Maria M Corsaro ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/5666789/publications.pdf Version: 2024-02-01 144 papers 3,202 citations 32 h-index 223800 46 g-index 147 all docs 147 docs citations times ranked 147 3310 citing authors | # | Article | IF | Citations | |----|---|------|-----------| | 1 | Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications. Marine Drugs, 2018, 16, 69. | 4.6 | 156 | | 2 | Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International Journal of Biological Macromolecules, 2018, 108, 719-728. | 7.5 | 132 | | 3 | Structure-activity relationship of the exopolysaccharide from a psychrophilic bacterium: A strategy for cryoprotection. Carbohydrate Polymers, 2017, 156, 364-371. | 10.2 | 83 | | 4 | The Klebsiella pneumoniae wabG Gene: Role inBiosynthesis of the Core Lipopolysaccharide and Virulence. Journal of Bacteriology, 2003, 185, 7213-7221. | 2.2 | 78 | | 5 | A Unique Capsular Polysaccharide Structure from the Psychrophilic Marine Bacterium <i>Colwellia psychrerythraea</i> 34H That Mimics Antifreeze (Glyco)proteins. Journal of the American Chemical Society, 2015, 137, 179-189. | 13.7 | 78 | | 6 | \hat{l}^2 -Glycosyl Azides as Substrates for \hat{l} ±-Glycosynthases: Preparation of Efficient \hat{l} ±-L-Fucosynthases. Chemistry and Biology, 2009, 16, 1097-1108. | 6.0 | 65 | | 7 | Influence of Growth Temperature on Lipid and Phosphate Contents of Surface Polysaccharides from the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC 125. Journal of Bacteriology, 2004, 186, 29-34. | 2.2 | 59 | | 8 | 1H and 13C NMR characterization and secondary structure of the K2 polysaccharide of Klebsiella pneumoniae strain 52145. Carbohydrate Research, 2005, 340, 2212-2217. | 2.3 | 59 | | 9 | A Marine Isolate of Bacillus pumilus Secretes a Pumilacidin Active against Staphylococcus aureus.
Marine Drugs, 2018, 16, 180. | 4.6 | 59 | | 10 | Levan from a new isolated Bacillus subtilis AF17: Purification, structural analysis and antioxidant activities. International Journal of Biological Macromolecules, 2020, 144, 316-324. | 7.5 | 56 | | 11 | Composition of the coagulant polysaccharide fraction from Strychnos potatorum seeds. Carbohydrate Research, 1994, 263, 103-110. | 2.3 | 54 | | 12 | Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. Algal Research, 2016, 17, 1-13. | 4.6 | 51 | | 13 | A Second Outer-Core Region in Klebsiella pneumoniae Lipopolysaccharide. Journal of Bacteriology, 2005, 187, 4198-4206. | 2.2 | 50 | | 14 | Absolute configuration of homoisoflavanones from species. Tetrahedron, 1988, 44, 4981-4988. | 1.9 | 49 | | 15 | Identification of novel splice variants of the human catalytic subunit $c\hat{l}^2$ of cAMP-dependent protein kinase. FEBS Journal, 2001, 268, 5066-5073. | 0.2 | 49 | | 16 | Lipid A structure of Pseudoalteromonas haloplanktis TAC 125: use of electrospray ionization tandem mass spectrometry for the determination of fatty acid distribution. Journal of Mass Spectrometry, 2002, 37, 481-488. | 1.6 | 47 | | 17 | Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm. Frontiers in Cellular and Infection Microbiology, 2017, 7, 46. | 3.9 | 46 | | 18 | A New Archaeal \hat{I}^2 -Glycosidase from Sulfolobus solfataricus. Journal of Biological Chemistry, 2010, 285, 20691-20703. | 3.4 | 45 | | # | Article | IF | Citations | |----|--|------|-----------| | 19 | The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide. Microbiology (United Kingdom), 2006, 152, 1807-1818. | 1.8 | 44 | | 20 | Isolation and characterization of a new family 42 \hat{l}^2 -galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: Identification of the active site residues. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 292-301. | 2.3 | 44 | | 21 | A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate. Analytica Chimica Acta, 2017, 958, 59-70. | 5.4 | 40 | | 22 | Caryose: a carbocyclic monosaccharide from Pseudomonas caryophylli. Carbohydrate Research, 1996, 284, 111-118. | 2.3 | 39 | | 23 | Chemical structure of two phytotoxic exopolysaccharides produced by Phomopsis foeniculi11Presented at the 18th International Carbohydrate Symposium, Milan, Italy, 1996
