
Amanda Lochner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5672867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics, 2021, 11, 6766-6785.	10.0	135
2	Ataxia Telangiectasia Mutated Protein Kinase: A Potential Master Puppeteer of Oxidative Stress-Induced Metabolic Recycling. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-12.	4.0	8
3	Editorial: Role of Mitochondrial Quality Control in Myocardial and Microvascular Physiology and Pathophysiology. Frontiers in Physiology, 2021, 12, 745033.	2.8	1
4	Mitochondrial Oxidative Phosphorylation Function and Mitophagy in Ischaemic/Reperfused Hearts from Control and High-Fat Diet Rats: Effects of Long-Term Melatonin Treatment. Cardiovascular Drugs and Therapy, 2020, 34, 799-811.	2.6	13
5	Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart. Molecular and Cellular Biochemistry, 2020, 473, 111-132.	3.1	8
6	Mitochondrial oxidative phosphorylation and mitophagy in myocardial ischaemia/reperfusion: effects of chloroquine. Cardiovascular Journal of Africa, 2020, 31, 7-17.	0.4	2
7	The impact of sugar-sweetened beverage intake on rat cardiac function. Heliyon, 2019, 5, e01357.	3.2	2
8	Cardioprotective Effects of Beta3-Adrenergic Receptor (β3-AR) Pre-, Per-, and Post-treatment in Ischemia–Reperfusion. Cardiovascular Drugs and Therapy, 2019, 33, 163-177.	2.6	12
9	Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. Journal of Pineal Research, 2018, 65, e12490.	7.4	93
10	Treatment with a fixed dose combination antiretroviral therapy drug containing tenofovir, emtricitabine and efavirenz is associated with cardioprotection in high calorie diet-induced obese rats. PLoS ONE, 2018, 13, e0208537.	2.5	12
11	The significance of the washout period in preconditioning. Cardiovascular Therapeutics, 2017, 35, e12252.	2.5	2
12	The Role of MKP-1 in Insulin-Induced Cardioprotection. Cardiovascular Drugs and Therapy, 2017, 31, 247-254.	2.6	7
13	Myocardial susceptibility to ischaemia/reperfusion in obesity: a re-evaluation of the effects of age. BMC Physiology, 2017, 17, 3.	3.6	11
14	Role of melatonin in glucose uptake by cardiomyocytes from insulin-resistant Wistar rats. Cardiovascular Journal of Africa, 2017, 28, 362-369.	0.4	7
15	Dependence of Cardiac Systolic Function on Elevated Fatty Acid Availability in Obese, Insulin-Resistant Rats. Journal of Cardiac Failure, 2016, 22, 560-568.	1.7	3
16	The differential effects of FTY720 on functional recovery and infarct size following myocardial ischaemia/ reperfusion. Cardiovascular Journal of Africa, 2016, 27, 375-386.	0.4	6
17	ATM Protein Kinase Signaling, Type 2 Diabetes and Cardiovascular Disease. Cardiovascular Drugs and Therapy, 2015, 29, 51-58.	2.6	32
18	Shortâ€ŧerm melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. Journal of Pineal Research, 2014, 57, 317-332.	7.4	44

