Bernardo Sgarbi Reis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5669828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IFN-γ+ cytotoxic CD4+ T lymphocytes are involved in the pathogenesis of colitis induced by IL-23 and the food colorant Red 40. , 2022, 19, 777-790.		16
2	Newly recruited intraepithelial Ly6A+CCR9+CD4+ TÂcells protect against enteric viral infection. Immunity, 2022, 55, 1234-1249.e6.	14.3	18
3	TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδT cell subsets. Science, 2022, 377, 276-284.	12.6	40
4	$\hat{I}^3\hat{I}^\prime T$ cells regulate the intestinal response to nutrient sensing. Science, 2021, 371, .	12.6	78
5	Essential role of a ThPOK autoregulatory loop in the maintenance of mature CD4+ T cell identity and function. Nature Immunology, 2021, 22, 969-982.	14.5	13
6	c-MAF–dependent perivascular macrophages regulate diet-induced metabolic syndrome. Science Immunology, 2021, 6, eabg7506.	11.9	27
7	Gut T cell–independent IgA responses to commensal bacteria require engagement of the TACI receptor on B cells. Science Immunology, 2020, 5, .	11.9	40
8	Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges. Journal of Experimental Medicine, 2019, 216, 786-806.	8.5	100
9	LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell, 2018, 172, 825-840.e18.	28.9	312
10	Tissue adaptation: Implications for gut immunity and tolerance. Journal of Experimental Medicine, 2017, 214, 1211-1226.	8.5	51
11	Intestinal Epithelial and Intraepithelial T Cell Crosstalk Mediates a Dynamic Response to Infection. Cell, 2017, 171, 783-794.e13.	28.9	203
12	Tissue adaptation of regulatory and intraepithelial CD4 ⁺ T cells controls gut inflammation. Science, 2016, 352, 1581-1586.	12.6	206
13	A 3-D enteroid-based model to study T-cell and epithelial cell interaction. Journal of Immunological Methods, 2015, 421, 89-95.	1.4	58
14	Leptin Receptor Signaling in T Cells Is Required for Th17 Differentiation. Journal of Immunology, 2015, 194, 5253-5260.	0.8	123
15	Transcription Factor T-bet Regulates Intraepithelial Lymphocyte Functional Maturation. Immunity, 2014, 41, 244-256.	14.3	112
16	Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nature Immunology, 2013, 14, 271-280.	14.5	244
17	Prostate Cancer Progression Correlates with Increased Humoral Immune Response to a Human Endogenous Retrovirus GAG Protein. Clinical Cancer Research, 2013, 19, 6112-6125.	7.0	66
18	Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II–restricted cytotoxic T lymphocytes. Nature Immunology, 2013, 14, 281-289.	14.5	306

Bernardo Sgarbi Reis

#	Article	IF	CITATIONS
19	Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. Journal of Experimental Medicine, 2013, 210, 1871-1888.	8.5	117
20	The Role of the Intestinal Context in the Generation of Tolerance and Inflammation. Clinical and Developmental Immunology, 2012, 2012, 1-6.	3.3	14
21	Mice Immunization with Radioattenuated Yeast Cells of Paracoccidiodes brasiliensis: Influence of the Number of Immunizations. Mycopathologia, 2009, 168, 51-58.	3.1	10
22	Interferon-gamma and interleukin-4 single nucleotide gene polymorphisms in Paracoccidioidomycosis. Cytokine, 2009, 48, 212-217.	3.2	23
23	Prostatic paracoccidioidomycosis: differential diagnosis of prostate cancer. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 33-36.	1.6	11
24	Protective immunity induced by rPb27 of Paracoccidioides brasiliensis. Vaccine, 2008, 26, 5461-5469.	3.8	36
25	Immunization with radioattenuated yeast cells of Paracoccidioides brasiliensis induces a long lasting protection in BALB/c mice. Vaccine, 2007, 25, 7893-7899.	3.8	18
26	Analysis of memory T cells in the human paracoccidioidomycosis before and during chemotherapy treatment. Immunology Letters, 2007, 114, 23-30.	2.5	13
27	Interleukin-10 and Tumor Necrosis Factor–α Single Nucleotide Gene Polymorphism Frequency in Paracoccidioidomycosis. Human Immunology, 2006, 67, 931-939.	2.4	28
28	Paracoccidioides brasiliensis: attenuation of yeast cells by gamma irradiation. Mycoses, 2006, 49, 184-189.	4.0	13
29	Membrane and extracellular antigens of Paracoccidioides brasiliensis (Mexo): Identification of a 28-kDa protein suitable for immunodiagnosis of paracoccidioidomycosis. Journal of Immunological Methods, 2005, 307, 118-126.	1.4	19
30	Modulation of CD28 and CD86 Expression in Patients with Paracoccidioidomycosis in Different Periods of Treatment. Scandinavian Journal of Immunology, 2004, 60, 500-505.	2.7	12
31	Protective immunity induced in mice by F0 and FII antigens purified from Paracoccidioides brasiliensis. Vaccine, 2004, 22, 485-492.	3.8	24