Daniel Ruiz-Molina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5671589/publications.pdf

Version: 2024-02-01

183 papers 9,600 citations

42 h-index 43889 91 g-index

202 all docs 202 docs citations

times ranked

202

10658 citing authors

#	Article	IF	CITATIONS
1	Synthesis and Validation of a Bioinspired Catechol-Functionalized Pt(IV) Prodrug for Preclinical Intranasal Glioblastoma Treatment. Cancers, 2022, 14, 410.	3.7	9
2	Tunable Thermofluorochromic Sensors Based on Conjugated Polymers. Advanced Optical Materials, 2022, 10, .	7.3	2
3	Intranasal Administration of Catechol-Based Pt(IV) Coordination Polymer Nanoparticles for Glioblastoma Therapy. Nanomaterials, 2022, 12, 1221.	4.1	4
4	Water-Stable Carborane-Based Eu ³⁺ /Tb ³⁺ Metal–Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding. Chemistry of Materials, 2022, 34, 4795-4808.	6.7	27
5	Coordination polymers nanoparticles for bioimaging. Coordination Chemistry Reviews, 2021, 432, 213716.	18.8	41
6	Thermoresponsive multicolor-emissive materials based on solid lipid nanoparticles. Materials Horizons, 2021, 8, 3043-3054.	12.2	14
7	Hybrid Metal–Phenol Nanoparticles with Polydopamine-like Coating for PET/SPECT/CT Imaging. ACS Applied Materials & Interfaces, 2021, 13, 10705-10718.	8.0	22
8	Bioinspired Theranostic Coordination Polymer Nanoparticles for Intranasal Dopamine Replacement in Parkinson's Disease. ACS Nano, 2021, 15, 8592-8609.	14.6	50
9	Antitumour activity of coordination polymer nanoparticles. Coordination Chemistry Reviews, 2021, 441, 213977.	18.8	24
10	Thiol-yne click reaction: an interesting way to derive thiol-provided catechols. RSC Advances, 2021, 11, 2074-2082.	3.6	14
11	Photoactivable Ruthenium-Based Coordination Polymer Nanoparticles for Light-Induced Chemotherapy. Nanomaterials, 2021, 11, 3089.	4.1	4
12	Shape Memory Polyurethane Microcapsules with Active Deformation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47059-47064.	8.0	31
13	Highly transparent photochromic films with a tunable and fast solution-like response. Materials Horizons, 2020, 7, 2749-2759.	12.2	40
14	Solid Materials with Nearâ€Infraredâ€Induced Fluorescence Modulation. Advanced Optical Materials, 2020, 8, 2001063.	7.3	8
15	Nanoscale coordination polymers for medicine and sensors. Advances in Inorganic Chemistry, 2020, , 3-31.	1.0	3
16	Bioinspired Functional Catechol Derivatives through Simple Thiol Conjugate Addition. Chemistry - A European Journal, 2019, 25, 12367-12379.	3.3	22
17	Versatile iron–catechol-based nanoscale coordination polymers with antiretroviral ligand functionalization and their use as efficient carriers in HIV/AIDS therapy. Biomaterials Science, 2019, 7, 178-186.	5.4	27
18	Color-Tunable White-Light-Emitting Materials Based on Liquid-Filled Capsules and Thermally Responsive Dyes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17751-17758.	8.0	28

