## Malene Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5663969/publications.pdf

Version: 2024-02-01

71102 110387 20,507 68 41 citations h-index papers

g-index 77 77 77 31547 docs citations times ranked citing authors all docs

64

| #  | Article                                                                                                                                                    | IF           | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 1  | Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.                                    | 9.1          | 4,701     |
| 2  | Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.                                                 | 9.1          | 3,122     |
| 3  | Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science, 2011, 331, 456-461.                         | 12.6         | 2,107     |
| 4  | Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.                                                               | 7.8          | 1,230     |
| 5  | Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell, 2007, 6, 95-110.                                          | 6.7          | 784       |
| 6  | A Role for Autophagy in the Extension of Lifespan by Dietary Restriction in C. elegans. PLoS Genetics, 2008, 4, e24.                                       | 3 <b>.</b> 5 | 639       |
| 7  | Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.                                                                                        | 7.8          | 615       |
| 8  | Autophagy as a promoter of longevity: insights from model organisms. Nature Reviews Molecular Cell Biology, 2018, 19, 579-593.                             | 37.0         | 513       |
| 9  | New Genes Tied to Endocrine, Metabolic, and Dietary Regulation of Lifespan from a Caenorhabditis elegans Genomic RNAi Screen. PLoS Genetics, 2005, 1, e17. | 3 <b>.</b> 5 | 467       |
| 10 | Autophagy in healthy aging and disease. Nature Aging, 2021, 1, 634-650.                                                                                    | 11.6         | 467       |
| 11 | p62 Is a Key Regulator of Nutrient Sensing in the mTORC1 Pathway. Molecular Cell, 2011, 44, 134-146.                                                       | 9.7          | 422       |
| 12 | The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nature Communications, 2013, 4, 2267.                    | 12.8         | 416       |
| 13 | A Conserved SREBP-1/Phosphatidylcholine Feedback Circuit Regulates Lipogenesis in Metazoans. Cell, 2011, 147, 840-852.                                     | 28.9         | 373       |
| 14 | Autophagy and Lipid Metabolism Coordinately Modulate Life Span in Germline-less C.Âelegans. Current Biology, 2011, 21, 1507-1514.                          | 3.9          | 296       |
| 15 | Transcriptional and epigenetic regulation of autophagy in aging. Autophagy, 2015, 11, 867-880.                                                             | 9.1          | 280       |
| 16 | Dietary restriction and lifespan: Lessons from invertebrate models. Ageing Research Reviews, 2017, 39, 3-14.                                               | 10.9         | 267       |
| 17 | Lessons from C. elegans: signaling pathways for longevity. Trends in Endocrinology and Metabolism, 2012, 23, 637-644.                                      | 7.1          | 252       |
| 18 | Reproduction, Fat Metabolism, and Life Span: What Is the Connection?. Cell Metabolism, 2013, 17, 10-19.                                                    | 16.2         | 244       |

