
Zhiming Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/567142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of dopant size and electron affinity on the electrical conductivity and thermoelectric properties of a series of conjugated polymers. Journal of Materials Chemistry A, 2018, 6, 16495-16505.	10.3	112
2	Increased power factors of organic–inorganic nanocomposite thermoelectric materials and the role of energy filtering. Journal of Materials Chemistry A, 2017, 5, 15891-15900.	10.3	95
3	Strategies to Enable Reversible Magnesium Electrochemistry: From Electrolytes to Artificial Solid–Electrolyte Interphases. Angewandte Chemie - International Edition, 2021, 60, 11036-11047.	13.8	81
4	n-type charge transport in heavily p-doped polymers. Nature Materials, 2021, 20, 518-524.	27.5	66
5	Enhanced Near-Infrared-to-Visible Upconversion by Synthetic Control of PbS Nanocrystal Triplet Photosensitizers. Journal of the American Chemical Society, 2019, 141, 9769-9772.	13.7	50
6	Designing ï€-conjugated polymer blends with improved thermoelectric power factors. Journal of Materials Chemistry A, 2019, 7, 19774-19785.	10.3	34
7	Dual function organic active materials for nonaqueous redox flow batteries. Materials Advances, 2021, 2, 1390-1401.	5.4	33
8	Surface Modification of Silver Nanowires for Morphology and Processing Control in Composite Transparent Electrodes. ACS Applied Materials & amp; Interfaces, 2015, 7, 21652-21656.	8.0	26
9	Quantifying Environmental Effects on the Solution and Solid-State Stability of a Phenothiazine Radical Cation. Chemistry of Materials, 2020, 32, 3007-3017.	6.7	26
10	Comparison of Separators vs Membranes in Nonaqueous Redox Flow Battery Electrolytes Containing Small Molecule Active Materials. ACS Applied Energy Materials, 2021, 4, 5443-5451.	5.1	20
11	Processing Dependent Influence of the Hole Transport Layer Ionization Energy on Methylammonium Lead Iodide Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2018, 10, 15548-15557.	8.0	17
12	Comparative Study of Organic Radical Cation Stability and Coulombic Efficiency for Nonaqueous Redox Flow Battery Applications. Journal of Physical Chemistry C, 2021, 125, 14170-14179.	3.1	14
13	Strategies to Enable Reversible Magnesium Electrochemistry: From Electrolytes to Artificial Solid–Electrolyte Interphases. Angewandte Chemie, 2021, 133, 11136-11147.	2.0	10
14	Surface Fluorination for Controlling the PbS Quantum Dot Bandgap and Band Offset. Chemistry of Materials, 2018, 30, 4943-4948.	6.7	6
15	Spin-coated fluorinated PbS QD superlattice thin film with high hole mobility. Nanoscale, 2020, 12, 11174-11181.	5.6	5
16	Reimagining Li-Ion Electrode Fabrication Via Cold Plasma Deposition. ECS Meeting Abstracts, 2021, MA2021-01, 176-176.	0.0	0