Stefanie PA¶ggeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5670451/publications.pdf

Version: 2024-02-01

88 papers 11,622 citations

38 h-index 81 g-index

92 all docs 92 docs citations

times ranked

92

22918 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordaria macrospora, a Model Organism for Fungal Morphogenesis. PLoS Genetics, 2010, 6, e1000891.	3. 5	169
4	Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nature Communications, 2016, 7, 12662.	12.8	156
5	Insights on the Evolution of Mycoparasitism from the Genome of Clonostachys rosea. Genome Biology and Evolution, 2015, 7, 465-480.	2.5	150
6	Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene, 2006, 378, 1-10.	2.2	128
7	Carbonic anhydrases in fungi. Microbiology (United Kingdom), 2010, 156, 23-29.	1.8	122
8	The pro1+ Gene From Sordaria macrospora Encodes a C6 Zinc Finger Transcription Factor Required for Fruiting Body Development. Genetics, 1999, 152, 191-199.	2.9	122
9	Spo76p Is a Conserved Chromosome Morphogenesis Protein that Links the Mitotic and Meiotic Programs. Cell, 1999, 98, 261-271.	28.9	120
10	Sexual reproduction and mating-type–mediated strain development in the penicillin-producing fungus ⟨i⟩Penicillium chrysogenum⟨ i⟩. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1476-1481.	7.1	116
11	Inteins, valuable genetic elements in molecular biology and biotechnology. Applied Microbiology and Biotechnology, 2010, 87, 479-489.	3.6	115
12	Phylogenetic relationships between mating-type sequences from homothallic and heterothallic ascomycetes. Current Genetics, 1999, 36, 222-231.	1.7	113
13	Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Current Genetics, 2002, 42, 153-160.	1.7	107
14	Mating-Type Genes From the Homothallic Fungus <i>Sordaria macrospora</i> Are Functionally Expressed in a Heterothallic Ascomycete. Genetics, 1997, 147, 567-580.	2.9	106
15	A WD40 Repeat Protein Regulates Fungal Cell Differentiation and Can Be Replaced Functionally by the Mammalian Homologue Striatin. Eukaryotic Cell, 2004, 3, 232-240.	3.4	102
16	Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi. Current Genetics, 2003, 43, 54-61.	1.7	101
17	A homologue of the human STRIPAK complex controls sexual development in fungi. Molecular Microbiology, 2012, 84, 310-323.	2.5	94
18	The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution. PLoS Genetics, 2013, 9, e1003820.	3.5	85

#	Article	IF	Citations
19	Pheromones and Pheromone Receptors Are Required for Proper Sexual Development in the Homothallic Ascomycete Sordaria macrospora. Genetics, 2006, 172, 1521-1533.	2.9	76
20	Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene, 2001, 280, 9-17.	2.2	75
21	Self-eating to grow and kill: autophagy in filamentous ascomycetes. Applied Microbiology and Biotechnology, 2013, 97, 9277-9290.	3.6	74
22	Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora. Current Genetics, 2000, 37, 403-411.	1.7	63
23	Eighty Years after Its Discovery, Fleming's <i>Penicillium</i> Strain Discloses the Secret of Its Sex. Eukaryotic Cell, 2008, 7, 465-470.	3.4	63
24	A STE12 homologue of the homothallic ascomyceteSordaria macrosporainteracts with the MADS box protein MCM1 and is required for ascosporogenesis. Molecular Microbiology, 2006, 62, 853-868.	2.5	62
25	Functional analysis of the C6 zinc finger gene pro1 involved in fungal sexual development. Fungal Genetics and Biology, 2002, 36, 107-116.	2.1	61
26	Coupling meiotic chromosome axis integrity to recombination. Genes and Development, 2008, 22, 796-809.	5.9	60
27	Evolution of carbonic anhydrases in fungi. Current Genetics, 2009, 55, 211-222.	1.7	60
28	Autophagy genes <i><i>Smatg8</i></i> <add>i><i>Smatg4i>are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete<i><i>Sordaria macrospora</i></i></i></add>	9.1	58
29	Phylogenetic relationships between members of the crucifer pathogenic Leptosphaeria maculans species complex as shown by mating type (MAT1-2), actin, and \hat{l}^2 -tubulin sequences. Molecular Phylogenetics and Evolution, 2005, 37, 541-557.	2.7	54
30	The Filamentous Fungus Sordaria macrospora as a Genetic Model to Study Fruiting Body Development. Advances in Genetics, 2014, 87, 199-244.	1.8	54
31	A MADS Box Protein Interacts with a Mating-Type Protein and Is Required for Fruiting Body Development in the Homothallic Ascomycete Sordaria macrospora. Eukaryotic Cell, 2006, 5, 1043-1056.	3.4	53
32	The phocein homologue SmMOB3 is essential for vegetative cell fusion and sexual development in the filamentous ascomycete Sordaria macrospora. Current Genetics, 2011, 57, 133-149.	1.7	53
33	Three α-Subunits of Heterotrimeric G Proteins and an Adenylyl Cyclase Have Distinct Roles in Fruiting Body Development in the Homothallic Fungus Sordaria macrospora. Genetics, 2008, 180, 191-206.	2.9	52
34	Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation. Fungal Genetics and Biology, 2004, 41, 285-292.	2.1	51
35	An efficient procedure to isolate fungal genes from an indexed cosmid library. Journal of Microbiological Methods, 1997, 29, 49-61.	1.6	47
36	Cryptic sex in fungi. Fungal Biology Reviews, 2009, 23, 86-90.	4.7	47