Carbohydrate Research, 1998, 308, 349-357. | 2.3 | 39 | | 24 | Homoisoflavanones from Muscari neglectum. Phytochemistry, 1988, 27, 921-923. | 2.9 | 36 | | 25 | Ten homoisoflavanones from two Muscari species. Phytochemistry, 1986, 26, 285-290. | 2.9 | 34 | | 26 | Exopolysaccharides Produced by Plant Pathogenic Bacteria Affect Ascorbate Metabolism in Nicotiana tabacum. Plant and Cell Physiology, 2003, 44, 803-810. | 3.1 | 34 | | 27 | A novel \hat{l}_{\pm} -d-galactosynthase from Thermotoga maritima converts \hat{l}^2 -d-galactopyranosyl azide to \hat{l}_{\pm} -galacto-oligosaccharides. Glycobiology, 2011, 21, 448-456. | 2.5 | 34 | | 28 | A novel 4-C-branched sugar from the lipopolysaccharide of the bacterium Pseudomonas caryophylli. Carbohydrate Research, 1995, 267, 307-311. | 2.3 | 33 | | 29 | Analysis of the polysaccharide components of the lipopolysaccharide fraction of Pseudomonas caryophylli. Carbohydrate Research, 1996, 284, 119-133. | 2.3 | 33 | | 30 | Phytotoxic extracellular polysaccharide fractions from Cryphonectria parasitica (Murr.) Barr strains. Carbohydrate Polymers, 1998, 37, 167-172. | 10.2 | 33 | | 31 | Structural Investigation and Biological Activity of the Lipooligosaccharide from the Psychrophilic Bacterium <i>Pseudoalteromonas haloplanktis</i> TAB 23. Chemistry - A European Journal, 2011, 17, 7053-7060. | 3.3 | 33 | | 32 | Structural characterization of a xylanase from psychrophilic yeast by mass spectrometry. Glycobiology, 2000, 10, 451-458. | 2.5 | 32 | | 33 | Highly Phosphorylated Core Oligosaccaride Structures from Coldâ€Adapted <i>Psychromonas arctica</i> . Chemistry - A European Journal, 2008, 14, 9368-9376. | 3.3 | 32 | | 34 | Homoisoflavanones from Chionodoxa luciliae. Phytochemistry, 1992, 31, 1395-1397. | 2.9 | 31 | | 35 | Structural investigation on the lipooligosaccharide fraction of psychrophilic Pseudoalteromonas haloplanktis TAC 125 bacterium. FEBS Journal, 2001, 268, 5092-5097. | 0.2 | 31 | | 36 | Structural determination of the phytotoxic mannan exopolysaccharide from Pseudomonas syringae pv. ciccaronei. Carbohydrate Research, 2001, 330, 271-277. | 2.3 | 31 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 37 | A Second Galacturonic Acid Transferase Is Required for Core Lipopolysaccharide Biosynthesis and Complete Capsule Association with the Cell Surface in Klebsiella pneumoniae. Journal of Bacteriology, 2007, 189, 1128-1137. | 2.2 | 31 | | 38 | The relative and absolute configurations of stereocenters in caryophyllose. Carbohydrate Research, 1995, 274, 223-232. | 2.3 | 30 | | 39 | A bianthrone C-glycoside from Asphodelus ramosus tubers. Phytochemistry, 1989, 28, 284-288. | 2.9 | 29 | | 40 | Reaction of Peroxynitrite with Hyaluronan and Related Saccharides. Free Radical Research, 2004, 38, 343-353. | 3.3 | 29 | | 41 | Anti-biofilm activity of <i>pseudoalteromonas haloplanktis</i> tac125 against <i>staphylococcus epidermidis</i> biofilm: Evidence of a signal molecule involvement?. International Journal of Immunopathology and Pharmacology, 2015, 28, 104-113. | 2.1 | 28 | | 42 | Effects of human antimicrobial cryptides identified in apolipoprotein B depend on specific features of bacterial strains. Scientific Reports, 2019, 9, 6728. | 3.3 | 28 | | 43 | Rheological