#	Article	IF	CITATIONS
19	Thermal Control of Intermolecular Interactions and Tuning of Fluorescent-State Energies. Journal of Physical Chemistry C, 2019, 123, 4632-4637.	3.1	6
20	Solid Materials with Tunable Reverse Photochromism. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11884-11892.	8.0	54
21	Die chemischen Grundlagen der AdhĀĦon von Catechol. Angewandte Chemie, 2019, 131, 706-725.	2.0	25
22	The Chemistry behind Catecholâ€Based Adhesion. Angewandte Chemie - International Edition, 2019, 58, 696-714.	13.8	509
23	Pt(IV)-based nanoscale coordination polymers: Antitumor activity, cellular uptake and interactions with nuclear DNA. Chemical Engineering Journal, 2018, 340, 94-102.	12.7	30
24	Polydopamine-like Coatings as Payload Gatekeepers for Mesoporous Silica Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7661-7669.	8.0	31
25	Dualâ€Fluorescent Nanoscale Coordination Polymers via a Mixedâ€Ligand Synthetic Strategy and Their Use for Multichannel Imaging. ChemNanoMat, 2018, 4, 183-193.	2.8	14
26	Dual <i>T</i> ₁ / <i>T</i> ₂ Nanoscale Coordination Polymers as Novel Contrast Agents for MRI: A Preclinical Study for Brain Tumor. ACS Applied Materials & Enterfaces, 2018, 10, 38819-38832.	8.0	50
27	Surface Functionalization of Metal-Organic Frameworks for Improved Moisture Resistance. Journal of Visualized Experiments, 2018, , .	0.3	2
28	Carbon nanotube-based nanocomposite sensor tuned with a catechol as novel electrochemical recognition platform of uranyl ion in aqueous samples. Sensors and Actuators B: Chemical, 2018, 273, 1807-1815.	7.8	18
29	Solventâ€Tuned Supramolecular Assembly of Fluorescent Catechol/Pyrene Amphiphilic Molecules. Chemistry - A European Journal, 2018, 24, 14724-14732.	3.3	9
30	Ligand and solvent effects in the formation and self-assembly of a metallosupramolecular cage. New Journal of Chemistry, 2017, 41, 1179-1185.	2.8	5
31	Synthesis of Polydopamine-Like Nanocapsules via Removal of a Sacrificial Mesoporous Silica Template with Water. Chemistry - A European Journal, 2017, 23, 2733-2733.	3.3	3
32	Synthesis and Characterization of PtTe2 Multi-Crystallite Nanoparticles using Organotellurium Nanocomposites. Scientific Reports, 2017, 7, 9889.	3.3	5
33	Surface Functionalization of Metal–Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44641-44648.	8.0	33
34	Synthesis of Polydopamineâ€Like Nanocapsules via Removal of a Sacrificial Mesoporous Silica Template with Water. Chemistry - A European Journal, 2017, 23, 2753-2758.	3.3	31
35	Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opinion on Drug Delivery, 2017, 14, 783-796.	5.0	121
36	Copolymerization of a Catechol and a Diamine as a Versatile Polydopamine-Like Platform for Surface Functionalization: The Case of a Hydrophobic Coating. Biomimetics, 2017, 2, 22.	3.3	32

#	Article	IF	Citations
37	Bioinspired Catechol-Based Systems: Chemistry and Applications. Biomimetics, 2017, 2, 25.	3.3	7
38	Replacing Nitrogen by Sulfur: From Structurally Disordered Eumelanins to Regioregular Thiomelanin Polymers. International Journal of Molecular Sciences, 2017, 18, 2169.	4.1	13
39	Highâ€Throughput Topographic, Mechanical, and Biological Screening of Multilayer Films Containing Musselâ€Inspired Biopolymers. Advanced Functional Materials, 2016, 26, 2745-2755.	14.9	49
40	Biocompatible polydopamine-like particles for the removal of heavy metals at extremely low concentrations. RSC Advances, 2016, 6, 40058-40066.	3.6	28
41	Coordination polymers built from 1,4-bis(imidazol-1-ylmethyl)benzene: from crystalline to amorphous. Dalton Transactions, 2016, 45, 11233-11255.	3.3	33
42	Switchable colloids, thin-films and interphases based on metal complexes with non-innocent ligands: the case of valence tautomerism and their applications. Journal of Materials Chemistry C, 2016, 4, 5879-5889.	5.5	37
43	Nanoscale coordination polymers obtained in ultrasmall liquid droplets on solid surfaces and its comparison to different synthetic volume scales. RSC Advances, 2016, 6, 76666-76672.	3.6	5
44	Reactions in ultra-small droplets by tip-assisted chemistry. Chemical Communications, 2016, 52, 11617-11626.	4.1	19
45	Temperatureâ€Controlled Switchable Photochromism in Solid Materials. Angewandte Chemie - International Edition, 2016, 55, 15044-15048.	13.8	58
46	Temperatureâ€Controlled Switchable Photochromism in Solid Materials. Angewandte Chemie, 2016, 128, 15268-15272.	2.0	22
47	Synthesis of Nanoscale Coordination Polymers in Femtoliter Reactors on Surfaces. ACS Nano, 2016, 10, 3206-3213.	14.6	25
48	Thermally Switchable Molecular Upconversion Emission. Chemistry of Materials, 2016, 28, 738-745.	6.7	34
49	Covalent Grafting of Coordination Polymers on Surfaces: The Case of Hybrid Valence Tautomeric Interphases. Chemistry - A European Journal, 2015, 21, 10094-10099.	3.3	12
50	Liquidâ€Filled Valence Tautomeric Microcapsules: A Solid Material with Solutionâ€Like Behavior. Advanced Functional Materials, 2015, 25, 4129-4134.	14.9	17
51	Design and Synthesis of a Noninnocent Multitopic Catechol and Pyridine Mixed Ligand: Nanoscale Polymers and Valence Tautomerism. Inorganic Chemistry, 2015, 54, 6776-6781.	4.0	13
52	Dual T ₁ /T ₂ MRI contrast agent based on hybrid SPION@coordination polymer nanoparticles. RSC Advances, 2015, 5, 86779-86783.	3.6	33
53	Bioinspired Catecholâ€Terminated Selfâ€Assembled Monolayers with Enhanced Adhesion Properties. Small, 2014, 10, 1594-1602.	10.0	31
54	Coordination Polymer Particles with ligand-centred pH-responses and spin transition. Chemical Communications, 2014, 50, 14570-14572.	4.1	31

