Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5673454/publications.pdf Version: 2024-02-01

Μει Ζηλιο

#	Article	IF	CITATIONS
1	Quantum Secure Direct Communication with Quantum Memory. Physical Review Letters, 2017, 118, 220501.	7.8	460
2	Experimental long-distance quantum secure direct communication. Science Bulletin, 2017, 62, 1519-1524.	9.0	208
3	Quantum teleportation with independent sources and prior entanglement distribution over a network. Nature Photonics, 2016, 10, 671-675.	31.4	152
4	Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nature Photonics, 2017, 11, 289-292.	31.4	137
5	Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Research, 2018, 6, 506.	7.0	78
6	Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica, 2022, 9, 461.	9.3	65
7	Ultraspectral Imaging Based on Metasurfaces with Freeform Shaped Metaâ€Atoms. Laser and Photonics Reviews, 2022, 16, .	8.7	40
8	Measuring the complex orbital angular momentum spectrum of light with a mode-matching method. Optics Letters, 2017, 42, 1080.	3.3	33
9	Optomechanical crystal nanobeam cavity with high optomechanical coupling rate. Journal of Optics (United Kingdom), 2015, 17, 045001.	2.2	31
10	Deep-ultraviolet Smith–Purcell radiation. Optica, 2019, 6, 592.	9.3	30
11	Polarization-entangled Bell states generation based on birefringence in high nonlinear microstructure fiber at 15 μm. Optics Letters, 2009, 34, 2706.	3.3	28
12	Energy-time entanglement generation in optical fibers under CW pumping. Optics Express, 2014, 22, 359.	3.4	26
13	Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20 km. Applied Physics Letters, 2019, 114, .	3.3	25
14	An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution. APL Photonics, 2020, 5, .	5.7	25
15	A Compound Phase-Modulated Beam Splitter to Distinguish Both Spin and Orbital Angular Momentum. ACS Photonics, 2020, 7, 212-220.	6.6	24
16	40-user fully connected entanglement-based quantum key distribution network without trusted node. PhotoniX, 2022, 3, .	13.5	21
17	Noise performance comparison of 15 μm correlated photon pair generation in different fibers. Optics Express, 2010, 18, 17114.	3.4	18
18	Polarization entanglement generation at 15Âμm based on walk-off effect due to fiber birefringence. Optics Letters, 2012, 37, 1679.	3.3	17

Wei Zhang

#	Article	IF	CITATIONS
19	Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers. Scientific Reports, 2015, 5, 9195.	3.3	15
20	Vortex Smith–Purcell radiation generation with holographic grating. Photonics Research, 2020, 8, 1309.	7.0	15
21	15Âμm polarization entanglement generation based on birefringence in silicon wire waveguides. Optics Letters, 2013, 38, 2873.	3.3	14
22	Phonon lasing in a hetero optomechanical crystal cavity. Photonics Research, 2021, 9, 937.	7.0	13
23	Polarization-controllably launching localized cosine-Gauss beam with spatially varied metallic nano-apertures. Optics Express, 2019, 27, 22053.	3.4	13
24	Generation of 15  μm discrete frequency-entangled two-photon state in polarization-maintaining fibers Optics Letters, 2014, 39, 2109.	^{S.} 3.3	11
25	High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling. Applied Physics Express, 2016, 9, 052201.	2.4	11
26	Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2274-2277.	2.1	10
27	Fiber-based frequency-degenerate polarization entangled photon pair sources for information encoding. Optics Express, 2016, 24, 25619.	3.4	10
28	Quantum secure ghost imaging. Physical Review A, 2018, 98, .	2.5	10
29	A polarization maintaining scheme for 1.5 μ4m polarization entangled photon pair generation in optical fibers. European Physical Journal D, 2013, 67, 1.	1.3	9
30	Frequency-entanglement preparation based on the coherent manipulation of frequency nondegenerate energy-time entangled state. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1801.	2.1	9
31	Universal linear optical operations on discrete phase-coherent spatial modes with a fixed and non-cascaded setup. Journal of Optics (United Kingdom), 2019, 21, 104003.	2.2	9
32	Influences of pump wavelength and environment temperature on the dual-peaked Brillouin property of a small-core microstructure fiber. Optics Letters, 2007, 32, 2303.	3.3	8
33	True Single-Photon Stimulated Four-Wave Mixing. ACS Photonics, 2017, 4, 746-753.	6.6	8
34	Programmable Coherent Linear Quantum Operations with High-Dimensional Optical Spatial Modes. Physical Review Applied, 2020, 14, .	3.8	8
35	Stimulated Brillouin scattering slow light in high nonlinearity silica microstructure fiber. Optical Fiber Technology, 2009, 15, 1-4.	2.7	7
36	All-optical image identification with programmable matrix transformation. Optics Express, 2021, 29, 26474.	3.4	7