and emulsifying properties of an exopolysaccharide produced by potential probiotic Leuconostoc citreum-BMS strain. Carbohydrate Polymers, 2021, 256, 117523. | 10.2 | 28 | | 44 | Structural Studies of the Oâ€Chain Polysaccharide from <i>Plesiomonas shigelloides</i> Strain 302–73 (Serotype O1). European Journal of Organic Chemistry, 2008, 2008, 3149-3155. | 2.4 | 26 | | 45 | Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H. Antonie Van Leeuwenhoek, 2017, 110, 1377-1387. | 1.7 | 26 | | 46 | Potential biotechnological properties of an exopolysaccharide produced by newly isolated Bacillus tequilensis-GM from spontaneously fermented goat milk. LWT - Food Science and Technology, 2019, 105, 135-141. | 5.2 | 26 | | 47 | Isolation and structural characterization of levan produced by probiotic Bacillus tequilensis-GM from Tunisian fermented goat milk. International Journal of Biological Macromolecules, 2019, 133, 786-794. | 7.5 | 26 | | 48 | Effect of chronic administration of tacrolimus and cyclosporine on human gastrointestinal permeability. Liver Transplantation, 2003, 9, 484-488. | 2.4 | 25 | | 49 | Structural investigation of the antagonist LPS from the cyanobacterium Oscillatoria planktothrix FP1. Carbohydrate Research, 2014, 388, 73-80. | 2.3 | 25 | | 50 | Light modulation of biomass and macromolecular composition of the diatom Skeletonema marinoi. Journal of Biotechnology, 2014, 192, 114-122. | 3.8 | 25 | | 51 | Environmental conditions shape the biofilm of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Microbiological Research, 2019, 218, 66-75. | 5.3 | 25 | | 52 | Physicochemical Approach to Understanding the Structure, Conformation, and Activity of Mannan Polysaccharides. Biomacromolecules, 2021, 22, 1445-1457. | 5.4 | 25 | | 53 | Structure determination of an exopolysaccharide from an alkaliphilic bacterium closely related to Bacillus spp FEBS Journal, 1999, 264, 554-561. | 0.2 | 24 | | 54 | The complete structure of the core of the LPS from Plesiomonas shigelloides 302–73 and the identification of its O-antigen biological repeating unit. Carbohydrate Research, 2010, 345, 2523-2528. | 2.3 | 24 | | # | Article | IF | Citations | |----|---|-----|-----------| | 55 | Foeniculoxin, a new phytotoxic geranylhydroquinone from. Tetrahedron, 1994, 50, 10371-10378. | 1.9 | 22 | | 56 | Polysaccharides from seeds of Strychnos species. Phytochemistry, 1995, 39, 1377-1380. | 2.9 | 21 | | 57 | Unusual Lipidâ€A from a Coldâ€Adapted Bacterium: Detailed Structural Characterization. ChemBioChem, 2017, 18, 1845-1854. | 2.6 | 21 | | 58 | Glycosides from Muscari armeniacum and Muscari botryoides. Isolation and structure of Muscarosides G–N. Canadian Journal of Chemistry, 1988, 66, 2787-2793. | 1.1 | 20 | | 59 | Bianthrone -glycosides. 2. Three new compounds from tubers. Tetrahedron, 1990, 46, 1287-1294. | 1.9 | 20 | | 60 | Structural Investigation of the Oligosaccharide Portion Isolated from the Lipooligosaccharide of the Permafrost Psychrophile Psychrobacter arcticus 273-4. Marine Drugs, 2015, 13, 4539-4555. | 4.6 | 20 | | 61 | Cycloartane glucosides from juncus effusus. Phytochemistry, 1994, 37, 515-519. | 2.9 | 19 | | 62 | Structure of the Core Region from the Lipopolysaccharide of <i>Plesiomonas shigelloides</i> Strain 302â€₹3 (Serotype O1). European Journal of Organic Chemistry, 2009, 2009, 1365-1371. | 2.4 | 19 | | 63 | Pentadecanal inspired molecules as new anti-biofilm agents against <i>Staphylococcus epidermidis</i> . Biofouling, 2018, 34, 1110-1120. | 2.2 | 19 | | 64 | Glycosides from <i>Muscaricomosum</i> . 