#	Article	IF	CITATIONS
55	Improving catalase-based propelled motor endurance by enzyme encapsulation. Nanoscale, 2014, 6, 8907-8913.	5. 6	34
56	Effect of surfactants on the performance of tubular and spherical micromotors $\hat{a} \in \text{``a comparative study. RSC Advances, 2014, 4, 20334-20340.}$	3.6	58
57	Mussel-Inspired Hydrophobic Coatings for Water-Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles and Oil Removal. ACS Applied Materials & Discrete Repellent Textiles & D	8.0	50
58	Controlling Spin Transition in One-Dimensional Coordination Polymers through Polymorphism. Inorganic Chemistry, 2014, 53, 8742-8748.	4.0	20
59	Hydrophobic coordination polymer nanoparticles and application for oil–water separation. RSC Advances, 2014, 4, 15293-15296.	3.6	36
60	Synthesis of polydopamine at the femtoliter scale and confined fabrication of Ag nanoparticles on surfaces. Chemical Communications, 2014, 50, 12548-12551.	4.1	21
61	Carboxyl Group (CO ₂ H) Functionalized Coordination Polymer Nanoparticles as Efficient Platforms for Drug Delivery. Chemistry - A European Journal, 2014, 20, 15443-15450.	3.3	49
62	Mn12 single molecule magnets deposited on $\hat{l}\frac{1}{4}$ -SQUID sensors: the role of interphases and structural modifications. Nanoscale, 2013, 5, 12565.	5.6	19
63	Catecholâ€Based Biomimetic Functional Materials. Advanced Materials, 2013, 25, 653-701.	21.0	638
64	Surfaceâ€Confined Molecular Coolers for Cryogenics. Advanced Materials, 2013, 25, 2984-2988.	21.0	34
65	Versatile Nanostructured Materials via Direct Reaction of Functionalized Catechols. Advanced Materials, 2013, 25, 2066-2070.	21.0	93
66	Coordination polymer nanoparticles in medicine. Coordination Chemistry Reviews, 2013, 257, 2839-2847.	18.8	153
67	Liquidâ€Filled Capsules as Fast Responsive Photochromic Materials. Advanced Optical Materials, 2013, 1, 631-636.	7.3	26
68	Robust spin crossover platforms with synchronized spin switch and polymer phase transition. Scientific Reports, 2013, 3, .	3.3	25
69	Encapsulation and Release Mechanisms in Coordination Polymer Nanoparticles. Chemistry - A European Journal, 2013, 19, 17508-17516.	3.3	41
70	Self-assembly of alkylcatechols on HOPG investigated by scanning tunneling microscopy and molecular dynamics simulations. CrystEngComm, 2012, 14, 264-271.	2.6	17
71	Self-assembly of a catechol-based macrocycle at the liquidâ€"solid interface: experiments and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2012, 14, 11937.	2.8	14
72	Controlled Positioning of Nanoparticles on Graphene by Noninvasive AFM Lithography. Langmuir, 2012, 28, 12400-12409.	3.5	13

