Uwe A Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5666351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable agriculture in Northeastern India: how do tribal farmers perceive and respond to climate change?. International Journal of Sustainable Development and World Ecology, 2022, 29, 291-302.	5.9	8
2	Uncertainty concepts for integrated modeling - Review and application for identifying uncertainties and uncertainty propagation pathways. Environmental Modelling and Software, 2021, 135, 104905.	4.5	16
3	Computing stochastic Pareto frontiers between economic and environmental goals for a semi-arid agricultural production region in Austria. Ecological Economics, 2021, 185, 107044.	5.7	9
4	Land in Central America will become less suitable for coffee cultivation under climate change. Regional Environmental Change, 2021, 21, 1.	2.9	6
5	Assessing the long-term effectiveness of Nature-Based Solutions under different climate change scenarios. Science of the Total Environment, 2021, 794, 148515.	8.0	19
6	Preparing for a better future: Delphi forecasts on competency development to enhance climate-resilient farming in Northeastern India. International Journal of Sustainable Development and World Ecology, 2021, 28, 255-266.	5.9	3
7	Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers. Land, 2020, 9, 130.	2.9	33
8	Evaluating and expanding the European Union's protectedâ€area network toward potential postâ€2020 coverage targets. Conservation Biology, 2020, 34, 654-665.	4.7	22
9	Water productivity and footprint of major Brazilian rainfed crops – A spatially explicit analysis of crop management scenarios. Agricultural Water Management, 2020, 233, 105996.	5.6	23
10	Final countdown for biodiversity hotspots. Conservation Letters, 2019, 12, e12668.	5.7	73
11	Carbon leakage and limited efficiency of greenhouse gas taxes on food products. Journal of Cleaner Production, 2019, 213, 99-103.	9.3	21
12	Technical biofuel production and GHG mitigation potentials through healthy diets in the EU. Agricultural Systems, 2019, 168, 27-35.	6.1	12
13	Farmer Perceptions of Climate Change, Observed Trends and Adaptation of Agriculture in Pakistan. Environmental Management, 2019, 63, 110-123.	2.7	133
14	Benefits of Coordinated Water Resource System Planning in the Cauca-Magdalena River Basin. Water Economics and Policy, 2018, 04, 1650034.	1.0	2
15	Is large good enough? Evaluating and improving representation of ecoregions and habitat types in the European Union's protected area network Natura 2000. Biological Conservation, 2018, 227, 292-300.	4.1	19
16	Assessing the Economic Impacts of Pesticide Regulations. Agriculture (Switzerland), 2018, 8, 53.	3.1	3
17	Impacts of Bioenergy Policies on Land-Use Change in Nigeria. Energies, 2018, 11, 152.	3.1	10
18	Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks. Land, 2018, 7, 4.	2.9	15

