Frank Sargent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5669935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogen production in the presence of oxygen by Escherichia coli K-12. Microbiology (United) Tj ETQq1 1 0.7843	14.rgBT /0 1.8	Oyerlock 10
2	A paean to the ineffable Marjory Stephenson. Microbiology (United Kingdom), 2022, 168, .	1.8	3
3	A holin/peptidoglycan hydrolaseâ€dependent protein secretion system. Molecular Microbiology, 2021, 115, 345-355.	2.5	58
4	Harnessing Escherichia coli for Bio-Based Production of Formate under Pressurized H ₂ and CO ₂ Gases. Applied and Environmental Microbiology, 2021, 87, e0029921.	3.1	12
5	Activation of a [NiFe]-hydrogenase-4 isoenzyme by maturation proteases. Microbiology (United) Tj ETQq1 1 0.784	314 rgBT	/gverlock
6	The plant pathogen <i>Pectobacterium atrosepticum</i> contains a functional formate hydrogenlyaseâ€⊋ complex. Molecular Microbiology, 2019, 112, 1440-1452.	2.5	8
7	Formate hydrogenlyase. Advances in Microbial Physiology, 2019, 74, 465-486.	2.4	21
8	Controlling and co-ordinating chitinase secretion in a Serratia marcescens population. Microbiology (United Kingdom), 2019, 165, 1233-1244.	1.8	8
9	Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli. Current Biology, 2018, 28, 140-145.e2.	3.9	59
10	Structure and activity of ChiX: a peptidoglycan hydrolase required for chitinase secretion by <i>Serratia marcescens</i> . Biochemical Journal, 2018, 475, 415-428.	3.7	15
11	The structure of hydrogenase-2 from <i>Escherichia coli</i> : implications for H2-driven proton pumping. Biochemical Journal, 2018, 475, 1353-1370.	3.7	46
12	Identification of a stable complex between a [NiFe]â€hydrogenase catalytic subunit and its maturation protease. FEBS Letters, 2017, 591, 338-347.	2.8	5
13	The dual-function chaperone HycH improves assembly of the formate hydrogenlyase complex. Biochemical Journal, 2017, 474, 2937-2950.	3.7	8
14	Design and characterisation of synthetic operons for biohydrogen technology. Archives of Microbiology, 2017, 199, 495-503.	2.2	20
15	Expanding the substrates for a bacterial hydrogenlyase reaction. Microbiology (United Kingdom), 2017, 163, 649-653.	1.8	12
16	Exploring the directionality of <i>Escherichia coli</i> formate hydrogenlyase: a membraneâ€bound enzyme capable of fixing carbon dioxide to organic acid. MicrobiologyOpen, 2016, 5, 721-737.	3.0	60
17	Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5: probing the roles of system-specific accessory proteins. Journal of Biological Inorganic Chemistry, 2016, 21, 865-873.	2.6	4
18	Hydrogen activation by [NiFe]-hydrogenases. Biochemical Society Transactions, 2016, 44, 863-868.	3.4	18

#	Article	IF	CITATIONS
19	The Model [NiFe]-Hydrogenases of Escherichia coli. Advances in Microbial Physiology, 2016, 68, 433-507.	2.4	97
20	How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure. Journal of Biological Inorganic Chemistry, 2016, 21, 121-134.	2.6	26
21	Mechanism of hydrogen activation by [NiFe] hydrogenases. Nature Chemical Biology, 2016, 12, 46-50.	8.0	102
22	A Novel Aerobic Mechanism for Reductive Palladium Biomineralization and Recovery by <i>Escherichia coli</i> . Geomicrobiology Journal, 2016, 33, 230-236.	2.0	23
23	Biosynthesis of selenate reductase in Salmonella enterica: critical roles for the signal peptide and DmsD. Microbiology (United Kingdom), 2016, 162, 2136-2146.	1.8	9
24	Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli. Biotechnology Reports (Amsterdam, Netherlands), 2015, 8, 94-104.	4.4	8
25	SlyD-dependent nickel delivery limits maturation of [NiFe]-hydrogenases in late-stationary phase Escherichia coli cells. Metallomics, 2015, 7, 683-690.	2.4	17
26	Dissection and engineering of the <i>Escherichia coli</i> formate hydrogenlyase complex. FEBS Letters, 2015, 589, 3141-3147.	2.8	24
27	Physiology and Bioenergetics of [NiFe]-Hydrogenase 2-Catalyzed H ₂ -Consuming and H ₂ -Producing Reactions in Escherichia coli. Journal of Bacteriology, 2015, 197, 296-306.	2.2	60
28	How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase. Biochemical Journal, 2014, 458, 449-458.	3.7	34
29	A holin and an endopeptidase are essential for chitinolytic protein secretion in <i>Serratia marcescens</i> . Journal of Cell Biology, 2014, 207, 615-626.	5.2	47
30	Bacterial formate hydrogenlyase complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3948-56.	7.1	209
31	Characterization of a periplasmic nitrate reductase in complex with its biosynthetic chaperone. FEBS Journal, 2014, 281, 246-260.	4.7	11
32	How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6606-6611.	7.1	75
33	Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient, reversible hydrogen producer. Energy and Environmental Science, 2014, 7, 1426-1433.	30.8	61
34	Signal peptide etiquette during assembly of a complex respiratory enzyme. Molecular Microbiology, 2013, 90, 400-414.	2.5	27
35	A regulatory domain controls the transport activity of a twinâ€arginine signal peptide. FEBS Letters, 2013, 587, 3365-3370.	2.8	4
36	Crystal Structure of the O 2 -Tolerant Membrane-Bound Hydrogenase 1 from Escherichia coli in Complex with Its Cognate Cytochrome b. Structure, 2013, 21, 184-190.	3.3	93