#	Article	IF	Citations
73	Advances on structuring, integration and magnetic characterization of molecular nanomagnets on surfaces and devices. Chemical Society Reviews, 2012, 41, 258-302.	38.1	135
74	Structuration and Integration of Magnetic Nanoparticles on Surfaces and Devices. Small, 2012, 8, 1465-1491.	10.0	35
75	Switchable Selfâ€Assembly of a Bioinspired Alkyl Catechol at a Solid/Liquid Interface: Competitive Interfacial, Noncovalent, and Solvent Interactions. Chemistry - A European Journal, 2012, 18, 3056-3063.	3.3	30
76	Multiplexed arrays of chemosensors by parallel dip-pen nanolithography. Chemical Communications, 2011, 47, 6864.	4.1	13
77	Assisted-assembly of coordination materials into advanced nanoarchitectures by Dip Pen nanolithography. Chemical Communications, 2011, 47, 5175.	4.1	28
78	Ultrasensitive Broad Band SQUID Microsusceptometer for Magnetic Measurements at Very Low Temperatures. IEEE Transactions on Applied Superconductivity, 2011, 21, 345-348.	1.7	15
79	Alternating current magnetic susceptibility of a molecular magnet submonolayer directly patterned onto a micro superconducting quantum interference device. Applied Physics Letters, 2011, 99, 032504.	3.3	18
80	Controlling the Number of Proteins with Dipâ€Pen Nanolithography. Advanced Materials, 2010, 22, 352-355.	21.0	43
81	Coexistence of Two Thermally Induced Intramolecular Electron Transfer Processes in a Series of Metal Complexes [M(Catâ€Nâ€BQ)(Catâ€Nâ€BQ)]/[M(Catâ€Nâ€BQ) ₂] (M=Co, Fe, and Ni) bearing Nonâ€Innocent Catecholâ€Based Ligands: A Combined Experimental and Theoretical Study. Chemistry - A European Journal. 2010. 16. 6666-6677.	3.3	42
82	Nanoscale positioning of inorganic nanoparticles using biological ferritin arrays fabricated by dipâ€pen nanolithography. Scanning, 2010, 32, 35-41.	1.5	18
83	Effect of crystalline disorder on quantum tunneling in the single-molecule magnetMn12benzoate. Physical Review B, 2010, 81, .	3.2	17
84	Coordination polymer particles as potential drug delivery systems. Chemical Communications, 2010, 46, 4737.	4.1	224
85	Metal-Radical Chains Based on Polychlorotriphenylmethyl Radicals: Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 2010, 49, 3482-3488.	4.0	10
86	Structuration of pH-responsive fluorescent molecules on surfaces by soft lithographic techniques. Nanoscale, 2010, 2, 1781.	5.6	7
87	xmlns:mml="http://www.w3.org 1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>Mn</mml:mtext></mml:mrow><mml:mrow and<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Mn</mml:mtext></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math></mml:mrow </mml:msub></mml:mrow>	> <mml:m -><mml:m < td=""><td>n>12</td></mml:m <></mml:m 	n>12
88	molecular nanoma. Physical Review B, 2009, 80, . Particle-size dependence of magnetization relaxation inMn12crystals. Physical Review B, 2009, 79, .	3.2	42
89	Specific solvent effects on the intramolecular electron transfer reaction in a neutral ferrocene donor polychlorotriphenylmethyl acceptor radical with extended conjugation. Solid State Sciences, 2009, 11, 786-792.	3.2	11
90	Solvent effects on valence tautomerism: A comparison between the interconversion in solution and solid state. Solid State Sciences, 2009, 11, 793-800.	3.2	46

