Azadeh fattahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5665236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The APOSTLE simulations: solutions to the Local Group's cosmic puzzles. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1931-1943.	4.4	453
2	The unexpected diversity of dwarf galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3650-3665.	4.4	302
3	The milky way total mass profile as inferred from Gaia DR2. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4291-4313.	4.4	188
4	Bent by baryons: the low-mass galaxy-halo relation. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2941-2947.	4.4	163
5	The biggest splash. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3880-3898.	4.4	163
6	The apostle project: Local Group kinematic mass constraints and simulation candidate selection. Monthly Notices of the Royal Astronomical Society, 2016, 457, 844-856.	4.4	154
7	The chosen few: the low-mass haloes that host faint galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 85-97.	4.4	117
8	Mass-Discrepancy Acceleration Relation: A Natural Outcome of Galaxy Formation in Cold Dark Matter Halos. Physical Review Letters, 2017, 118, 161103.	7.8	95
9	The origin of galactic metal-rich stellar halo components with highly eccentric orbits. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4471-4483.	4.4	89
10	Tidal stripping and the structure of dwarf galaxies in the Local Group. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3816-3836.	4.4	79
11	The local high-velocity tail and the Galactic escape speed. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3514-3526.	4.4	75
12	The core–cusp problem: a matter of perspective. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1398-1411.	4.4	73
13	The dual origin of the Galactic thick disc and halo from the gas-rich Gaia–Enceladus Sausage merger. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1603-1618.	4.4	71
14	The low-mass end of the baryonic Tully–Fisher relation. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2419-2428.	4.4	69
15	The origin of the mass discrepancy–acceleration relation in ΛCDM. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1841-1848.	4.4	68
16	The oldest and most metal-poor stars in the APOSTLE Local Group simulations. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2212-2224.	4.4	67
17	Missing dark matter in dwarf galaxies?. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3610-3623.	4.4	62
18	No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4790-4804	4.4	62

Azadeh fattahi

#	Article	IF	CITATIONS
19	Baryonic solutions and challenges for cosmological models of dwarf galaxies. Nature Astronomy, 2022, 6, 897-910.	10.1	55
20	Knowing the unknowns: uncertainties in simple estimators of galactic dynamical masses. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2335-2360.	4.4	54
21	The orbital ellipticity of satellite galaxies and the mass of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2014, 437, 959-967.	4.4	52
22	Baryonic clues to the puzzling diversity of dwarf galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 2020, 495, 58-77.	4.4	50
23	The mass of the Milky Way out to 100Âkpc using halo stars. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5964-5972.	4.4	49
24	Subhalo destruction in the Apostle and Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5780-5793.	4.4	46
25	The properties of â€~dark' Ĵ›CDM haloes in the Local Group. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3913-3926.	4.4	44
26	Aurigaia: mock Gaia DR2 stellar catalogues from the auriga cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1726-1743.	4.4	44
27	A tale of two populations: surviving and destroyed dwarf galaxies and the build-up of the MilkyÂWay's stellar halo. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4459-4471.	4.4	40
28	Dark matter annihilation radiation in hydrodynamic simulations of Milky Way haloes. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4442-4451.	4.4	37
29	The edge of the Galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3929-3942.	4.4	34
30	The velocity anisotropy of the Milky Way satellite system. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2679-2694.	4.4	32
31	The star formation histories of dwarf galaxies in Local Group cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5423-5437.	4.4	31
32	The innate origin of radial and vertical gradients in a simulated galaxy disc. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3648-3660.	4.4	26
33	Magellanic satellites in ĥCDM cosmological hydrodynamical simulations of the Local Group. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4551-4567.	4.4	26
34	Galaxy pairs in the Local Group. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 431, L73-L77.	3.3	24
35	The distinct stellar metallicity populations of simulated Local Group dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2312-2331.	4.4	22
36	The dark matter component of the Gaia radially anisotropic substructure. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 036-036.	5.4	22

Azadeh fattahi

#	Article	IF	CITATIONS
37	How unusual is the Milky Way's assembly history?. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4311-4321.	4.4	22
38	Stellar splashback: the edge of the intracluster light. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4181-4192.	4.4	22
39	Satellites around Milky Way Analogs: Tension in the Number and Fraction of Quiescent Satellites Seen in Observations versus Simulations. Astrophysical Journal Letters, 2021, 916, L19.	8.3	19
40	The missing dwarf galaxies of the Local Group. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2596-2605.	4.4	18
41	What galaxy masses perturb the local cosmic expansion?. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1300-1316.	4.4	17
42	Dwarf stellar haloes: a powerful probe of small-scale galaxy formation and the nature of dark matter. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4044-4059.	4.4	17
43	The low abundance and insignificance of dark discs in simulated Milky Way galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L56-L61.	3.3	16
44	Galactic tides and the Crater II dwarf spheroidal: a challenge to LCDM?. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5247-5257.	4.4	14
45	Tidal features of classical Milky Way satellites in a $\hat{\mathbf{b}}$ cold dark matter universe. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4887-4901.	4.4	12
46	On the correlation between the local dark matter and stellar velocities. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 045-045.	5.4	12
47	Velocity-dependent J-factors for annihilation radiation from cosmological simulations. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 070.	5.4	12
48	Can tides explain the low dark matter density in Fornax?. Monthly Notices of the Royal Astronomical Society, 2021, 510, 2186-2205.	4.4	12
49	Apostle–Auriga: effects of different subgrid models on the baryon cycle around Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3113-3138.	4.4	12
50	Local group star formation in warm and self-interacting dark matter cosmologies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 702-717.	4.4	9
51	The tidal evolution of the Fornax dwarf spheroidal and its globular clusters. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5330-5339.	4.4	9
52	Observing the Stellar Halo of Andromeda in Cosmological Simulations: The AURIGA2PANDAS Pipeline. Astrophysical Journal, 2021, 910, 92.	4.5	6
53	The Ophiuchus stream progenitor: a new type of globular cluster and its possible Sagittarius connection. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4164-4174.	4.4	4