Uwe A Schneider

#	Article	IF	CITATIONS
19	Climate impacts on palm oil yields in the Nigerian Niger Delta. European Journal of Agronomy, 2017, 85, 38-50.	4.1	16
20	Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations. Applied Energy, 2017, 192, 247-261.	10.1	34
21	Reconciling food and bioenergy feedstock supply in emerging economies: Evidence from Jiangsu Province in China. International Journal of Green Energy, 2017, 14, 509-521.	3.8	5
22	Modeling land suitability for Coffea arabica L. in Central America. Environmental Modelling and Software, 2017, 95, 196-209.	4.5	34
23	The Value of Global Earth Observations. , 2017, , 137-142.		1
24	Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. Journal of Rural Studies, 2016, 47, 254-266.	4.7	186
25	Increasing social welfare by taxing pesticide externalities in the Indian cotton sector. Pest Management Science, 2016, 72, 2303-2312.	3.4	5
26	Farmers' perceptions of and adaptation strategies to climate change and their determinants: the case of Punjab province, Pakistan. Earth System Dynamics, 2015, 6, 225-243.	7.1	343
27	Bioenergy and Food Supply: A Spatial-Agent Dynamic Model of Agricultural Land Use for Jiangsu Province in China. Energies, 2015, 8, 13284-13307.	3.1	9
28	Potential effects of perfect seasonal climate forecasting on agricultural markets, welfare and land use: A case study of Spain. Agricultural Systems, 2015, 133, 177-189.	6.1	19
29	A Meta-Analysis on the Return on Investment of Geospatial Data and Systems: A Multi-Country Perspective. Transactions in GIS, 2015, 19, 169-187.	2.3	8
30	The dynamic soil organic carbon mitigation potential of European cropland. Global Environmental Change, 2015, 35, 269-278.	7.8	34
31	Adaptation to New Climate by an Old Strategy? Modeling Sedentary and Mobile Pastoralism in Semi-Arid Morocco. Land, 2014, 3, 917-940.	2.9	13
32	Interactions between land use change, regional development, and climate change in the Poyang Lake district from 1985 to 2035. Agricultural Systems, 2013, 119, 10-21.	6.1	42
33	US agricultural sector analysis on pesticide externalities – the impact of climate change and a Pigovian tax. Climatic Change, 2013, 117, 711-723.	3.6	10
34	Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth. Energy Policy, 2013, 57, 602-614.	8.8	57
35	Allocation of European wetland restoration options for systematic conservation planning. Land Use Policy, 2013, 30, 604-614.	5.6	28
36	PESTICIDE AND GREENHOUSE GAS EXTERNALITIES FROM US AGRICULTURE — THE IMPACT OF THEIR INTERNALIZATION AND CLIMATE CHANGE. Climate Change Economics, 2013, 04, 1350008.	5.0	5

UWE A SCHNEIDER

#	Article	IF	CITATIONS
37	The future development of the use of wood in Russia and its potential impacts on the EU forest sector. Scandinavian Journal of Forest Research, 2013, 28, 291-302.	1.4	6
38	Benefits of earth observation data for conservation planning in the case of European wetland biodiversity. Environmental Conservation, 2013, 40, 37-47.	1.3	11
39	Price of CO 2 emissions and use of wood in Europe. Forest Policy and Economics, 2012, 15, 123-131.	3.4	48
40	Assessing the predictability of future livelihood strategies of pastoralists in semi-arid Morocco under climate change. Technological Forecasting and Social Change, 2012, 79, 371-382.	11.6	32
41	Impacts of population growth, economic development, and technical change on global food production and consumption. Agricultural Systems, 2011, 104, 204-215.	6.1	226
42	Pesticide externalities from the US agricultural sector – The impact of internalization, reduced pesticide application rates, and climate change. Procedia Environmental Sciences, 2011, 6, 153-161.	1.4	9
43	CropRota – A crop rotation model to support integrated land use assessments. European Journal of Agronomy, 2011, 34, 263-277.	4.1	90
44	Global land-use implications of first and second generation biofuel targets. Energy Policy, 2011, 39, 5690-5702.	8.8	586
45	Dynamic interactions between vegetation and land use in semi-arid Morocco: Using a Markov process for modeling rangelands under climate change. Agriculture, Ecosystems and Environment, 2011, 140, 462-472.	5.3	35
46	Integrating Land Market Feedbacks into Conservation Planning—A Mathematical Programming Approach. Environmental Modeling and Assessment, 2011, 16, 227-238.	2.2	16
47	Economic Impacts of Changes in Fish Population Dynamics: The Role of the Fishermen's Harvesting Strategies. Environmental Modeling and Assessment, 2011, 16, 413-429.	2.2	4
48	Gap analysis of European wetland species: priority regions for expanding the Natura 2000 network. Biodiversity and Conservation, 2011, 20, 581-605.	2.6	52
49	Multi-farm economic analysis of perennial energy crops in Central Greece, taking into account the CAP reform. Biomass and Bioenergy, 2011, 35, 700-715.	5.7	17
50	Effects of bioenergy policies and targets on European wetland restoration options. Environmental Science and Policy, 2010, 13, 721-732.	4.9	21
51	The impact of climate change on aquatic risk from agricultural pesticides in the US. International Journal of Environmental Studies, 2010, 67, 677-704.	1.6	9
52	Agriculture and resource availability in a changing world: The role of irrigation. Water Resources Research, 2010, 46, .	4.2	124
53	Multiple-species conservation planning for European wetlands with different degrees of coordination. Biological Conservation, 2010, 143, 1812-1821.	4.1	24
54	REBUILDING THE EASTERN BALTIC COD STOCK UNDER ENVIRONMENTAL CHANGE (PART II): TAKING INTO ACCOUNT THE COSTS OF A MARINE PROTECTED AREA. Natural Resource Modelling, 2009, 22, 1-25.	2.0	7