7. Structure of three novel muscarosides. Canadian Journal of Chemistry, 1987, 65, 2317-2326. | 1.1 | 18 | | 65 | Simultaneous gas-chromatographic measurement of rhamnose, lactulose and sucrose and their application in the testing gastrointestinal permeability. Clinica Chimica Acta, 2003, 338, 25-32. | 1.1 | 18 | | 66 | Structural Determination of the O-Chain Polysaccharide from the Lipopolysaccharide of the HaloalkaliphilicHalomonas pantelleriensis Bacterium. European Journal of Organic Chemistry, 2006, 2006, 1801-1808. | 2.4 | 18 | | 67 | Pentadecanoic acid against Candida albicans-Klebsiella pneumoniae biofilm: towards the development of an anti-biofilm coating to prevent polymicrobial infections. Research in Microbiology, 2021, 172, 103880. | 2.1 | 17 | | 68 | Determination of phosphorylation sites in lipooligosaccharides fromPseudoalteromonas haloplanktisTAC 125 grown at 15°C and 25°C by nano-electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2003, 17, 2226-2232. | 1.5 | 16 | | 69 | Structure of Lipid A fromPseudomonas corrugata by electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 853-858. | 1.5 | 16 | | 70 | Effects of Lipopolysaccharide Biosynthesis Mutations on K1 Polysaccharide Association with the Escherichia coli Cell Surface. Journal of Bacteriology, 2012, 194, 3356-3367. | 2.2 | 16 | | 71 | Structural Characterization of the Core Oligosaccharide Isolated from the LipoÂpolysaccharide of the Psychrophilic Bacterium <i>Colwellia psychrerythraea</i> Strain 34H. European Journal of Organic Chemistry, 2013, 2013, 3771-3779. | 2.4 | 16 | | 72 | Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microbial Cell Factories, 2018, 17, 126. | 4.0 | 16 | | # | Article | IF | Citations | |----|---|-----|-----------| | 73 | The power of two: An artificial microbial consortium for the conversion of inulin into Polyhydroxyalkanoates. International Journal of Biological Macromolecules, 2021, 189, 494-502. | 7.5 | 16 | | 74 | The αâ€Thioglycoligase Derived from a GH89 αâ€ <i>N</i> à€Acetylglucosaminidase Synthesises αâ€ <i>N</i> â€Acetylglucosamineâ€Based Glycosides of Biomedical Interest. Advanced Synthesis and Catalysis, 2017, 359, 663-676. | 4.3 | 15 | | 75 | Cold-adapted bacterial extracts as a source of anti-infective and antimicrobial compounds against <i>Staphylococcus aureus</i> . Future Microbiology, 2019, 14, 1369-1382. | 2.0 | 15 | | 76 | Differences between the Glycosylation Patterns of Haptoglobin Isolated from Skin Scales and Plasma of Psoriatic Patients. PLoS ONE, 2012, 7, e52040. | 2.5 | 15 | | 77 | The Incorporation of Glucosamine into Enterobacterial Core Lipopolysaccharide. Journal of Biological Chemistry, 2005, 280, 36648-36656. | 3.4 | 14 | | 78 | Structural Characterization of the Core Region of the Lipopolysaccharide from the HaloalkaliphilicHalomonas pantelleriensis: Identification of the Biological O-Antigen Repeating Unit. European Journal of Organic Chemistry, 2008, 2008, 721-728. | 2.4 | 14 | | 79 | Structural determination of the O-chain polysaccharide from the haloalkaliphilic Halomonas alkaliantarctica bacterium strain CRSS. Carbohydrate Research, 2009, 344, 2051-2055. | 2.3 | 14 | | 80 | Quantitative determination of haptoglobin glycoform variants in psoriasis. Biological Chemistry, 2010, 391, 1429-39. | 2.5 | 14 | | 81 | Decoration of Chondroitin Polysaccharide with Threonine: Synthesis, Conformational Study, and Ice-Recrystallization Inhibition Activity. Biomacromolecules, 2017, 18, 2267-2276. | 5.4 | 14 | | 82 | Introducing transgalactosylation activity into a family 42 \hat{l}^2 -galactosidase. Glycobiology, 2017, 27, 425-437. | 2.5 | 14 | | 83 | Structural Elucidation of a Novel Lipooligosaccharide from the Cold-Adapted Bacterium OMVs