#	Article	IF	CITATIONS
37	Principles of Sustained Enzymatic Hydrogen Oxidation in the Presence of Oxygen – The Crucial Influence of High Potential Fe–S Clusters in the Electron Relay of [NiFe]-Hydrogenases. Journal of the American Chemical Society, 2013, 135, 2694-2707.	13.7	91
38	A synthetic system for expression of components of a bacterial microcompartment. Microbiology (United Kingdom), 2013, 159, 2427-2436.	1.8	26
39	Characterization of a pre-export enzyme–chaperone complex on the twin-arginine transport pathway. Biochemical Journal, 2013, 452, 57-66.	3.7	16
40	Conserved Signal Peptide Recognition Systems across the Prokaryotic Domains. Biochemistry, 2012, 51, 1678-1686.	2.5	25
41	Zymographic differentiation of [NiFe]-Hydrogenases 1, 2 and 3 of Escherichia coli K-12. BMC Microbiology, 2012, 12, 134.	3.3	40
42	Analysis of hydrogenase 1 levels reveals an intimate link between carbon and hydrogen metabolism in Escherichia coli K-12. Microbiology (United Kingdom), 2012, 158, 856-868.	1.8	18
43	Overlapping transport and chaperoneâ€binding functions within a bacterial twinâ€arginine signal peptide. Molecular Microbiology, 2012, 83, 1254-1267.	2.5	16
44	The hows and whys of aerobic H2 metabolism. Current Opinion in Chemical Biology, 2012, 16, 26-34.	6.1	63
45	How <i>Salmonella</i> oxidises H ₂ under aerobic conditions. FEBS Letters, 2012, 586, 536-544.	2.8	34
46	Characterisation of the membrane-extrinsic domain of the TatB component of the twin arginine protein translocase. FEBS Letters, 2011, 585, 478-484.	2.8	19
47	Oxygen-Tolerant [NiFe]-Hydrogenases: The Individual and Collective Importance of Supernumerary Cysteines at the Proximal Fe-S Cluster. Journal of the American Chemical Society, 2011, 133, 16881-16892.	13.7	118
48	Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron–sulfur cluster-containing small subunit. Archives of Microbiology, 2011, 193, 893-903.	2.2	51
49	The Tat Protein Export Pathway. EcoSal Plus, 2010, 4, .	5.4	26
50	Intrinsic GTPase activity of a bacterial twinâ€ e rginine translocation proofreading chaperone induced by domain swapping. FEBS Journal, 2010, 277, 511-525.	4.7	19
51	How Escherichia coli Is Equipped to Oxidize Hydrogen under Different Redox Conditions. Journal of Biological Chemistry, 2010, 285, 3928-3938.	3.4	204
52	Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology (United Kingdom), 2010, 156, 2630-2640.	1.8	197
53	Analysis of Tat Targeting Function and Twin-Arginine Signal Peptide Activity in Escherichia coli. Methods in Molecular Biology, 2010, 619, 191-216.	0.9	19
54	Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains. Microbiology (United Kingdom), 2009, 155, 3992-4004.	1.8	36

