
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5667291/publications.pdf Version: 2024-02-01

IN THANC

#	Article	IF	CITATIONS
1	LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell, 2016, 19, 66-80.	11.1	278
2	MicroRNA let-7c Is Downregulated in Prostate Cancer and Suppresses Prostate Cancer Growth. PLoS ONE, 2012, 7, e32832.	2.5	163
3	Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. Nature Plants, 2019, 5, 18-25.	9.3	163
4	Lin28 sustains early renal progenitors and induces Wilms tumor. Genes and Development, 2014, 28, 971-982.	5.9	149
5	Cancer theâ€~RBP'eutics–RNA-binding proteins as therapeutic targets for cancer. , 2019, 203, 107390.		125
6	Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes and Development, 2011, 25, 1528-1543.	5.9	115
7	RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability. Nucleic Acids Research, 2010, 38, 2256-2267.	14.5	107
8	DEC1, a Basic Helix-Loop-Helix Transcription Factor and a Novel Target Gene of the p53 Family, Mediates p53-dependent Premature Senescence. Journal of Biological Chemistry, 2008, 283, 2896-2905.	3.4	106
9	Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8201-E8210.	7.1	101
10	Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes and Development, 2017, 31, 1243-1256.	5.9	97
11	TRPM7 senses oxidative stress to release Zn ²⁺ from unique intracellular vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6079-E6088.	7.1	89
12	Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. Developmental Cell, 2016, 39, 466-479.	7.0	86
13	RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9614-9619.	7.1	83
14	Small-Molecule Inhibitors Disrupt let-7 Oligouridylation and Release the Selective Blockade of let-7 Processing by LIN28. Cell Reports, 2018, 23, 3091-3101.	6.4	81
15	VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis. Nature Communications, 2017, 8, 383.	12.8	79
16	Rbm24, a target of p53, is necessary for proper expression of p53 and heart development. Cell Death and Differentiation, 2018, 25, 1118-1130.	11.2	70
17	The cyclin-dependent kinase inhibitor p21 is regulated by RNA-binding protein PCBP4 via mRNA stability. Nucleic Acids Research, 2011, 39, 213-224.	14.5	64
18	Rbm24, an RNA-binding Protein and a Target of p53, Regulates p21 Expression via mRNA Stability. Journal of Biological Chemistry, 2014, 289, 3164-3175.	3.4	62

#	Article	IF	CITATIONS
19	Mice deficient in Rbm38, a target of the p53 family, are susceptible to accelerated aging and spontaneous tumors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18637-18642.	7.1	59
20	RNA-Binding Protein RBM24 Regulates p63 Expression via mRNA Stability. Molecular Cancer Research, 2014, 12, 359-369.	3.4	51
21	p73 Expression Is Regulated by RNPC1, a Target of the p53 Family, via mRNA Stability. Molecular and Cellular Biology, 2012, 32, 2336-2348.	2.3	50
22	Glycogen synthase kinase 3 promotes p53 mRNA translation via phosphorylation of RNPC1. Genes and Development, 2013, 27, 2246-2258.	5.9	48
23	Posttranscriptional Regulation of p53 and its Targets by RNABinding Proteins. Current Molecular Medicine, 2008, 8, 845-849.	1.3	40
24	Ninjurin 1 has two opposing functions in tumorigenesis in a p53-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11500-11505.	7.1	40
25	p53 tumor suppressor and iron homeostasis. FEBS Journal, 2019, 286, 620-629.	4.7	39
26	Functional kinomics establishes a critical node of volume-sensitive cation-Clâ^' cotransporter regulation in the mammalian brain. Scientific Reports, 2016, 6, 35986.	3.3	38
27	A PolH Transcript with a Short 3′UTR Enhances PolH Expression and Mediates Cisplatin Resistance. Cancer Research, 2019, 79, 3714-3724.	0.9	35
28	The RNA-binding Protein RNPC1 Stabilizes the mRNA Encoding the RNA-binding Protein HuR and Cooperates with HuR to Suppress Cell Proliferation. Journal of Biological Chemistry, 2012, 287, 14535-14544.	3.4	33
29	DEC1 Coordinates with HDAC8 to Differentially Regulate TAp73 and ΔNp73 Expression. PLoS ONE, 2014, 9, e84015.	2.5	29
30	Disruption of the Rbm38-elF4E Complex with a Synthetic Peptide Pep8 Increases p53 Expression. Cancer Research, 2019, 79, 807-818.	0.9	29
31	Genetic Ablation of <i>Rbm38</i> Promotes Lymphomagenesis in the Context of Mutant p53 by Downregulating PTEN. Cancer Research, 2018, 78, 1511-1521.	0.9	27
32	<scp>FDXR</scp> regulates <scp>TP73</scp> tumor suppressor via <scp>IRP2</scp> to modulate aging and tumor suppression. Journal of Pathology, 2020, 251, 284-296.	4.5	27
33	ΔNp73 Modulates Nerve Growth Factor-Mediated Neuronal Differentiation through Repression of TrkA. Molecular and Cellular Biology, 2007, 27, 3868-3880.	2.3	23
34	Mutant p53 antagonizes p63/p73-mediated tumor suppression via Notch1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24259-24267.	7.1	23
35	Dietary Cerebroside from Sea Cucumber (<i>Stichopus japonicus</i>): Absorption and Effects on Skin Barrier and Cecal Short-Chain Fatty Acids. Journal of Agricultural and Food Chemistry, 2016, 64, 7014-7021.	5.2	21
36	Hypoxia-inducible factor 1 alpha is regulated by RBM38, a RNA-binding protein and a p53 family target, via mRNA translation. Oncotarget, 2015, 6, 305-316.	1.8	21

