1
13	A Compound Phase-Modulated Beam Splitter to Distinguish Both Spin and Orbital Angular Momentum. ACS Photonics, 2020, 7, 212-220.	6.6	24
14	Experimental demonstration of Einstein-Podolsky-Rosen entanglement in rotating coordinate space. Science Bulletin, 2020, 65, 280-285.	9.0	5
15	An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution. APL Photonics, 2020, 5, .	5.7	25
16	Programmable Coherent Linear Quantum Operations with High-Dimensional Optical Spatial Modes. Physical Review Applied, 2020, 14, .	3.8	8
17	Nonlinear optical properties of chalcogenide glass waveguides fabricated by hot melt smoothing and micro-trench filling. Applied Physics Express, 2020, 13, 042005.	2.4	1
18	Reverse-strip-structure Ge28Sb12Se60 chalcogenide glass waveguides prepared by micro-trench filling and lift-off. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 82.	2.1	7

#	Article	IF	CITATIONS
19	Hybrid waveguide scheme for silicon-based quantum photonic circuits with quantum light sources. Photonics Research, 2020, 8, 235.	7.0	4
20	Vortex Smith–Purcell radiation generation with holographic grating. Photonics Research, 2020, 8, 1309.	7.0	15
21	Spatial Quantum Beating of Adjustable Biphoton Frequency Comb With High-Dimensional Frequency-Bin Entanglement. IEEE Photonics Journal, 2019, 11, 1-9.	2.0	1
22	Universal linear optical operations on discrete phase-coherent spatial modes with a fixed and non-cascaded setup. Journal of Optics (United Kingdom), 2019, 21, 104003.	2.2	9
23	Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20 km. Applied Physics Letters, 2019, 114, .	3.3	25
24	Polarization-controllably launching localized cosine-Gauss beam with spatially varied metallic nano-apertures. Optics Express, 2019, 27, 22053.	3.4	13
25	Deep-ultraviolet Smith–Purcell radiation. Optica, 2019, 6, 592.	9.3	30
26	Two-photon interferences on a silica-on-silicon chip with telecom-band photon pairs generated in a fiber. Optics Express, 2018, 26, 29471.	3.4	2
27	Quantum secure ghost imaging. Physical Review A, 2018, 98, .	2.5	10
28	Measuring the orbital angular momentum spectrum with a single point detector. Optics Letters, 2018, 43, 4607.	3.3	6
29	Photothermal effect in graphene-coated microsphere resonators. Applied Physics Express, 2018, 11, 072503.	2.4	0
30	Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Research, 2018, 6, 506.	7.0	78
31	Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nature Photonics, 2017, 11, 289-292.	31.4	137
32	True Single-Photon Stimulated Four-Wave Mixing. ACS Photonics, 2017, 4, 746-753.	6.6	8
33	Experimental long-distance quantum secure direct communication. Science Bulletin, 2017, 62, 1519-1524.	9.0	208
34	Quantum Secure Direct Communication with Quantum Memory. Physical Review Letters, 2017, 118, 220501.	7.8	460
35	Measuring the complex orbital angular momentum spectrum of light with a mode-matching method. Optics Letters, 2017, 42, 1080.	3.3	33
36	Fiber-based frequency-degenerate polarization entangled photon pair sources for information encoding. Optics Express, 2016, 24, 25619.	3.4	10

#	Article	IF	CITATIONS
37	Experimental device-independent tests of classical and quantum entropy. Physical Review A, 2016, 94, .	2.5	2
38	Quantum teleportation with independent sources and prior entanglement distribution over a network. Nature Photonics, 2016, 10, 671-675.	31.4	152
39	High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling. Applied Physics Express, 2016, 9, 052201.	2.4	11
40	Optomechanical crystal nanobeam cavity with high optomechanical coupling rate. Journal of Optics (United Kingdom), 2015, 17, 045001.	2.2	31
41	Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers. Scientific Reports, 2015, 5, 9195.	3.3	15
42	Generation of 15  î¼m discrete frequency-entangled two-photon state in polarization-maintaining fibers. Optics Letters, 2014, 39, 2109.	3.3	11
43	Energy-time entanglement generation in optical fibers under CW pumping. Optics Express, 2014, 22, 359.	3.4	26
44	Frequency-entanglement preparation based on the coherent manipulation of frequency nondegenerate energy-time entangled state. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1801.	2.1	9
45	A polarization maintaining scheme for 1.5 \hat{l} 4m polarization entangled photon pair generation in optical fibers. European Physical Journal D, 2013, 67, 1.	1.3	9
46	$15 \hat{A} \hat{l} \frac{1}{4}$ m polarization entanglement generation based on birefringence in silicon wire waveguides. Optics Letters, 2013, 38, 2873.	3.3	14
47	High-Quality Fiber-Based Heralded Single-Photon Source at 1.5 \hat{l} 4m. Chinese Physics Letters, 2012, 29, 054215.	3.3	3
48	Polarization entanglement generation at $15\hat{A}\hat{I}\frac{1}{4}$ m based on walk-off effect due to fiber birefringence. Optics Letters, 2012, 37, 1679.	3.3	17
49	Properties of high quality heralded single photon source based on fibers at 1.5 \hat{l} 4m. Proceedings of SPIE, 2012, , .	0.8	O
50	Properties of optical fiber based synchronous heralded single photon sources at 1.5 \hat{l} 4m. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2274-2277.	2.1	10
51	Acoustic longitudinal mode coupling in w-shaped Al/Ge Co-doped fibre. Chinese Physics B, 2011, 20, 104211.	1.4	5
52	Noise performance comparison of 15 \hat{l} 4m correlated photon pair generation in different fibers. Optics Express, 2010, 18, 17114.	3.4	18
53	Stimulated Brillouin scattering slow light in high nonlinearity silica microstructure fiber. Optical Fiber Technology, 2009, 15, 1-4.	2.7	7
54	Polarization-entangled Bell states generation based on birefringence in high nonlinear microstructure fiber at $15\hat{l}^1\!\!/4$ m. Optics Letters, 2009, 34, 2706.	3.3	28

#	Article	IF	CITATIONS
55	Influences of pump wavelength and environment temperature on the dual-peaked Brillouin property of a small-core microstructure fiber. Optics Letters, 2007, 32, 2303.	3.3	8