#	Article	IF	CITATIONS
55	Featuring… Frank Sargent. FEBS Letters, 2009, 583, 1654-1655.	2.8	Ο
56	A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12. Archives of Microbiology, 2009, 191, 519-528.	2.2	55
57	Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB. Archives of Microbiology, 2009, 191, 919-925.	2.2	60
58	Waterâ^ Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets. Journal of the American Chemical Society, 2009, 131, 14154-14155.	13.7	55
59	The Escherichia coli Cell Division Protein and Model Tat Substrate Sufl (FtsP) Localizes to the Septal Ring and Has a Multicopper Oxidase-Like Structure. Journal of Molecular Biology, 2009, 386, 504-519.	4.2	54
60	Escherichia coli tat mutant strains are able to transport maltose in the absence of an active malE gene. Archives of Microbiology, 2008, 189, 597-604.	2.2	9
61	Biosynthesis of the respiratory formate dehydrogenases from EscherichiaÂcoli: characterization of the FdhE protein. Archives of Microbiology, 2008, 190, 685-696.	2.2	30
62	Dissecting the roles of <i>Escherichia coli</i> hydrogenases in biohydrogen production. FEMS Microbiology Letters, 2008, 278, 48-55.	1.8	114
63	Features of a twinâ€arginine signal peptide required for recognition by a Tat proofreading chaperone. FEBS Letters, 2008, 582, 3979-3984.	2.8	31
64	Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology (United Kingdom), 2007, 153, 633-651.	1.8	68
65	Structural diversity in twin-arginine signal peptide-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15641-15646.	7.1	71
66	TatBC, TatB, and TatC form structurally autonomous units within the twin arginine protein transport system of <i>Escherichia coli</i> . FEBS Letters, 2007, 581, 4091-4097.	2.8	50
67	Look on the positive side! The orientation, identification and bioenergetics of â€Â~Archaeal' membrane-bound nitrate reductases. FEMS Microbiology Letters, 2007, 276, 129-139.	1.8	107
68	Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. FEMS Microbiology Letters, 2006, 254, 198-207.	1.8	82
69	Inactivation of theEscherichia coliK-12 twin-arginine translocation system promotes increased hydrogen production. FEMS Microbiology Letters, 2006, 262, 135-137.	1.8	42
70	Subunit composition and in vivo substrate-binding characteristics of Escherichia coli Tat protein complexes expressed at native levels. FEBS Journal, 2006, 273, 5656-5668.	4.7	48
71	Signal peptide–chaperone interactions on the twin-arginine protein transport pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8460-8465.	7.1	84
72	Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Current Opinion in Microbiology, 2005, 8, 174-181.	5.1	199

#	Article	IF	CITATIONS
73	Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends in Microbiology, 2005, 13, 175-180.	7.7	188
74	Coordinating assembly and export of complex bacterial proteins. EMBO Journal, 2004, 23, 3962-3972.	7.8	186
75	Light traffic: photo-crosslinking a novel transport system. Trends in Biochemical Sciences, 2004, 29, 55-57.	7.5	7
76	Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Canadian Journal of Microbiology, 2004, 50, 225-238.	1.7	95
77	A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Molecular Microbiology, 2003, 49, 1377-1390.	2.5	117
78	The Tat protein translocation pathway and its role in microbial physiology. Advances in Microbial Physiology, 2003, 47, 187-254.	2.4	227
79	Assembly of Tatâ€dependent [NiFe] hydrogenases: identification of precursorâ€binding accessory proteins. FEBS Letters, 2003, 549, 141-146.	2.8	76
80	Regulation of the Hydrogenase-4 Operon of <i>Escherichia coli</i> by the σ ⁵⁴ -Dependent Transcriptional Activators FhlA and HyfR. Journal of Bacteriology, 2002, 184, 6642-6653.	2.2	94
81	Oligomeric Properties and Signal Peptide Binding by Escherichia coli Tat Protein Transport Complexes. Journal of Molecular Biology, 2002, 322, 1135-1146.	4.2	101
82	Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Archives of Microbiology, 2002, 178, 77-84.	2.2	80
83	Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Molecular Microbiology, 2002, 43, 1005-1021.	2.5	98
84	Functional complexity of the twinâ€arginine translocase TatC component revealed by siteâ€directed mutagenesis. Molecular Microbiology, 2002, 43, 1457-1470.	2.5	92
85	How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. International Journal of Hydrogen Energy, 2002, 27, 1413-1420.	7.1	88
86	Membrane interactions and self-association of the TatA and TatB components of the twin-arginine translocation pathway. FEBS Letters, 2001, 506, 143-148.	2.8	74
87	A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Archives of Microbiology, 2001, 177, 107-112.	2.2	50
88	Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. FEBS Journal, 2001, 268, 3361-3367.	0.2	143
89	Constitutive Expression of Escherichia coli tat Genes Indicates an Important Role for the Twin-Arginine Translocase during Aerobic and Anaerobic Growth. Journal of Bacteriology, 2001, 183, 1801-1804.	2.2	130
90	The Tat protein export pathway. Molecular Microbiology, 2000, 35, 260-274.	2.5	525

#	Article	IF	CITATIONS
91	Crystal Structure of the Molybdenum Cofactor Biosynthesis Protein MobA from Escherichia coli at Near-Atomic Resolution. Structure, 2000, 8, 1115-1125.	3.3	40
92	TatD Is a Cytoplasmic Protein with DNase Activity. Journal of Biological Chemistry, 2000, 275, 16717-16722.	3.4	244
93	A novel protein transport system involved in the biogenesis of bacterial electron transfer chains. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1459, 325-330.	1.0	41
94	Sec-independent Protein Translocation in Escherichia coli. Journal of Biological Chemistry, 1999, 274, 36073-36082.	3.4	266
95	Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology (United Kingdom), 1999, 145, 2903-2912.	1.8	99
96	An Essential Component of a Novel Bacterial Protein Export System with Homologues in Plastids and Mitochondria. Journal of Biological Chemistry, 1998, 273, 18003-18006.	3.4	346
97	Reassignment of the gene encoding the <i>Escherichia coli</i> hydrogenase 2 small subunit. FEBS Journal, 1998, 255, 746-754.	0.2	67
98	Sec-independent protein translocation in chloroplasts and bacteria. , 1998, , 3111-3114.		0