
Xiang-Yang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5664585/publications.pdf Version: 2024-02-01

XIANC-YANG HU

#	Article	IF	CITATIONS
1	Nitric Oxide Mediates Gravitropic Bending in Soybean Roots. Plant Physiology, 2005, 137, 663-670.	4.8	276
2	<i>N</i> -3-Oxo-Decanoyl- <scp>l</scp> -Homoserine-Lactone Activates Auxin-Induced Adventitious Root Formation via Hydrogen Peroxide- and Nitric Oxide-Dependent Cyclic GMP Signaling in Mung Bean Â. Plant Physiology, 2012, 158, 725-736.	4.8	144
3	FRIGIDA Delays Flowering in Arabidopsis via a Cotranscriptional Mechanism Involving Direct Interaction with the Nuclear Cap-Binding Complex Â. Plant Physiology, 2009, 150, 1611-1618.	4.8	130
4	Nitric Oxide Enhances Desiccation Tolerance of Recalcitrant Antiaris toxicaria Seeds via Protein S-Nitrosylation and Carbonylation. PLoS ONE, 2011, 6, e20714.	2.5	120
5	Deciphering the Protective Role of Nitric Oxide against Salt Stress at the Physiological and Proteomic Levels in Maize. Journal of Proteome Research, 2011, 10, 4349-4364.	3.7	99
6	Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng. Physiologia Plantarum, 2003, 118, 414-421.	5.2	97
7	Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. Journal of Plant Physiology, 2010, 167, 1298-1306.	3.5	89
8	Comparative Proteome Analyses Reveal that Nitric Oxide Is an Important Signal Molecule in the Response of Rice to Aluminum Toxicity. Journal of Proteome Research, 2013, 12, 1316-1330.	3.7	88
9	Origin of plant auxin biosynthesis. Trends in Plant Science, 2014, 19, 764-770.	8.8	81
10	Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radical Biology and Medicine, 2012, 53, 710-720.	2.9	79
11	Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng. Functional Plant Biology, 2003, 30, 901.	2.1	76
12	Proteasome-Mediated Degradation of FRIGIDA Modulates Flowering Time in <i>Arabidopsis</i> during Vernalization. Plant Cell, 2014, 26, 4763-4781.	6.6	71
13	The Dynamic Changes of the Plasma Membrane Proteins and the Protective Roles of Nitric Oxide in Rice Subjected to Heavy Metal Cadmium Stress. Frontiers in Plant Science, 2016, 7, 190.	3.6	66
14	Comparative Physiological and Proteomic Analyses of Poplar (Populus yunnanensis) Plantlets Exposed to High Temperature and Drought. PLoS ONE, 2014, 9, e107605.	2.5	65
15	Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. Planta, 2015, 242, 1361-1390.	3.2	64
16	Early signals transduction linking the synthesis of jasmonic acid in plant. Plant Signaling and Behavior, 2009, 4, 696-697.	2.4	60
17	Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. Journal of Proteomics, 2015, 112, 63-82.	2.4	59
18	NO-mediated hypersensitive responses of rice suspension cultures induced by incompatible elicitor. Science Bulletin, 2003, 48, 358-363.	1.7	56