#	Article	IF	Citations
91	Metal–Organic Spheres as Functional Systems for Guest Encapsulation. Angewandte Chemie - International Edition, 2009, 48, 2325-2329.	13.8	192
92	Morphological Investigation of Mn ₁₂ Single-Molecule Magnets Adsorbed on Au(111). Langmuir, 2009, 25, 10107-10115.	3. 5	9
93	Acetylcholinesterase as an amyloid enhancing factor in PrP82-146 aggregation process. Molecular and Cellular Neurosciences, 2009, 40, 217-224.	2.2	24
94	pHâ∈Responsive Fluorescent Nanoarrays Fabricated by Directâ∈Write Parallel Dipâ∈Pen Nanolithography. Small, 2008, 4, 2131-2135.	10.0	13
95	Catechol Derivatives as Fluorescent Chemosensors for Wideâ€Range pH Detection. Chemistry - A European Journal, 2008, 14, 9754-9763.	3.3	26
96	Synthesis, Xâ€ray Structure and Reactivity of a Sterically Protected Azobisphenol Ligand: On the Quest for New Multifunctional Active Ligands. European Journal of Inorganic Chemistry, 2008, 2008, 2278-2285.	2.0	10
97	Valenceâ€∓automeric Metal–Organic Nanoparticles. Angewandte Chemie - International Edition, 2008, 47, 1857-1860.	13.8	143
98	Valence tautomerism: More actors than just electroactive ligands and metal ions. Comptes Rendus Chimie, 2008, 11, 1137-1154.	0.5	131
99	Intramolecular electron transfer in the mixed-valence [Co(3,5-DTBCat)(3,5-DTBSQ)(bpy)] complex: Beyond valence tautomerism. Inorganica Chimica Acta, 2008, 361, 3403-3409.	2.4	16
100	Magnetism and magnetic resonance studies of single-molecule magnets in polymer matrices. Inorganica Chimica Acta, 2008, 361, 3714-3717.	2.4	11
101	Magnetic behaviour of Mn12 single-molecule magnet nanospheres. Inorganica Chimica Acta, 2008, 361, 3951-3956.	2.4	6
102	Single-molecule magnet behaviour in metal–organic nanospheres generated by simple precipitation of Mn12O12 clusters. Chemical Communications, 2008, , 1202.	4.1	20
103	A hexacarboxylic open-shell building block: synthesis, structure and magnetism of a three-dimensional metalâ \in radical framework. Journal of Materials Chemistry, 2008, 18, 98-108.	6.7	30
104	Surface-Structured Molecular Sensor for the Optical Detection of Acidity. Langmuir, 2008, 24, 2963-2966.	3.5	20
105	High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution. Physical Review B, 2007, 75, .	3.2	23
106	Old materials with new tricks: multifunctional open-framework materials. Chemical Society Reviews, 2007, 36, 770.	38.1	1,037
107	Advances on the nanostructuration of magnetic molecules on surfaces: the case of single-molecule magnets (SMM). Chemical Communications, 2007, , 3699.	4.1	100
108	New insights into the thermal stability of Mn12clusters: The case of complex [Mn12O12(O2CCî€,CH)16(H2O)4]·3H2O and its thermolysis derived [Mn3(O2CCî€,CH)6(H2O)4]·2H2O com Dalton Transactions, 2007, , 2450-2456.	npl ex s	5

#	Article	lF	Citations
109	Solvent Tuning from Normal to Inverted Marcus Region of Intramolecular Electron Transfer in Ferrocene-Based Organic Radicals. Journal of the American Chemical Society, 2007, 129, 6117-6129.	13.7	87
110	First-Row Transition-Metal Complexes Based on a Carboxylate Polychlorotriphenylmethyl Radical:Â Trends in Metalâ^'Radical Exchange Interactions. Inorganic Chemistry, 2007, 46, 1627-1633.	4.0	32
111	Structural and Magnetic Modulation of a Purely Organic Open Framework by Selective Guest Inclusion. Chemistry - A European Journal, 2007, 13, 8153-8163.	3.3	41
112	Self-assembly of carboxylic substituted PTM radicals: From weak ferromagnetic interactions to robust porous magnets. Polyhedron, 2007, 26, 1934-1948.	2.2	17
113	Influence of bridge topology and torsion on the intramolecular electron transfer. Faraday Discussions, 2006, 131, 291-305.	3.2	30
114	2-D Self-assembly of the bis(phthalocyaninato)terbium(iii) single-molecule magnet studied by scanning tunnelling microscopy. Chemical Communications, 2006, , 2866-2868.	4.1	86
115	Controlled crystallization of Mn12single-molecule magnets by compressed CO2and its influence on the magnetization relaxation. Journal of Materials Chemistry, 2006, 16, 2612-2617.	6.7	16
116	A New Hexaferrocene Complex with a [M3(μ3-O)]7+Core. Inorganic Chemistry, 2006, 45, 10443-10445.	4.0	24
117	Ordered Patterning of Nanometric Rings of Single Molecule Magnets on Polymers by Lithographic Control of Demixing. Journal of Physical Chemistry B, 2006, 110, 11607-11610.	2.6	55
118	Three-Dimensional Six-Connecting Organic Building Blocks Based on Polychlorotriphenylmethyl Unitsâ€"Synthesis, Self-Assembly, and Magnetic Properties. Chemistry - A European Journal, 2006, 12, 9238-9253.	3.3	36
119	Magnetic Nanoporous Molecular Materials. , 2005, , 261-282.		0
120	Carboxylic-substituted polychlorotriphenylmethyl radicals, new organic building-blocks to design nanoporous magnetic molecular materials. Comptes Rendus Chimie, 2005, 8, 1213-1225.	0.5	18
121	Valence Tautomerism: New Challenges for Electroactive Ligands. European Journal of Inorganic Chemistry, 2005, 2005, 2957-2971.	2.0	299
122	Magnetic Information Storage on Polymers by Using Patterned Single-Molecule Magnets. Angewandte Chemie - International Edition, 2005, 44, 888-892.	13.8	134
123	Magnetic Nanoporous Coordination Polymers. ChemInform, 2005, 36, no.	0.0	0
124	Valence Tautomerism: New Challenges for Electroactive Ligands. ChemInform, 2005, 36, no.	0.0	0
125	Long-Range Ferromagnetism ofMn12Acetate Single-Molecule Magnets under a Transverse Magnetic Field. Physical Review Letters, 2005, 95, 227202.	7.8	36
126	Self-organization of Mn12 single-molecule magnets into ring structures induced by breath-figures as templates. Chemical Communications, 2005, , 5615 .	4.1	29