#	Article	IF	Citations
37	Influence of farnesol on the morphogenesis of <i>Aspergillus niger</i> . Journal of Basic Microbiology, 2008, 48, 99-103.	3.3	44
38	Functional Characterization of an \hat{l} ±-Factor-Like Sordaria macrospora Peptide Pheromone and Analysis of Its Interaction with Its Cognate Receptor in Saccharomyces cerevisiae. Eukaryotic Cell, 2005, 4, 661-672.	3.4	40
39	Crystal structures of two tetrameric βâ€carbonic anhydrases from the filamentous ascomycete <i>SordariaÂmacrospora</i> . FEBS Journal, 2014, 281, 1759-1772.	4.7	40
40	A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genetics and Biology, 2008, 45, 1458-1469.	2.1	38
41	\hat{l}^2 -Carbonic Anhydrases Play a Role in Fruiting Body Development and Ascospore Germination in the Filamentous Fungus Sordaria macrospora. PLoS ONE, 2009, 4, e5177.	2.5	38
42	De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster. PLoS ONE, 2015, 10, e0140398.	2.5	34
43	Sordaria macrospora: 25Âyears as a model organism for studying the molecular mechanisms of fruiting body development. Applied Microbiology and Biotechnology, 2020, 104, 3691-3704.	3.6	33
44	Interaction between mating-type proteins from the homothallic fungus Sordaria macrospora. Current Genetics, 2002, 41, 150-158.	1.7	31
45	SmATG7 is required for viability in the homothallic ascomycete Sordaria macrospora. Fungal Genetics and Biology, 2009, 46, 531-542.	2.1	30
46	Asexual Cephalosporin C Producer <i>Acremonium chrysogenum</i> Carries a Functional Mating Type Locus. Applied and Environmental Microbiology, 2008, 74, 6006-6016.	3.1	28
47	Sordaria macrospora, a Model System for Fungal Development. , 2009, , 17-39.		28
48	Germinal Center Kinases SmKIN3 and SmKIN24 Are Associated with the Sordaria macrospora Striatin-Interacting Phosphatase and Kinase (STRIPAK) Complex. PLoS ONE, 2015, 10, e0139163.	2.5	25
49	Genome Sequencing and analyses of Two Marine Fungi from the North Sea Unraveled a Plethora of Novel Biosynthetic Gene Clusters. Scientific Reports, 2018, 8, 10187.	3.3	25
50	Visualization of peroxisomes via SKL-tagged DsRed protein in Sordaria macrospora. Fungal Genetics Reports, 2008, 55, 9-12.	0.6	25
51	Evolution of Multicopper Oxidase Genes in Coprophilous and Non-Coprophilous Members of the Order Sordariales. Current Genomics, 2011, 12, 95-103.	1.6	23
52	bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg4 and is required for fruiting-body development and vegetative growth in Sordaria macrospora. Fungal Genetics and Biology, 2013, 61, 50-60.	2.1	23
53	Molecular organization of the mating-type loci in the homothallic Ascomycete Eupenicillium crustaceum. Fungal Biology, 2011, 115, 615-624.	2.5	22
54	Protein splicing of PRP8 mini-inteins from species of the genus Penicillium. Applied Microbiology and Biotechnology, 2006, 72, 959-967.	3.6	21