XIANG-YANG HU

#	Article	IF	CITATIONS
19	Comparative Proteomic Analysis of the Thermotolerant Plant <i>Portulaca oleracea</i> Acclimation to Combined High Temperature and Humidity Stress. Journal of Proteome Research, 2012, 11, 3605-3623.	3.7	56
20	Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. Plant Physiology and Biochemistry, 2016, 104, 174-179.	5.8	56
21	Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (CSNOR) activity and reducing reactive oxygen/nitrogen damage. Plant Growth Regulation, 2018, 84, 11-23.	3.4	55
22	Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation. Planta, 2011, 233, 583-592.	3.2	54
23	The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. Planta, 2016, 244, 651-669.	3.2	51
24	Major episodes of horizontal gene transfer drove the evolution of land plants. Molecular Plant, 2022, 15, 857-871.	8.3	50
25	Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Growth Regulation, 2013, 71, 295-299.	3.4	48
26	The hydrogen sulfide signal enhances seed germination tolerance to high temperatures by retaining nuclear COP1 for HY5 degradation. Plant Science, 2019, 285, 34-43.	3.6	46
27	The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2018, 506, 895-900.	2.1	45
28	Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau. Planta, 2015, 241, 887-906.	3.2	41
29	Para-Aminobenzoic Acid (PABA) Synthase Enhances Thermotolerance of Mushroom Agaricus bisporus. PLoS ONE, 2014, 9, e91298.	2.5	33
30	Quantitative Proteomics Analysis Reveals That the Nuclear Cap-Binding Complex Proteins <i>Arabidopsis</i> CBP20 and CBP80 Modulate the Salt Stress Response. Journal of Proteome Research, 2014, 13, 2495-2510.	3.7	32
31	Comparative Proteomics Analyses of Kobresia pygmaea Adaptation to Environment along an Elevational Gradient on the Central Tibetan Plateau. PLoS ONE, 2014, 9, e98410.	2.5	31
32	Jasmonate mediates salt-induced nicotine biosynthesis in tobacco (Nicotiana tabacum L.). Plant Diversity, 2016, 38, 118-123.	3.7	31
33	ABI5-BINDING PROTEIN2 Coordinates CONSTANS to Delay Flowering by Recruiting the Transcriptional Corepressor TPR2. Plant Physiology, 2019, 179, 477-490.	4.8	29
34	AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2018, 501, 232-238.	2.1	27
35	Powerdress as the novel regulator enhances Arabidopsis seeds germination tolerance to high temperature stress by histone modification of SOM locus. Plant Science, 2019, 284, 91-98.	3.6	25
36	The role of γ-aminobutyric acid in aluminum stress tolerance in a woody plant, Liriodendron chinense × tulipifera. Horticulture Research, 2021, 8, 80.	6.3	25

XIANG-YANG HU

#	Article	IF	CITATIONS
37	Fungal elicitor Pep-25 increases cytosolic calcium ions, H2O2 production and activates the octadecanoid pathway in Arabidopsis thaliana. Planta, 2009, 229, 1201-1208.	3.2	23
38	Carbon Monoxide Interacts with Auxin and Nitric Oxide to Cope with Iron Deficiency in Arabidopsis. Frontiers in Plant Science, 2016, 7, 112.	3.6	23
39	Carbon monoxide signal regulates light-initiated seed germination by suppressing SOM expression. Plant Science, 2018, 272, 88-98.	3.6	23
40	Cunninghamia lanceolata PSK Peptide Hormone Genes Promote Primary Root Growth and Adventitious Root Formation. Plants, 2019, 8, 520.	3.5	23
41	AGAMOUS-LIKE67 Cooperates with the Histone Mark Reader EBS to Modulate Seed Germination under High Temperature. Plant Physiology, 2020, 184, 529-545.	4.8	21
42	High Temperature Induces Expression of Tobacco Transcription Factor NtMYC2a to Regulate Nicotine and JA Biosynthesis. Frontiers in Physiology, 2016, 7, 465.	2.8	20
43	Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2018, 495, 1102-1107.	2.1	19
44	A Series of TA-Based and Zero-Background Vectors for Plant Functional Genomics. PLoS ONE, 2013, 8, e59576.	2.5	19
45	Nitric oxide and hydrogen peroxide are important signals mediating the allelopathic response of <i>Arabidopsis</i> to <i>p</i> â€hydroxybenzoic acid. Physiologia Plantarum, 2014, 152, 275-285.	5.2	18
46	Gamma-aminobutyric acid mediates nicotine biosynthesis in tobacco under flooding stress. Plant Diversity, 2016, 38, 53-58.	3.7	18
47	Discovery and modulation of diterpenoid metabolism improves glandular trichome formation, artemisinin production and stress resilience in <i>Artemisia annua</i> . New Phytologist, 2021, 230, 2387-2403.	7.3	18
48	Nitric oxide promotes light-initiated seed germination by repressing PIF1 expression and stabilizing HFR1. Plant Physiology and Biochemistry, 2018, 123, 204-212.	5.8	17
49	Expression of FRIGIDA in root inhibits flowering in Arabidopsis thaliana. Journal of Experimental Botany, 2019, 70, 5101-5114.	4.8	17
50	A conserved but plant-specific CDK-mediated regulation of DNA replication protein A2 in the precise control of stomatal terminal division. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18126-18131.	7.1	16
51	The Transcriptome of Cunninghamia lanceolata male/female cone reveal the association between MIKC MADS-box genes and reproductive organs development. BMC Plant Biology, 2020, 20, 508.	3.6	15
52	Mitogen-activated protein kinases mediate the oxidative burst and saponin synthesis induced by chitosan in cell cultures of Panax ginseng. Science in China Series C: Life Sciences, 2004, 47, 303.	1.3	14
53	Transcriptome and proteome analysis suggest enhanced photosynthesis in tetraploid <i>Liriodendron sino-americanum</i> . Tree Physiology, 2021, 41, 1953-1971.	3.1	14
54	Alleviation of photosynthetic inhibition in copper-stressed tomatoes through rebalance of ion content by exogenous nitric oxide. Turkish Journal of Botany, 2015, 39, 10-22.	1.2	13