Producer Shewanella sp. HM13. Marine Drugs, 2019, 17, 34. | 4.6 | 14 | | 84 | Structural characterization of the O-chain polysaccharide from an environmentally beneficial bacterium Pseudomonas chlororaphis subsp. aureofaciens strain M71. Carbohydrate Research, 2011, 346, 2705-2709. | 2.3 | 12 | | 85 | O-chain structure from the lipopolysaccharide of the human pathogen Halomonas stevensii strain S18214. Carbohydrate Research, 2011, 346, 362-365. | 2.3 | 12 | | 86 | Characterization of the Core Oligosaccharide and the Oâ€Antigen Biological Repeating Unit from ⟨i>Halomonas stevensii⟨ i> Lipopolysaccharide: The First Case of Oâ€Antigen Linked to the Inner Core. Chemistry - A European Journal, 2012, 18, 3729-3735. | 3.3 | 12 | | 87 | A Semisynthetic Approach to New Immunoadjuvant Candidates: Siteâ€elective Chemical Manipulation of <i>Escherichia coli</i> Monophosphoryl Lipidâ€A. Chemistry - A European Journal, 2016, 22, 11053-11063. | 3.3 | 12 | | 88 | Development of Clickable Monophosphoryl Lipid A Derivatives toward Semisynthetic Conjugates with Tumor-Associated Carbohydrate Antigens. Journal of Medicinal Chemistry, 2017, 60, 9757-9768. | 6.4 | 12 | | 89 | Nortriterpenoid oligoglycosides from Chionodoxa luciliae. Phytochemistry, 1993, 33, 431-436. | 2.9 | 11 | | 90 | The Union Is Strength: The Synergic Action of Long Fatty Acids and a Bacteriophage against Xanthomonas campestris Biofilm. Microorganisms, 2021, 9, 60. | 3.6 | 11 | | # | Article | IF | Citations | |-----|---|------|-----------| | 91 | Structural determination of the O-deacetylated O-chain of lipopolysaccharide from Burkholderia (Pseudomonas) cepacia strain PVFi-5A. Carbohydrate Research, 1998, 307, 333-341. | 2.3 | 10 | | 92 | Production of medium chain length polyhydroxyalkanoates from waste oils by recombinant <i>Escherichia coli</i> . Engineering in Life Sciences, 2015, 15, 700-709. | 3.6 | 10 | | 93 | Capsular polysaccharide from a fish-gut bacterium induces/promotes apoptosis of colon cancer cells in vitro through Caspases' pathway activation. Carbohydrate Polymers, 2022, 278, 118908. | 10.2 | 10 | | 94 | Limosilactobacillus fermentum from buffalo milk is suitable for potential biotechnological process development and inhibits Helicobacter pylori in a gastric epithelial cell model. Biotechnology Reports (Amsterdam, Netherlands), 2022, , e00732. | 4.4 | 10 | | 95 | Triterpenoid oligoglycosides from Chionodoxa luciliae. Phytochemistry, 1993, 34, 773-778. | 2.9 | 9 | | 96 | Ranuncoside VII - A New Oleanane Glycoside From <i>Hydrocotyle ranunculoides</i> . Natural Product Research, 1995, 6, 95-102. | 0.4 | 9 | | 97 | 5,7-Diamino-5,7,9-trideoxynon-2-ulosonic acid: a novel sugar from a phytopathogenic Pseudomonas lipopolysaccharide. Carbohydrate Research, 2002, 337, 955-959. | 2.3 | 9 | | 98 | Synthesis of a d-rhamnose branched tetrasaccharide, repeating unit of the O-chain from Pseudomonas syringae pv. Syringae (cerasi) 435. Carbohydrate Research, 2004, 339, 1907-1915. | 2.3 | 9 | | 99 | Large-scale biofilm cultivation of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 for physiologic studies and drug discovery. Extremophiles, 2016, 20, 227-234. | 2.3 | 9 | | 100 | Studies of an acidic polysaccharide from Encephalartos friderici guilielmi. Carbohydrate Research, 1991, 222, 215-221. | 2.3 | 8 | | 101 | Structural investigation of the polysaccharide fraction from the mucilage of Dicerocaryum zanguebaricum Merr Carbohydrate Research, 1996, 280, 111-119. | 2.3 | 8 | | 102 | Preparation of a glycosynthase from the \hat{l}^2 -glycosidase of the ArchaeonPyrococcus horikoshii. Biocatalysis and Biotransformation, 2006, 24, 23-29. | 2.0 | 8 | | 103 | The Lipid A from the Haloalkaliphilic Bacterium Salinivibrio sharmensis Strain BAGT. Marine Drugs, 2013, 11, 184-193. | 4.6 | 8 | | 104 | A combined fermentative-chemical approach for the scalable production of pure E. coli monophosphoryl lipid A. Applied Microbiology and Biotechnology, 2014, 98, 7781-7791. | 3.6 | 8 | | 105 | Role of phage ϕ1 in two strains of Salmonella Rissen, sensitive and resistant to phage ϕ1. BMC Microbiology, 2018, 18, 208. | 3.3 | 8 | | 106 | Detailed Structural Characterization of the Lipooligosaccharide from the Extracellular Membrane Vesicles of Shewanella vesiculosa HM13. Marine Drugs, 2020, 18, 231. | 4.6 | 8 | | 107 | Statistical optimization of levan: Influence of the parameter on levan structure and angiotensin I-converting enzyme inhibitory. International Journal of Biological Macromolecules, 2020, 158, 945-952. | 7.5 | 8 | | 108 | Structural investigation of Ceratozamia spinosa mucilage. Carbohydrate Research, 1994, 260, 259-270. | 2.3 | 7 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 109 | Structural determination of the O-specific polysaccharide from Aeromonas hydrophila strain A19 (serogroup O:14) with S-layer. Carbohydrate Research, 2011, 346, 2519-2522. | 2.3 | 7 | | 110 | Synthesis of the tetrasaccharide outer core fragment of Burkholderia multivorans lipooligosaccharide. Carbohydrate Research, 2015, 403, 182-191. | 2.3 | 7 | | 111 | The outer membrane glycolipids of bacteria from cold environments: isolation, characterization, and biological activity. FEMS Microbiology Ecology, 2019, 95, . | 2.7 | 7 | | 112 | Synthesis of the tetrasaccharide repeating unit of the cryoprotectant capsular polysaccharide from <i>Colwellia psychrerythraea</i> | 2.8 | 7 | | 113 | GlcNAc De- <i>N</i> -Acetylase from the Hyperthermophilic Archaeon <i>Sulfolobus solfataricus</i> Applied and Environmental Microbiology, 2019, 85, . | 3.1 | 7 | | 114 | Lactobacillus brevis CD2: Fermentation Strategies and Extracellular Metabolites Characterization. Probiotics and Antimicrobial Proteins, 2020, 12, 1542-1554. | 3.9 | 7 | | 115 | Structure of the O-chain polysaccharide of three strains of Pseudomonas syringae ssp. savastanoi.
Canadian Journal of Chemistry, 1994, 72, 1839-1843. | 1.1 | 6 | | 116 | Synthesis of Methyl 3-Acetamido-3,6-dideoxy-l-galactopyranosides and of Methyl 3-Acetamido-3,6-dideoxy-l-gulopyranosides by Reduction of 3-Ulose O-Methyloximes. Journal of Carbohydrate Chemistry, 1995, 14, 913-928. | 1.1 | 6 | | 117 | Design of new reaction conditions for characterization of a mutant thermophilic $\langle i \rangle \hat{l} \pm \langle i \rangle - \langle scp \rangle \langle scp \rangle - \langle scp \rangle $ Biocatalysis and Biotransformation, 2008, 26, 18-24. | 2.0 | 6 | | 118 | Structural characterization of the core region from the lipopolysaccharide of the haloalkaliphilic bacterium Halomonas alkaliantarctica strain CRSS. Organic and Biomolecular Chemistry, 2010, 8, 5404. | 2.8 | 6 | | 119 | Pentadecanal and pentadecanoic acid coatings reduce biofilm formation of <i>Staphylococcus epidermidis</i> on PDMS. Pathogens and Disease, 2020, 78, . | 2.0 | 6 | | 120 | Anti-Virulence Activity of the Cell-Free Supernatant of the Antarctic Bacterium Psychrobacter sp. TAE2020 against Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Antibiotics, 2021, 10, 944. | 3.7 | 6 | | 121 | Simultaneous Synthesis of All Partially Methylated Alditol Acetates of Glucosamine and Galactosamine for Gas Chromatography–Mass Spectrometry Analysis. Analytical Biochemistry, 2000, 282, 256-257. | 2.4 | 5 | | 122 | O-Allyl decoration on α-glucan isolated from the haloalkaliphilic Halomonas pantelleriensis bacterium. Carbohydrate Research, 2007, 342, 1271-1274. | 2.3 | 5 | | 123 | Structural characterization of the core oligosaccharide isolated from the lipopolysaccharide of the