| #  | Article                                                                                                                                                                                              | IF   | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mutations That Increase the Life Span of <i>C. elegans</i> Inhibit Tumor Growth. Science, 2006, 313, 971-975.                                                                                        | 12.6 | 227       |
| 20 | A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes and Development, 2006, 20, 1137-1149.                  | 5.9  | 220       |
| 21 | Ras GTPases: integrins' friends or foes?. Nature Reviews Molecular Cell Biology, 2003, 4, 767-777.                                                                                                   | 37.0 | 207       |
| 22 | Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9730-9735. | 7.1  | 206       |
| 23 | Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans. Nature Communications, 2017, 8, 14337.                                                           | 12.8 | 180       |
| 24 | Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. ELife, 2017, 6, .                                                                                                        | 6.0  | 176       |
| 25 | Phosphorylation of LC3 by the Hippo Kinases STK3/STK4 Is Essential for Autophagy. Molecular Cell, 2015, 57, 55-68.                                                                                   | 9.7  | 158       |
| 26 | Intestinal Autophagy Improves Healthspan and Longevity in C. elegans during Dietary Restriction. PLoS Genetics, 2016, 12, e1006135.                                                                  | 3.5  | 142       |
| 27 | Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell, 2019, 177, 299-314.e16.                                                                                        | 28.9 | 137       |
| 28 | C. elegans rrf-1 Mutations Maintain RNAi Efficiency in the Soma in Addition to the Germline. PLoS ONE, 2012, 7, e35428.                                                                              | 2.5  | 119       |
| 29 | Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy, 2015, 11, 9-27.                                                                                                            | 9.1  | 119       |
| 30 | Autophagy and innate immunity: Insights from invertebrate model organisms. Autophagy, 2018, 14, 233-242.                                                                                             | 9.1  | 112       |
| 31 | Does Longer Lifespan Mean Longer Healthspan?. Trends in Cell Biology, 2016, 26, 565-568.                                                                                                             | 7.9  | 101       |
| 32 | The Mediator Subunit MDT-15 Confers Metabolic Adaptation to Ingested Material. PLoS Genetics, 2008, 4, e1000021.                                                                                     | 3.5  | 100       |
| 33 | Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy, 2016, 12, 261-272.                                                                                                   | 9.1  | 100       |
| 34 | The autophagy receptor p62/SQST-1 promotes proteostasis and longevity in C. elegans by inducing autophagy. Nature Communications, 2019, 10, 5648.                                                    | 12.8 | 86        |
| 35 | Autophagy - An Emerging Anti-Aging Mechanism?. , 2012, s4, .                                                                                                                                         |      | 74        |
| 36 | Autophagy genes are required for normal lipid levels in <i><i>C. elegans</i></i> . Autophagy, 2013, 9, 278-286.                                                                                      | 9.1  | 68        |

| #  | Article                                                                                                                                                                                     | IF   | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Beyond Autophagy: The Expanding Roles of ATG8 Proteins. Trends in Biochemical Sciences, 2021, 46, 673-686.                                                                                  | 7.5  | 68        |
| 38 | Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Experimental Gerontology, 2013, 48, 191-201.                                | 2.8  | 67        |
| 39 | PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy, 2017, 13, 486-505.                                                                                     | 9.1  | 63        |
| 40 | <scp>elF</scp> 5A is required for autophagy by mediating <scp>ATG</scp> 3Âtranslation. EMBO Reports, 2018, 19, .                                                                            | 4.5  | 63        |
| 41 | C.Âelegans S6K Mutants Require a Creatine-Kinase-like Effector for Lifespan Extension. Cell Reports, 2016, 14, 2059-2067.                                                                   | 6.4  | 50        |
| 42 | Autophagy links lipid metabolism to longevity in <i>C. elegans</i> . Autophagy, 2012, 8, 144-146.                                                                                           | 9.1  | 49        |
| 43 | A dual role for integrinâ€linked kinase and β1â€integrin in modulating cardiac aging. Aging Cell, 2014, 13, 431-440.                                                                        | 6.7  | 49        |
| 44 | Integrinâ€linked kinase modulates longevity and thermotolerance in <i>C. elegans</i> through neuronal control of <scp>HSF</scp> â€1. Aging Cell, 2014, 13, 419-430.                         | 6.7  | 42        |
| 45 | Hormetic heat shock and HSF-1 overexpression improve <i>C. elegans</i> survival and proteostasis by inducing autophagy. Autophagy, 2017, 13, 1076-1077.                                     | 9.1  | 33        |
| 46 | LC3B phosphorylation regulates FYCO1 binding and directional transport of autophagosomes. Current Biology, 2021, 31, 3440-3449.e7.                                                          | 3.9  | 31        |
| 47 | Macroautophagy and aging: The impact of cellular recycling on health and longevity. Molecular Aspects of Medicine, 2021, 82, 101020.                                                        | 6.4  | 30        |
| 48 | Autophagic receptor p62 protects against glycationâ€derived toxicity and enhances viability. Aging Cell, 2020, 19, e13257.                                                                  | 6.7  | 27        |
| 49 | The FOXO Transcription Factor DAF-16 Bypasses ire-1 Requirement to Promote Endoplasmic Reticulum Homeostasis. Cell Metabolism, 2014, 20, 870-881.                                           | 16.2 | 26        |
| 50 | C-terminal sequences in R-Ras are involved in integrin regulation and in plasma membrane microdomain distribution. Biochemical and Biophysical Research Communications, 2003, 311, 829-838. | 2.1  | 24        |
| 51 | The selective autophagy receptor SQSTM1/p62 improves lifespan and proteostasis in an evolutionarily conserved manner. Autophagy, 2020, 16, 772-774.                                         | 9.1  | 20        |
| 52 | R-Ras C-terminal sequences are sufficient to confer R-Ras specificity toH-Ras. Oncogene, 2002, 21, 4448-4461.                                                                               | 5.9  | 18        |
| 53 | Chapter Twentyâ€Nine Monitoring the Role of Autophagy in C. elegans Aging. Methods in Enzymology, 2008, 451, 493-520.                                                                       | 1.0  | 17        |
| 54 | LC3 is a novel substrate for the mammalian Hippo kinases, STK3/STK4. Autophagy, 2015, 11, 856-857.                                                                                          | 9.1  | 13        |