#	Article	IF	Citations
127	An Unusually Stable Trinuclear Manganese(II) Complex Bearing Bulk Carboxylic Radical Ligands. Inorganic Chemistry, 2005, 44, 6936-6938.	4.0	17
128	Coexistence of ferro- and antiferromagnetic interactions in a metal–organic radical-based (6,3)-helical network with large channels. Chemical Communications, 2005, , 5035.	4.1	81
129	Hydrogen-bonded self-assemblies in a polychlorotriphenylmethyl radical derivative substituted with six meta-carboxylic acid groups. Chemical Communications, 2005, , 4801.	4.1	22
130	Trihaloacetic acids: an investigation of steric and inductive ligand effects on the synthesis of [Mn12O12(O2CCX3)16(H2O)4] single-molecule magnets. New Journal of Chemistry, 2005, 29, 499-503.	2.8	11
131	Ferrocene triphenylmethyl radical donor-acceptor compounds. Towards development of multifunctional molecular switches. Arkivoc, 2005, 2005, 104-114.	0.5	7
132	Magneto-structural defects on a congested nanoscopic polyradical dendrimer. Journal of Physics and Chemistry of Solids, 2004, 65, 737-744.	4.0	4
133	A Robust Purely Organic Nanoporous Magnet. Angewandte Chemie - International Edition, 2004, 43, 1828-1832.	13.8	93
134	A Molecular Multiproperty Switching Array Based on the Redox Behavior of a Ferrocenyl Polychlorotriphenylmethyl Radical. Angewandte Chemie - International Edition, 2004, 43, 5266-5268.	13.8	133
135	Supramolecular Photomagnetic Materials: Photoinduced Dimerization of Ferrocene-Based Polychlorotriphenylmethyl Radicals. Chemistry - A European Journal, 2004, 10, 603-616.	3.3	22
136	Magneto-Structural Characterization of Metallocene-Bridged Nitronyl Nitroxide Diradicals by X-Ray, Magnetic Measurements, Solid-state NMR Spectroscopy, and Ab Initio Calculations. Chemistry - A European Journal, 2004, 10, 1355-1365.	3.3	22
137	Synthesis, X-ray structure, EPR and optical properties of a ferrocene substituted polychlorotriphenylmethyl radical. Journal of Physics and Chemistry of Solids, 2004, 65, 753-758.	4.0	16
138	EPR characterization of a nanoporous metal-organic framework exhibiting a bulk magnetic ordering. Journal of Physics and Chemistry of Solids, 2004, 65, 819-824.	4.0	7
139	Synthesis, X-ray structure and magnetic properties of the quinone cobalt complexes [CollI(3,5-DTBSQ)(bpy)2]x2 (xâ^'=BF4â^', ClO4â^'). Journal of Physics and Chemistry of Solids, 2004, 65, 831-837.	4.0	17
140	A new (63) \hat{A} ·(69.81) non-interpenetrated paramagnetic network with helical nanochannels based on a tricarboxylic perchlorotriphenylmethyl radical. Chemical Communications, 2004, , 1164-1165.	4.1	42
141	Synthesis, structural and magnetic properties of a series of copper(ii) complexes containing a monocarboxylated perchlorotriphenylmethyl radical as a coordinating open-shell ligand. Dalton Transactions, 2004, , 1073.	3.3	42
142	Open-shell channel-like salts formed by the supramolecular assembly of a tricarboxylated perchlorotriphenylmethyl radical and a [Co(bpy)3]2+ cation. CrystEngComm, 2004, 6, 573.	2.6	12
143	A Robust Nanocontainer Based on a Pure Organic Free Radical. Journal of the American Chemical Society, 2004, 126, 730-731.	13.7	7 5
144	Magnetism of isolatedMn12single-molecule magnets detected by magnetic circular dichroism: Observation of spin tunneling with a magneto-optical technique. Physical Review B, 2004, 69, .	3.2	36