haloalkaliphilic bacterium Salinivibrio sharmensis strain BAGT. Carbohydrate Research, 2013, 368, 61-67. | 2.3 | 5 | | 124 | Structural characterization of the lipid A from the LPS of the haloalkaliphilic bacterium Halomonas pantelleriensis. Extremophiles, 2016, 20, 687-694. | 2.3 | 5 | | 125 | Cell-wall associated polysaccharide from the psychrotolerant bacterium Psychrobacter arcticus 273-4: isolation, purification and structural elucidation. Extremophiles, 2020, 24, 63-70. | 2.3 | 5 | | 126 | Levan produced by Bacillus subtilis AF17: Thermal, functional and rheological properties. Journal of Food Measurement and Characterization, 2022, 16, 440-447. | 3.2 | 4 | | # | Article | IF | CITATIONS | |-----|---|--------------|-----------| | 127 | PRODUCTION OF BIOPLASTIC FROM WASTE OILS BY RECOMBINANT Escherichia coli: A PIT-STOP IN WASTE FRYING OIL TO BIO-DIESEL CONVERSION RACE. Environmental Engineering and Management Journal, 2016, 15, 2003-2010. | 0.6 | 4 | | 128 | Synthesis and ¹³ C NMR Spectra of 1,8-Dihydroxy-10-glycopyranosyl-9(10 <i>H < /i>)-anthracenones. Journal of Carbohydrate Chemistry, 1993, 12, 903-911.</i> | 1.1 | 3 | | 129 | Pollen hemagglutinating activity is not related to lectin. Sexual Plant Reproduction, 1995, 8, 91. | 2.2 | 3 | | 130 | Hyaluronate tetrasaccharide- CU(II) interaction: A NMR study. Biopolymers, 2003, 70, 260-269. | 2.4 | 3 | | 131 | The Presence of OMP Inclusion Bodies in a Escherichia coli K-12 Mutated Strain is not Related to Lipopolysaccharide Structure. Journal of Biochemistry, 2009, 146, 231-240. | 1.7 | 3 | | 132 | Exploitation of \hat{l}^2 -glycosyl azides for the preparation of \hat{l}_\pm -glycosynthases. Biocatalysis and Biotransformation, 2012, 30, 288-295. | 2.0 | 3 | | 133 | Molecular Structure of Lipopolysaccharides of Cold-Adapted Bacteria. , 2017, , 285-303. | | 3 | | 134 | Complete Characterization of the O-Antigen from the LPS of Aeromonas bivalvium. International Journal of Molecular Sciences, 2022, 23, 1204. | 4.1 | 3 | | 135 | Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide. International Journal of Molecular Sciences, 2017, 18, 559. | 4.1 | 2 | | 136 | Lipid A structural characterization from the LPS of the Siberian psychro-tolerant Psychrobacter arcticus 273-4 grown at low temperature. Extremophiles, 2018, 22, 955-963. | 2.3 | 2 | | 137 | Evaluation of Two Extraction Methods for the Analysis of Hydrophilic Low Molecular Weight
Compounds from Ganoderma lucidum Spores and Antiproliferative Activity on Human Cell Lines.
Applied Sciences (Switzerland), 2020, 10, 4033. | 2.5 | 2 | | 138 | Complete Lipooligosaccharide Structure from Pseudoalteromonas nigrifaciens Sq02-Rifr and Study of Its Immunomodulatory Activity. Marine Drugs, 2021, 19, 646. | 4.6 | 2 | | 139 | Lipopolysaccharides from three phytopathogenic pseudomonads. Phytochemistry, 1997, 46, 289-292. | 2.9 | 1 | | 140 | Cyto-physiological events during radish germination in the presence of aRuta graveolensL. infusion. Plant Biosystems, 2001, 135, 263-270. | 1.6 | 1 | | 141 | O-specific polysaccharide structure isolated from the LPS of the Antarctic bacterium Pseudomonas ANT_J38B. Carbohydrate Research, 2020, 497, 108125. | 2.3 | 1 | | 142 | Membrane and Extracellular Matrix Glycopolymers of Colwellia psychrerythraea 34H: Structural Changes at Different Growth Temperatures. Frontiers in Microbiology, 2022, 13, 820714. | 3 . 5 | 1 | | 143 | Mass Spectrometry: Updates in the Elucidation of Structure of Oligosaccharides. , 2015, , 93-119. | | 0 | | 144 | Production of poly 3-hydroxyhexanoate near homo-polymer from fatty acids containing feedstocks by recombinant Escherichia coli. New Biotechnology, 2016, 33, S194-S195. | 4.4 | 0 |