Wei Zhang

#	Article	IF	CITATIONS
37	Reverse-strip-structure Ge28Sb12Se60 chalcogenide glass waveguides prepared by micro-trench filling and lift-off. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 82.	2.1	7
38	Hetero-Optomechanical Crystal Zipper Cavity for Multimode Optomechanics. Photonics, 2022, 9, 78.	2.0	7
39	Measuring the orbital angular momentum spectrum with a single point detector. Optics Letters, 2018, 43, 4607.	3.3	6
40	Nonsuspended optomechanical crystal cavities using As ₂ S ₃ chalcogenide glass. Photonics Research, 2021, 9, 893.	7.0	6
41	Acoustic longitudinal mode coupling in w-shaped Al/Ge Co-doped fibre. Chinese Physics B, 2011, 20, 104211.	1.4	5
42	Experimental demonstration of Einstein-Podolsky-Rosen entanglement in rotating coordinate space. Science Bulletin, 2020, 65, 280-285.	9.0	5
43	Generation and dynamic manipulation of frequency degenerate polarization entangled Bell states by a silicon quantum photonic circuit. , 2022, 1, 100001.		5
44	Hybrid waveguide scheme for silicon-based quantum photonic circuits with quantum light sources. Photonics Research, 2020, 8, 235.	7.0	4
45	High-Quality Fiber-Based Heralded Single-Photon Source at 1.5 μm. Chinese Physics Letters, 2012, 29, 054215.	3.3	3
46	Measurement-Device-Independent Quantum Key Distribution of Frequency-Nondegenerate Photons. Physical Review Applied, 2022, 17, .	3.8	3
47	Experimental device-independent tests of classical and quantum entropy. Physical Review A, 2016, 94, .	2.5	2
48	Two-photon interferences on a silica-on-silicon chip with telecom-band photon pairs generated in a fiber. Optics Express, 2018, 26, 29471.	3.4	2
49	Impact of fiber dispersion on the performance of entanglement-based dispersive optics quantum key distribution. Journal of Electronic Science and Technology, 2021, 19, 100119.	3.6	2
50	Generating heralded single photons with a switchable orbital angular momentum mode. Photonics Research, 2021, 9, 1865.	7.0	2
51	Spatial Quantum Beating of Adjustable Biphoton Frequency Comb With High-Dimensional Frequency-Bin Entanglement. IEEE Photonics Journal, 2019, 11, 1-9.	2.0	1
52	Nonlinear optical properties of chalcogenide glass waveguides fabricated by hot melt smoothing and micro-trench filling. Applied Physics Express, 2020, 13, 042005.	2.4	1
53	Fully Connected Entanglement-based Quantum Communication Network without Trusted Node. , 2021, , .		1
54	Properties of high quality heralded single photon source based on fibers at 1.5 μm. Proceedings of SPIE, 2012, , .	0.8	0

#	Article	IF	CITATIONS
55	Photothermal effect in graphene-coated microsphere resonators. Applied Physics Express, 2018, 11, 072503.	2.4	0