Amanda Lochner

#	Article	IF	CITATIONS
19	Melatonin and the Metabolic Syndrome. , 2014, , 71-95.		2
20	High carbohydrate and high fat diets protect the heart against ischaemia/reperfusion injury. Cardiovascular Diabetology, 2014, 13, 109.	6.8	41
21	Cardioprotective effect of melatonin against ischaemia reperfusion damage. Frontiers in Bioscience - Elite, 2013, E5, 305-315.	1.8	50
22	The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation. Basic Research in Cardiology, 2012, 107, 281.	5.9	36
23	Early cardiovascular changes occurring in diet-induced, obese insulin-resistant rats. Molecular and Cellular Biochemistry, 2012, 368, 37-45.	3.1	27
24	Chronic melatonin consumption prevents obesityâ€related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of dietâ€induced obesity. Journal of Pineal Research, 2011, 50, 171-182.	7.4	117
25	Pre-treatment with a DPP-4 Inhibitor is Infarct Sparing in Hearts from Obese, Pre-diabetic Rats. Cardiovascular Drugs and Therapy, 2011, 25, 13-20.	2.6	86
26	The Role of β-adrenergic Receptors in the Cardioprotective Effects of Beta-Preconditioning (βPC). Cardiovascular Drugs and Therapy, 2011, 25, 31-46.	2.6	23
27	Kinases and phosphatases in ischaemic preconditioning: a re-evaluation. Basic Research in Cardiology, 2010, 105, 495-511.	5.9	30
28	The Protective Effect of Melatonin on the Heart. , 2010, , 517-534.		0
29	Postconditioning the Isolated Working Rat Heart. Cardiovascular Drugs and Therapy, 2008, 22, 391-397.	2.6	17
30	Melatonin receptorâ€mediated protection against myocardial ischaemia/reperfusion injury: role of its antiâ€adrenergic actions. Journal of Pineal Research, 2008, 45, 449-458.	7.4	72
31	Myocardial susceptibility to ischemic-reperfusion injury in a prediabetic model of dietary-induced obesity. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2336-H2343.	3.2	52
32	Ischaemic postconditioning: from bench to bedside. Cardiovascular Journal of Africa, 2008, 19, 311-20.	0.4	14
33	Short- and long-term effects of melatonin on myocardial post-ischemic recovery. Journal of Pineal Research, 2006, 40, 56-63.	7.4	62
34	Inhibition of Myocardial Apoptosis by Ischaemic and Beta-Adrenergic Preconditioning is Dependent on p38 MAPK. Cardiovascular Drugs and Therapy, 2006, 20, 13-25.	2.6	27
35	The temporal relationship between p38 MAPK and HSP27 activation in ischaemic and pharmacological preconditioning. Basic Research in Cardiology, 2005, 100, 35-47.	5.9	48
36	Melatonin Protects Against Ischaemic-reperfusion Myocardial Damage. Journal of Molecular and Cellular Cardiology, 2001, 33, 343-357.	1.9	43

Amanda Lochner

#	Article	IF	CITATIONS
37	p38 MAPK Activation Triggers Pharmacologically-induced β -adrenergic Preconditioning, but Not Ischaemic Preconditioning. Journal of Molecular and Cellular Cardiology, 2001, 33, 2157-2177.	1.9	26
38	Serial changes in the myocardial beta-adrenergic signalling system in two models of non-insulin dependent diabetes mellitus. Molecular and Cellular Biochemistry, 2001, 219, 73-82.	3.1	11
39	Insulin in combination with vanadate stimulates glucose transport in isolated cardiomyocytes from obese Zucker rats. Cardiovascular Drugs and Therapy, 2001, 15, 445-452.	2.6	14
40	Effect of vanadate and insulin on glucose transport in isolated adult rat cardiomyocytes. Cardiovascular Drugs and Therapy, 2000, 14, 463-470.	2.6	38
41	Nitric oxide: a trigger for classic preconditioning?. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2752-H2765.	3.2	80
42	lschemic Preconditioning and the Î ² -Adrenergic Signal Transduction Pathway. Circulation, 1999, 100, 958-966.	1.6	118
43	Role of cyclic nucleotide phosphodiesterases in ischemic preconditioning. Molecular and Cellular Biochemistry, 1998, 186, 169-175.	3.1	29
44	Postcardioplegic myocardial recovery: effects of halothane, nifedipine, HOE 694, and quinacrine. Cardiovascular Drugs and Therapy, 1998, 12, 267-277.	2.6	8
45	No evidence for mediation of ischemic preconditioning by alpha1-adrenergic signal transduction pathway or protein kinase C in the isolated rat heart. Cardiovascular Drugs and Therapy, 1996, 10, 125-136.	2.6	28
46	Inositolpolyphosphates and their binding proteins ?a short review. Molecular and Cellular Biochemistry, 1996, 157, 229-32.	3.1	8
47	Characterization of inositolpolyphosphate binding to myocardial membranes. Molecular and Cellular Biochemistry, 1996, 162, 1-9.	3.1	1