XIANG-YANG HU

#	Article	IF	CITATIONS
55	A mycorrhizae-like gene regulates stem cell and gametophore development in mosses. Nature Communications, 2020, 11, 2030.	12.8	13
56	SIP1, a novel SOS2 interaction protein, is involved in salt-stress tolerance in Arabidopsis. Plant Physiology and Biochemistry, 2018, 124, 167-174.	5.8	12
57	Isolation and characterization of 19 new microsatellite loci in <i>Colocasia esculenta</i> (Araceae). American Journal of Botany, 2011, 98, e239-41.	1.7	9
58	Hydrogen Sulfide Signaling Protects Chlamydomonas reinhardtii Against Allelopathic Damage From Cyanobacterial Toxin Microcystin-LR. Frontiers in Plant Science, 2020, 11, 1105.	3.6	9
59	Are fungiâ€derived genomic regions related to antagonism towards fungi in mosses?. New Phytologist, 2020, 228, 1169-1175.	7.3	8
60	Investigating the MicroRNAomes of Two Developmental Phases of Dendrocalamus latiflorus (Poaceae:) Tj ETQqO	00rgBT/	Overlock 10
61	Diketopiperazine Modulates <i>Arabidopsis thaliana</i> Root System Architecture by Promoting Interactions of Auxin Receptor TIR1 and IAA7/17 Proteins. Plant and Cell Physiology, 2022, 63, 57-69.	3.1	6
62	Isolation and Characterization of IaYABBY2 Gene from Incarvillea arguta. Plant Molecular Biology Reporter, 2014, 32, 1219-1227.	1.8	4
63	Roles of H ₂ S in adaptation of alpine plants <i>Lamiophlomis rotata</i> to altitude gradients. Plant Signaling and Behavior, 2015, 10, e1055433.	2.4	4
64	Chromosome number and genome size variation in Colocasia (Araceae) from China. Journal of Plant Research, 2017, 130, 989-997.	2.4	4
65	Enhanced thermotolerance of <i>Arabidopsis</i> by chitooligosaccharides-induced <i>CERK1n-ERc</i> fusion gene. Plant Signaling and Behavior, 2020, 15, 1816322.	2.4	4
66	Origin of plant auxin biosynthesis in charophyte algae: a reply to Wang et al Trends in Plant Science, 2014, 19, 743.	8.8	3
67	Plant Colonization of Land: Mining Genes from Bacteria. Trends in Plant Science, 2020, 25, 317-319.	8.8	3