UWE A SCHNEIDER

#	Article	IF	CITATIONS
55	The impact of climate change on the external cost of pesticide applications in US agriculture. International Journal of Agricultural Sustainability, 2009, 7, 203-216.	3.5	45
56	Energy intensities and greenhouse gas emission mitigation in global agriculture. Energy Efficiency, 2009, 2, 195-206.	2.8	68
57	Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 789-813.	4.0	1,739
58	Insights from EMF-associated agricultural and forestry greenhouse gas mitigation studies. , 2007, , 238-251.		1
59	Testing the implications of a permanent or seasonal marine reserve on the population dynamics of Eastern Baltic cod under varying environmental conditions. Fisheries Research, 2007, 85, 1-13.	1.7	19
60	Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry. Agricultural Systems, 2007, 94, 128-140.	6.1	100
61	A synopsis of land use, land-use change and forestry (LULUCF) under the Kyoto Protocol and Marrakech Accords. Environmental Science and Policy, 2007, 10, 271-282.	4.9	121
62	Potential synergies between existing multilateral environmental agreements in the implementation of land use, land-use change and forestry activities. Environmental Science and Policy, 2007, 10, 335-352.	4.9	65
63	Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 2007, 118, 6-28.	5.3	459
64	Soil organic carbon changes in dynamic land use decision models. Agriculture, Ecosystems and Environment, 2007, 119, 359-367.	5.3	12
65	Leakage and Comparative Advantage Implications of Agricultural Participation in Greenhouse Gas Emission Mitigation. Mitigation and Adaptation Strategies for Global Change, 2007, 12, 471-494.	2.1	38
66	REBUILDING THE EASTERN BALTIC COD STOCK UNDER ENVIRONMENTAL CHANGE–A PRELIMINARY APPROACH USING STOCK, ENVIRONMENTAL, AND MANAGEMENT CONSTRAINTS. Natural Resource Modelling, 2007, 20, 223-262.	2.0	23
67	Appraising agricultural greenhouse gas mitigation potentials: effects of alternative assumptions. Agricultural Economics (United Kingdom), 2006, 35, 277-287.	3.9	38
68	Implications of a Carbon-Based Energy Tax for U.S. Agriculture. Agricultural and Resource Economics Review, 2005, 34, 265-279.	1.1	33
69	Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation. Environmental and Resource Economics, 2003, 24, 291-312.	3.2	170
70	Soil Carbon: Policy and Economics. Climatic Change, 2001, 51, 101-117.	3.6	53
71	CLIMATE CHANGE: Greenhouse Gas Mitigation in U.S. Agriculture and Forestry. Science, 2001, 294, 2481-2482.	12.6	275

Soil Carbon: Policy and Economics. , 2001, , 101-117.

#	Article	IF	CITATIONS
73	U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective. Applied Economic Perspectives and Policy, 2000, 22, 134-159.	1.0	107
74	Food versus wildlife: Will biodiversity hotspots benefit from healthier diets?. Global Ecology and Biogeography, 0, , .	5.8	1