#	Article	IF	CITATIONS
37	RNA-binding Protein PCBP2 Regulates p73 Expression and p73-dependent Antioxidant Defense. Journal of Biological Chemistry, 2016, 291, 9629-9637.	3.4	19
38	Phylogenetic studies and comparative chloroplast genome analyses elucidate the basal position of halophyte <i>Nitraria sibirica</i> (Nitrariaceae) in the Sapindales. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2018, 29, 745-755.	0.7	18
39	TAp73 Protein Stability Is Controlled by Histone Deacetylase 1 via Regulation of Hsp90 Chaperone Function. Journal of Biological Chemistry, 2013, 288, 7727-7737.	3.4	17
40	Arsenic Suppresses Cell Survival via Pirh2-mediated Proteasomal Degradation of ΔNp63 Protein. Journal of Biological Chemistry, 2013, 288, 2907-2913.	3.4	17
41	The Rbm38-p63 feedback loop is critical for tumor suppression and longevity. Oncogene, 2018, 37, 2863-2872.	5.9	16
42	The p53 Family: A Role in Lipid and Iron Metabolism. Frontiers in Cell and Developmental Biology, 2021, 9, 715974.	3.7	15
43	p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability. Oncotarget, 2016, 7, 78255-78268.	1.8	15
44	Mice deficient in poly(C)-binding protein 4 are susceptible to spontaneous tumors through increased expression of ZFP871 that targets p53 for degradation. Genes and Development, 2016, 30, 522-534.	5.9	14
45	Modulation of the p53 family network by RNA-binding proteins. Translational Cancer Research, 2016, 5, 676-684.	1.0	12
46	Serine 195 phosphorylation in the RNA-binding protein Rbm38 increases p63 expression by modulating Rbm38's interaction with the Ago2–miR203 complex. Journal of Biological Chemistry, 2019, 294, 2449-2459.	3.4	12
47	Mdm2 is a target and mediator of IRP2 in cell growth control. FASEB Journal, 2020, 34, 2301-2311.	0.5	12
48	P73 tumor suppressor and its targets, p21 and PUMA, are required for madin-darby canine kidney cell morphogenesis by maintaining an appropriate level of epithelial to mesenchymal transition. Oncotarget, 2015, 6, 13994-14004.	1.8	12
49	Ferredoxin reductase and p53 are necessary for lipid homeostasis and tumor suppression through the ABCA1–SREBP pathway. Oncogene, 2022, 41, 1718-1726.	5.9	12
50	HuR Is Necessary for Mammary Epithelial Cell Proliferation and Polarity at Least in Part via ΔNp63. PLoS ONE, 2012, 7, e45336.	2.5	11
51	lron regulatory protein 2 is a suppressor of mutant p53 in tumorigenesis. Oncogene, 2019, 38, 6256-6269.	5.9	10
52	PABPN1, a Target of p63, Modulates Keratinocyte Differentiation through Regulation of p63α mRNA Translation. Journal of Investigative Dermatology, 2020, 140, 2166-2177.e6.	0.7	10
53	Regulation of Mdm2 mRNA Stability by RNA-binding Protein RNPC1. Oncotarget, 2013, 4, 1121-1122.	1.8	9
54	Iron Regulatory Protein 2 Exerts its Oncogenic Activities by Suppressing TAp63 Expression. Molecular Cancer Research, 2020, 18, 1039-1049.	3.4	8

#	Article	IF	CITATIONS
55	Fine-tuning p53 activity by modulating the interaction between eukaryotic translation initiation factor elF4E and RNA-binding protein RBM38. Genes and Development, 2021, 35, 542-555.	5.9	6
56	Mice Deficient in the RNA-Binding Protein Zfp871 Are Prone to Early Death and Steatohepatitis in Part through the p53–Mdm2 Axis. Molecular Cancer Research, 2021, 19, 1751-1762.	3.4	5
57	A new function for p53 tetramerization domain in cell fate control. Cell Cycle, 2016, 15, 2854-2855.	2.6	4
58	Survivin Expression Is Differentially Regulated by a Selective Cross-talk between RBM38 and miRNAs let-7b or miR-203a. Cancer Research, 2021, 81, 1827-1839.	0.9	3
59	Optimization of elF4E-Binding Peptide Pep8 to Disrupt the RBM38-elF4E Complex for Induction of p53 and Tumor Suppression. Frontiers in Oncology, 2022, 12, 893062.	2.8	2
60	p73α1, a p73 C-terminal isoform, regulates tumor suppression and the inflammatory response via Notch1. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2
61	Small Proline-Rich Protein 2A and 2D Are Regulated by the RBM38-p73 Axis and Associated with p73-Dependent Suppression of Chronic Inflammation. Cancers, 2021, 13, 2829.	3.7	1
62	Abstract 2988: Loss of Rbm38 cooperates with mutant p53 to promote lymphomagenesis through downregulation of Pten. , 2018, , .		1