#	Article	IF	Citations
145	Chiral, single-molecule nanomagnets: synthesis, magnetic characterization and natural and magnetic circular dichroism. Journal of Materials Chemistry, 2004, 14, 2455-2460.	6.7	48
146	Magnetic nanoporous coordination polymers. Journal of Materials Chemistry, 2004, 14, 2713.	6.7	461
147	Synthesis and Characterization of a [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4] Complex Bearing Paramagnetic Carboxylate Ligands. Use of a Modified Acid Replacement Synthetic Approach. Monatshefte F \tilde{A}^{1} /4r Chemie, 2003, 134, 265-276.	1.8	20
148	Isolated Single-Molecule Magnets on the Surface of a Polymeric Thin Film. Advanced Materials, 2003, 15, 42-45.	21.0	85
149	Synthesis, X-ray structure and characterization of a novel [fc(IMH)2H]+[Co(hfac)3]â^' salt with hydrogen bonded ferrocenyl bis(imino hydroxylamino) building blocks. Journal of Organometallic Chemistry, 2003, 684, 44-49.	1.8	5
150	Nonlinear optical properties of open-shell polychlorotriphenylmethyl radicals. Polyhedron, 2003, 22, 1851-1856.	2.2	20
151	Examining the thermolysis reactions of nanoscopic Mn 12 single molecule magnets. Polyhedron, 2003, 22, 1951-1955.	2.2	15
152	Synthesis, X-ray structure and magnetic properties of a unusual transition Co(II) complex with polychlorotriphenylmethyl radicals. Polyhedron, 2003, 22, 1929-1934.	2.2	8
153	Synthesis and characterization of a new chiral nanomagnet. Polyhedron, 2003, 22, 2355-2358.	2.2	18
154	A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nature Materials, 2003, 2, 190-195.	27.5	633
155	A New Valence Tautomerism Example in an Electroactive Ferrocene Substituted Triphenylmethyl Radical. Journal of the American Chemical Society, 2003, 125, 1462-1463.	13.7	95
156	Single-molecule magnets on a polymeric thin film as magnetic quantum bits. , 2003, 5118, 594.		0
157	Intramolecular Electron Transfer in Organic Molecules. Molecular Nanowires. , 2002, , 125-138.		0
158	Characterisation of nanoscopic [Mn12O12(O2CR)16(H2O)4] single-molecule magnets: physicochemical properties and LDI- and MALDI-TOF mass spectrometryLDI- and MALDI-TOF are acronyms for Laser Desorption/Ionisation and Matrix Assisted Laser Desorption/Ionisation Time-of-Flight Journal of Materials Chemistry, 2002, 12, 1152-1161.	6.7	44
159	A very bulky carboxylic perchlorotriphenylmethyl radical as a novel ligand for transition metal complexes. A new spin frustrated metal system. Chemical Communications, 2002, , 2958-2959.	4.1	32
160	Spontaneous resolution and absolute configuration of a coordination polymer formed by MnII and a ferrocene-based bisnitronyl nitroxide radicalElectronic supplementary information available: Experimental procedure. See http://www.rsc.org/suppdata/cc/b2/b205722k/. Chemical Communications, 2002, , 2342-2343.	4.1	36
161	Radical para-Benzoic Acid Derivatives: Transmission of Ferromagnetic Interactions through Hydrogen Bonds at Long Distances. Chemistry - A European Journal, 2002, 8, 3635.	3.3	70
162	A Thermally and Electrochemically Switchable Molecular Array Based on a Manganese Schiff Base Complex. Advanced Functional Materials, 2002, 12, 347.	14.9	27