#	Article	IF	CITATIONS
55	A Hippo Pathway-Related GCK Controls Both Sexual and Vegetative Developmental Processes in the Fungus <i>Sordaria macrospora</i> <i i=""> </i> Fungus <i>Sordaria macrospora</i>	2.9	21
56	Minimization of a eukaryotic mini-intein. Biochemical and Biophysical Research Communications, 2008, 366, 239-243.	2.1	20
57	A novel STRIPAK complex component mediates hyphal fusion and fruitingâ€body development in filamentous fungi. Molecular Microbiology, 2018, 110, 513-532.	2.5	19
58	NBR1 is involved in selective pexophagy in filamentous ascomycetes and can be functionally replaced by a tagged version of its human homolog. Autophagy, 2019, 15, 78-97.	9.1	18
59	The filamentous ascomycete <scp><i>S</i></scp> <i>ordaria macrospora</i> can survive in ambient air without carbonic anhydrases. Molecular Microbiology, 2014, 92, 931-944.	2.5	15
60	Specialized infection strategies of falcate and oval conidia of Colletotrichum graminicola. Fungal Genetics and Biology, 2019, 133, 103276.	2.1	15
61	Trans-splicing of an artificially split fungal mini-intein. Biochemical and Biophysical Research Communications, 2007, 355, 830-834.	2.1	14
62	A matter of structure: structural comparison of fungal carbonic anhydrases. Applied Microbiology and Biotechnology, 2014, 98, 8433-8441.	3.6	14
63	Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes. Genetics, 2019, 213, 1545-1563.	2.9	14
64	Autophagic kinases SmVPS34 and SmVPS15 are required for viability in the filamentous ascomycete Sordaria macrospora. Microbiological Research, 2014, 169, 128-138.	5.3	12
65	Deletion of <scp><i>S</i></scp> <i>mgpi1</i> encoding a <scp>GPI</scp> â€anchored protein suppresses sterility of the <scp>STRIPAK</scp> mutant Δ <scp>S</scp> mmob3 in the filamentous ascomycete <scp><i>S</i>/scp><i>S/i>, 876-697.</i></scp>	2.5	11
66	Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora. PLoS ONE, 2016, 11, e0157960.	2.5	10
67	Sulfonamide inhibition studies of two β-carbonic anhydrases from the ascomycete fungus <i>Sordaria macrospora,</i> CAS1 and CAS2. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 390-396.	5.2	10
68	The small serine-threonine protein SIP2 interacts with STE12 and is involved in ascospore germination in Sordaria macrospora. European Journal of Cell Biology, 2010, 89, 873-887.	3.6	9
69	5 Function and Evolution of Pheromones and Pheromone Receptors in Filamentous Ascomycetes. , 2011, , 73-96.		9
70	Efficient Synthesis of a 72-kDa Mitochondrial Polypeptide Using the Yeast Ty Expression System. Biochemical and Biophysical Research Communications, 1996, 219, 890-899.	2.1	7
71	Inteins and introns within the <i> prp8</i> â€gene of four <i>Eupenicillium</i> species. Journal of Basic Microbiology, 2009, 49, 52-57.	3.3	7
72	Secondary metabolites of HÃ 1 /4lle cells mediate protection of fungal reproductive and overwintering structures against fungivorous animals. ELife, 2021, 10, .	6.0	7

#	Article	IF	CITATIONS
73	Anion Inhibition Studies of the \hat{l}^2 -Class Carbonic Anhydrase CAS3 from the Filamentous Ascomycete Sordaria macrospora. Metabolites, 2020, 10, 93.	2.9	6
74	The Glyoxysomal Protease LON2 Is Involved in Fruiting-Body Development, Ascosporogenesis and Stress Resistance in Sordaria macrospora. Journal of Fungi (Basel, Switzerland), 2021, 7, 82.	3.5	6
75	A 20â€kb lineageâ€specific genomic region tames virulence in pathogenic amphidiploid Verticillium longisporum. Molecular Plant Pathology, 2021, 22, 939-953.	4.2	6
76	MAT and Its Role in the Homothallic Ascomycete Sordaria macrospora., 0,, 171-188.		6
77	Tracking Fungal Growth: Establishment of Arp1 as a Marker for Polarity Establishment and Active Hyphal Growth in Filamentous Ascomycetes. Journal of Fungi (Basel, Switzerland), 2021, 7, 580.	3.5	5
78	Sulfonamide Inhibition Studies of the \hat{l}^2 -Class Carbonic Anhydrase CAS3 from the Filamentous Ascomycete Sordaria macrospora. Molecules, 2020, 25, 1036.	3.8	4
79	Analysis of the Putative Nucleoporin POM33 in the Filamentous Fungus Sordaria macrospora. Journal of Fungi (Basel, Switzerland), 2021, 7, 682.	3.5	4
80	Fungal Intervening Sequences. Applied Mycology and Biotechnology, 2005, , 71-92.	0.3	3
81	Fungal Carbonic Anhydrases and Their Inhibition. Topics in Medicinal Chemistry, 2016, , 95-110.	0.8	2
82	Fungal Inteins: Distribution, Evolution, and Applications. , 2018, , 57-85.		2
83	A 3D Printed Device for Easy and Reliable Quantification of Fungal Chemotropic Growth. Frontiers in Microbiology, 2020, 11, 584525.	3.5	2
84	Establishment of the monomeric yellow-green fluorescent protein mNeonGreen for life cell imaging in mycelial fungi. AMB Express, 2020, 10, 222.	3.0	2
85	Inteins – Selfish Elements in Fungal Genomes. , 2009, , 41-61.		1
86	Inteins and Their Use in Protein Synthesis with Fungi. Fungal Biology, 2016, , 289-307.	0.6	1
87	The tetraspanin TSP3 of Neurospora crassa is a vacuolar membrane protein and shares characteristics with IDI proteins. Mycologia, 2016, 108, 581-589.	1.9	0
88	The vacuolar morphology protein VAC14 plays an important role in sexual development in the filamentous ascomycete Sordaria macrospora. Current Genetics, 2022, 68, 407-427.	1.7	0