| #  | Article                                                                                                                                                                            | IF   | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A Cool Way to Live Long. Cell, 2013, 152, 671-672.                                                                                                                                 | 28.9 | 12        |
| 56 | MON-2, a Golgi protein, mediates autophagy-dependent longevity in <i>Caenorhabditis elegans</i> Science Advances, 2021, 7, eabj8156.                                               | 10.3 | 11        |
| 57 | Intestine-to-neuronal signaling alters risk-taking behaviors in food-deprived Caenorhabditis elegans.<br>PLoS Genetics, 2022, 18, e1010178.                                        | 3.5  | 10        |
| 58 | Age-associated and tissue-specific decline in autophagic activity in the nematode <i>C. elegans</i> Autophagy, 2018, 14, 1276-1277.                                                | 9.1  | 9         |
| 59 | LC3B phosphorylation: autophagosome's ticket for a ride toward the cell nucleus. Autophagy, 2021, 17, 3266-3268.                                                                   | 9.1  | 7         |
| 60 | Reproduction, Fat Metabolism, and Life Span: What Is the Connection?. Cell Metabolism, 2014, 19, 1066.                                                                             | 16.2 | 5         |
| 61 | Targeted protein degradation: from small molecules to complex organellesâ€"a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1510, 79-99.              | 3.8  | 5         |
| 62 | Assessing Tissue-Specific Autophagy Flux in Adult Caenorhabditis elegans. Methods in Molecular Biology, 2020, 2144, 187-200.                                                       | 0.9  | 4         |
| 63 | SAMS-1 coordinates HLH-30/TFEB and PHA-4/FOXA activities through histone methylation to mediate dietary restriction-induced autophagy and longevity. Autophagy, 2023, 19, 224-240. | 9.1  | 3         |
| 64 | The San Diego Nathan Shock Center: tackling the heterogeneity of aging. GeroScience, 2021, 43, 2139-2148.                                                                          | 4.6  | 2         |
| 65 | Autophagy and Ageing. Healthy Ageing and Longevity, 2017, , 331-354.                                                                                                               | 0.2  | 0         |
| 66 | Getting under the skin: Cuticle damage elicits systemic autophagy response in C. elegans. Journal of Cell Biology, 2019, 218, 3885-3887.                                           | 5.2  | 0         |
| 67 | Regulation of Autophagy in Aging and Disease. Innovation in Aging, 2020, 4, 744-744.                                                                                               | 0.1  | 0         |
| 68 | Irving S. Wright Award: Cellular recycling in aging and disease: The importance of taking out the trash. Innovation in Aging, 2021, 5, 383-383.                                    | 0.1  | 0         |