#	Article	IF	Citations
163	Nonlinear optical properties of polychlorotriphenylmethyl radicals: towards the design of `super-octupolar' molecules. Chemical Physics Letters, 2002, 363, 245-251.	2.6	30
164	Synthesis and Characterization of a [Mn12 O12(O2CR)16(H2O)4] Complex Bearing Paramagnetic Carboxylate Ligands. Use of a Modified Acid Replacement Synthetic Approach., 2002, , 149-160.		1
165	Formation of a biradical species from a monoradical with a photo- and thermo isomerizable imine group. Synthetic Metals, 2001, 121, 1804-1805.	3.9	0
166	Nonlinear optical properties of a new stable ferrocenyl Schiff-base polychlorotriphenylmethyl radical. Synthetic Metals, 2001, 121, 1834-1835.	3.9	11
167	Synthesis and Characterization of a Nanoscopic Molecular-Scale Wire Bearing Terminal Redox-Active Polychlorotriphenylmethyl Radicals. Nano Letters, 2001, 1, 117-120.	9.1	13
168	Synthesis, Crystal Structure, and Spectroscopic and Magnetic Properties of a New [Co4O(OOCNC9H18)6] Cluster. Organometallics, 2001, 20, 568-571.	2.3	20
169	EPR study of the trans and cis isomers of a ferrocenyl Schiff-based polychlorotriphenylmethyl radical. Polyhedron, 2001, 20, 1643-1646.	2.2	2
170	Ferrocene as a ferromagnetic coupler. Synthesis and characterization of a ferrocene bridged polychlorotriphenylmethyl diradical. Journal of Organometallic Chemistry, 2001, 637-639, 251-257.	1.8	25
171	Ferrocene substituted nitronyl nitroxide and imino nitroxide radicals. Synthesis, X-ray structure and magnetic properties. Journal of Organometallic Chemistry, 2001, 637-639, 507-513.	1.8	14
172	Influence of Topology on the Long-Range Electron-Transfer Phenomenon. Chemistry - A European Journal, 2001, 7, 240-250.	3.3	98
173	A New Photomagnetic Molecular System Based on Photoinduced Self-Assembly of Radicals. Angewandte Chemie - International Edition, 2001, 40, 919-922.	13.8	40
174	Intramolecular electronic-transfer phenomena in organic mixed-valence compounds., 2001,, 303-327.		7
175	Influence of Topology on the Long-Range Electron-Transfer Phenomenon. Chemistry - A European Journal, 2001, 7, 240-250.	3.3	5
176	Spin Frustration in a Dimeric MnII Complex with a Metallocene-Substitutedα-Nitronyl Nitroxide Radical. Angewandte Chemie - International Edition, 2000, 39, 3688-3691.	13.8	24
177	Single-Molecule Magnets. Molecular Crystals and Liquid Crystals, 2000, 343, 17-27.	0.3	23
178	Redox-Tunable Valence Tautomerism in a Cobalt Schiff Base Complex. Inorganic Chemistry, 2000, 39, 617-619.	4.0	77
179	Influence of the Molecular Surface Characteristics of the Diastereoisomers of a Quartet Molecule on their Physicochemical Properties: A Linear Solvation Free-Energy Study. Chemistry - A European Journal, 1999, 5, 3533-3548.	3.3	24
180	Ferromagnetic interactions between triphenylmethyl radicals through an organometallic coupler. Chemical Communications, 1999, , 579-580.	4.1	34

#	Article	IF	CITATIONS
181	Crystal Structures of Chiral Diastereoisomers of a Carbon-Based High-Spin Molecule. Angewandte Chemie - International Edition, 1998, 37, 330-333.	13.8	33
182	Crystal Structures of Chiral Diastereoisomers of a Carbon-Based High-Spin Molecule. Angewandte Chemie - International Edition, 1998, 37, 330-333.	13.8	1
183	Drawbacks Arising from the High Steric Congestion in the Synthesis of New Dendritic Polyalkylaromatic Polyradicals. Journal of Organic Chemistry, 1997, 62, 9009-9017.	3.2	24